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ABSTRACT 

In recent years, the occurrence and mortality rate due to skin cancer has increased to a 

higher extent worldwide. It is crucial to identify such cancers early and accurately to 

provide proper treatment, and research has shown that deep intelligent learning-based ways 

to address this issue have been proved successful. The main motivation of this study is to 

classify skin cancer using deep learning techniques on dermoscopy dataset with optimal 

performance while training time taken into account. The aim is to develop such an 

automated framework which can perform optimally across three different dermoscopy 

datasets having diverse characteristics. We have proposed a model SkinNet-14 by altering 

compact convolutional transformer (CCT) using 32 × 32 sized input image which results 

in minimizing time complexity to classify skin cancer into different classes. The SkinNet-

14 architecture is developed through ablation study conducted on CCT model using HAM 

dataset. Prior to that, several data augmentation techniques and preprocessing methods are 

applied to enhance the image quality and quantity of all the datasets. Afterwards, the 

proposed model is evaluated with the rest two datasets. Results show that, the model which 

was proposed, achieved an accuracy of 97.85% on the HAM dataset, 96.0% on the ISIC 

dataset, and 98.14% on the PAD dataset. Moreover, the proposed model yields better 

performance in terms of number of parameters, accuracy and training time than six transfer 

learning model while training with 32 × 32 sized images.  
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CHAPTER 1 

 Introduction 

1.1 Introduction 

Cancer is currently one of the most severe threats to global health where skin cancer is one 

of the most prevalent types of cancer in the world. Skin cancer comes in many forms. The 

most common types of skin cancer include melanoma, basal cell carcinoma (BCC), 

squamous cell carcinoma (SCC), actinic keratoses and intraepithelial carcinoma (AKIEC), 

dermatofibroma (DF), melanocytic nevi, etc. [1]. Globally, approximately 115,320 skin 

cancer cases and nearly 11540 skin cancer deaths were recorded in 2021 [2]. By 2040, 28.4 

million new cases of cancer are predicted to have occurred, representing a 47% increase in 

the global cancer burden [3]. 

Deep learning has made significant strides in Computer Aided Diagnosis (CAD) systems, 

and these systems are now frequently used in research on CAD systems for various medical 

imaging interpretations. Due to their end-to-end feature representation capabilities, 

convolutional neural networks (CNNs) have made great advancements in skin lesion 

detection at present. However, precise classification of skin lesions remains challenging 

due to the following issues: (1) the need for a large number of training images as well as a 

lengthy and complex training process [4]. (2) Inter-class similarities and intra-class 

variations, and (3) lack of the ability to focus on discriminative skin lesion parts. [5]  Large 

dataset requirements might be addressed by implementing transfer learning, but other 

issues like lengthy computational requirements and training times, generalization potential, 

performance consistency, and robustness of the model still need to be addressed [6].   

Vision Transformer (ViT) [7], a model based on self-attention [8] and influenced by natural 

language processing (NLP), was initially implemented in computer vision tasks. The used 

architecture was a pure transformer design. In contrast to standard CNN architectures, the 

self-attention layers of the Transformer architecture may detect long-range dependencies 

[8], [9]. However, due to the lack of inductive bias in its architecture, ViT is a data-hungry 

model, according to the findings of this study [8]. This data-hungry approach of ViT has 
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made transformers inapplicable for a variety of essential tasks, as data is scarce in many 

fields.  In order to overcome the massive data limitations of ViTs, Hassani et al. [10] 

introduce the Compact Convolutional Transformer (CCT) model that implements 

sequential pooling and replaces patch embedding with convolutional embedding, allowing 

for more inductive bias.  

The aim of this study is to develop a single framework including similar image pre-

processing, data augmentation and model architecture that is capable of classifying skin 

cancer lesions from three different datasets. An ablation study on CCT is used to propose 

a robust model. Due to the presence of noise, hairs, dark corners, color charts, uneven 

illumination, and marker ink in dermoscopic images [11], image pre-processing methods 

are used to improve the performance of our proposed model. 

1.2 Problem Statement 

For several reasons, estimating the incidence of skin cancer is particularly challenging. 

Although melanoma only accounts for about 5% of skin cancer cases, it causes 75% of skin 

cancer deaths [12]. Due to the high mortality rate of melanoma, skin cancer is sometimes 

divided into melanoma and non-melanoma. Non-melanoma skin cancer is often not tracked 

by cancer registries [13]. Dermatologists have difficulty identifying skin cancer from a 

dermoscopy image of a skin lesion [12]. A biopsy and a pathology review may be required 

in some circumstances to diagnose cancer. Moreover, manual disease monitoring is time-

consuming, labor-intensive, and sensitive to observer variability [6]. In addition, a lack of 

radiologists and an increase in the number of skin cancer patients may result in diagnostic 

and treatment delays. To address these challenges, it is essential to implement an automated 

diagnostic strategy for the detection of skin cancer that reduces diagnostic time and 

increases medical efficiency. 

1.3 Research Objectives 

The main objectives of the paper can be summarized as follows: 

a) To utilize three datasets named HAM10000, PAD-UEFS and ISIC having a 

maximum of nine classes, different characteristics and imaging protocols, to 

employ to classify skin lesions.  
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b) To use three different data augmentation techniques to increase the volume of the 

datasets. Best data augmentation method will be selected based on the model 

performance.  

c) To remove challenging artifacts and improve the quality of the image using various 

image pre-processing techniques. 

d) To propose a model called SKINNET-14 by modifying the original compact 

convolutional transformer model for the efficient classification of skin lesions. 

e) To solve the problems of lengthy training times and insufficient amount of data 

with the proposed model. 

f) To perform an ablation study is by altering the layer architecture and the hyper-

parameters of the base model to propose the robust model to classify skin lesions. 

g) To compare the performance of the proposed SKINNET-14 model with six transfer 

learning CNN based models on all three dataset  

 1.4 Research Questions 

a) How can we investigate research gaps in existing machine vision-based systems for 

correctly classifying different skin types? 

b) How can we develop attention-based model, utilizing lower time complexity and 

low resolution image, approach for improving the accuracy for classify skin cancer 

according to their class? 

1.5 Report Layout 

Chapter 1 presents the research introduction, objectives, and key research questions. 

Chapter 2 Brief summaries of the literature review are provided. 

Chapter 3 describes the proposed methodology with a detailed description.  

Chapter 4 explains paper's experimental results and discussed. 

Chapter 5 concludes the present research along with a direction for future work. 
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CHAPTER 2 

Literature Review 

2.1 Related works 

In recent works, several researchers have proposed various transformer, deep-learning, and 

machine learning based methods for classifying skin lesions. This section presents some 

literature on classifying skin diseases. 

Mohamed et al. [14] proposed a skin lesion classification technique by modifying the 

architecture of the GoogleNet. The proposed model achieved an accuracy of 94.92% in 

multiclass classification. In another study, Jason et al. [15] combined conventional image 

processing with deep learning by fusing features to achieve greater accuracy in dermoscopy 

images for melanoma diagnosis. The deep learning component uses knowledge transfer via 

a modified ResNet-50 network to classify the melanoma from ISIC dataset and achieved 

94% accuracy with an AUC of 0.90. In this work, Moloud et al. [16] introduced the Three-

Way Decision (TWD) theory and used it for the analysis of images of skin cancer. Two 

uncertainty quantification (UQ) techniques, named ensemble MC dropout (EMC) and deep 

ensemble (DE), have been incorporated into the proposed hybrid deep learning model 

TWDBDL. In the final phase, the model's accuracy was 88.95% and its AUC was 0.92. In 

their study, Simon et al. [17] classified skin tissue into 12 meaningful dermatological 

classes using CNN and machine learning. The study also showed that semantic 

segmentation permits a network to interpretably learn the complete context of skin tissue 

types. The approach attained accuracy between 93% and 97%. Ameri et al. [18] proposed 

a skin cancer detection method that utilizes CNN to classify images into benign and 

malignant categories. No segmentation or feature extraction techniques were applied to 

lesions. The HAM10000 dataset yielded a classification accuracy of 84%. 

Transformer networks are infrequently used to classify skin cancer. Chao et al. [19] 

proposed a ViT based SkinTrans model to classify skin cancer on HAM10000 and a 

clinical dataset. This paper uses overlapping multiscale sliding windows to serialize images 

using multiscale patch embedding. The proposed model achieved 94.3% accuracy on the 

HAM10000 dataset and 94.1% accuracy on the clinical dataset. Xiaoyu et al. [5] proposed 



©Daffodil International University  5 

 

a model named DeMAL-CNN for skin lesion classification in dermoscopy images. In 

DeMAL-CNN, a TPN consisting of three weight-shared embedding extraction networks 

and a mixed attention mechanism that takes both spatial-wise and channel-wise attention 

information into account were developed and implemented. The results of the ablation 

analysis indicated that DeMAL-CNN obtained a maximum accuracy of 92.7% on the ISIC 

dataset. In another study, Jingye et al. [20] proposed transformer- UNet based MT-

TransUNet. It can segment and classify skin lesions simultaneously by mediating multi-

task tokens in Transformers. The model achieved 91.2% accuracy on multiclass 

classification. In order to enhance the deep convolutional neural network's (DCNN) 

capacity for discriminative representation, Jianpeng et al. [21] propose the attention 

residual learning convolutional neural network (ARL-CNN) model for the detection of skin 

lesions in dermoscopy images. After applying the ARL-CNN model to the ISIC-skin 2017 

dataset, the model attained an AUC of 0.905. Work by Nils et al. [22] proposed a unique 

patch-based attention architecture to successfully classify both the high-class imbalance 

and high-resolution real-world multi-class skin cancer datasets. The model gives global 

context between small, high-resolution patches. According to the results, using an 

attention-based approach increases MC-sensitivity by up to 7%. The maximum sensitivity 

was 67.8%. To improve skin cancer classification performance Soumyya et al. [23] merged 

soft attention with DenseNet, VGG, Inception-ResNet v2, and ResNet architectures. The 

authors observed that Soft-Attention enhances the performance of the original network. 

Their suggested Inception-ResNet v2 + soft attention (IRv+SA) model achieved the 

greatest 90.40% accuracy on the ISIC-2017 dataset. 

2.2 Scope of the Problem 

Several machine learning and deep learning-based models have been employed to classify 

skin cancer, as is evident from previous studies. In addition, transformer and attention-

based models are employed to make progress in the tasks of skin classification. However, 

there are drawbacks such as high time complexity and the inability to utilize low-quality 

photos. There is scope for improvement in the classification of skin cancer pictures by 

addressing the shortcomings. In this study, these obstacles are considered in the context of 

establishing a single framework with strong interpretive skills. 
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2.3 Challenges 

The focused challenges for this research are: 

a) Data Collection and merge: Different datasets having a different classes need to 

be collect, to train and test this model.  

b) Data Augmentation: Have to perform data augmentation techniques to increase 

the volume of the datasets. Challenging artifacts are removed and the quality of the 

image is enhanced using various image pre-processing techniques. 

c) Image Processing: Images gathered from various sources occasionally had low or 

high contrast, or they were noisy. The challenge is to create noise-free, contrast-

enhanced images that are perfect for classification. 

d) Select Base Model: To solve the problems of lengthy training times and 

insufficient amount of data a perfect base model need to be choose for ablation 

study. 

e) Propose Robust Model and Improve Accuracy: Many research is used many 

different model, in our approach we have to utilize an attention and CNN based 

hybrid approach to classify skin cancer more precisely. 
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CHAPTER 3 

 Materials and Methods 

3.1 Working Process 

To develop an effective transformer-based skin lesion classification model various steps 

are performed. The entire step-by-step methodology is illustrated in figure 3.1. 

 

Figure 3.1: Overall methodology to classify multiclass skin disease on three dataset 

This study utilizes three publicly available skin cancer-related datasets named HAM10000, 

ISIC and PAD-UFES to conduct all the experiments. On each of the three datasets, multiple 

and similar image processing methods are used to eliminate artifacts and enhance the 

photos. Afterwards, a number of data augmentation approaches including photometric, 

geometric and elastic deformation are implemented to address data imbalance and scarcity 

issues. Among all the strategies, best data augmentation method is selected based on the 

model performance. After that, augmented data from the HAM10000 dataset are divided 

into 75% for training, 10% for validation, and 15% for testing, and fed into the CCT base 

model where the input image pixels size is 32×32. HAM10000 have the maximum number 

of data than other two datasets. A ten-case ablation study is conducted to assure optimal 

performance and to address the time complexity. On the basis of ablation research, the Skin 

Compact Convolutional Transformer (SKINNET-14) is developed by altering the layer 
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structure and hyperparameters of the original CCT model. In addition, the SKINNET-14 

model are trained and evaluated on all the rest two datasets and it is found that the model 

is robust enough to yield optimal performance over several dermoscopy datasets with 

image size 32 x 32. With this image size, six state of the art transfer learning models named 

ResNet50, ResNet152, VGG19, MobileNet, VGG16 and ResNet50V2 are trained and 

evaluated with all the three datasets and performance is compared with our proposed model 

in terms of accuracy and time complexity. Then, the outcomes of the SKINNET-14 

model on all three datasets are analyzed with several performance metrics, and the 

likelihood of overfitting is examined. Finally, the resilience of the model is evaluated 

further by comparing its performance with decreasing numbers of photos gradually. The 

sections and subsections below provide a brief description of each process. 

3.2 Dataset description 

In this research, the evaluation of the suggested model is performed on three publically 

available dataset. The details of the dataset are discussed below. 

a) HAM 10000 Dataset 

The HAM 10000 [24] dataset is a popular publicly available kaggle dataset. The dataset 

consists of 10015 skin lesion images. It has seven classes including Actinic Keratosis, , 

Benign keratosis, Basal Cell Carcinoma, Dermatofibroma, Melanocytic Nevi, Melanoma 

and Vascular Lesions. The resolution of the images are 644 × 450 pixel. 

b) ISIC dataset 

The ISIC [25] dataset contains 2357 images which was collected from the International 

Skin Imaging Collaboration (ISIC) database. The dataset contains nine classes: Actinic 

Keratosis, Pigmented Benign Keratosis, Basal Cell Carcinoma, Melanoma, 

Dermatofibroma, Nevus, Squamous Cell Carcinoma, Seborrheic Keratosis and Vascular 

Lesions. The images of this dataset are 600 × 450 pixels. 
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c) PAD-UFES-20 Dataset 

The PAD-UFES-20 [26] dataset consist of 2298 images with six classes. The classes are: 

Actinic Keratosis, Basal Cell Carcinoma, Melanoma, Nevus, Seborrheic Keratosis, 

Squamous Cell Carcinoma and Vascular Lesions. It is a very challenging dataset. The 

images of this dataset are 1050 × 1050 pixels. 

An overview of all three of datasets are given in Table 3.1. 

Table 3.1 Dataset description 

Name Description 

 

 

 

 

 

HAM10000 

Dataset 

 

 

 

 

Total No. Of Image 10015 

No. of classes 7 

Dimension 600 × 450 
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Benign Keratosis-Like 

Lesions 

1099 

Basal Cell Carcinoma 514 

Dermatofibroma 115 

Melanocytic Nevi 6,847 

Melanoma 1,113 

Vascular Lesions 142 

 

 

 

 

 

 

Total no. of image 2357 

Dimension 600 × 450 

No. of classes 9 

Actinic Keratosis 114 
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Dermatofibroma 95 

Basal Cell Carcinoma 376 
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ISIC Dataset Melanoma 438 

Pigmented Benign 

Keratosis 

462 

Nevus 357 

Seborrheic Keratosis 77 

Vascular Lesions 139 

Squamous Cell Carcinoma 181 

 

 

 

 

PAD-UFES-20      

Dataset 

 

 

 

 

Total no. of image 2298 

No. of classes 6 

Dimension 1050 × 1050 

Actinic Keratosis 730 

N
u

m
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es
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ch
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la

ss
 

Melanoma 52 

Basal Cell Carcinoma 845 

Nevus 244 

Squamous Cell Carcinoma 235 

Seborrheic Keratosis 192 

 

3.2.1 Skin Lesion Description 

The dataset includes numerous skin lessons. Melanoma, squamous cell carcinoma, and 

basal cell carcinoma are the three main kinds of skin cancer [27]. The most prevalent non-

melanoma skin cancers are basal cell carcinoma and squamous cell carcinoma. Most 

common basal cell carcinoma grows slowly and rarely spreads. Squamous cell carcinoma 

penetrates deeper and spreads more than basal cell carcinoma. Melanocyte-based 

malignancies, or melanomas, are malignant. Melanomas, the most malignant type of skin 

cancer, spread to other organs and are hard to cure. Figure 3.2 shows the images of each 

skin classes marking according to tumor, artifacts, and normal skin.  
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Figure 3.2: Cancer lesion of different skin classes 

Actinic keratosis (Fig. 3.2-A) might appear differently like rough, dry, or scaly skin patch, 

on the top layer of skin, a patch or bump that is flat to slightly elevated. In certain instances, 

a rough, wart-like surface, bleeding and itching. Basal cell carcinoma (Fig. 3.2-B) causes 

skin changes like growths or sores that will not heal. Lesions are typically characterized by 

a shiny, transparent, skin-colored lump, a brown, black, or blue lesion, or a flat, scaly patch 

with a raised border or a whitish, waxy, scar-like lesion lacking a distinct boundary. 

Skeletal Cell Carcinoma (Fig. 3.2-C) can manifest as elevated growths with a central 

depression, open sores, scaly red patches, rough, thickened, or wart-like skin. It can 

occasionally itch, bleed or crust over. As visible in Fig. 3.2-D, sizes of dermatofibromas 

range from 0.5 to 1.5 cm in diameter. Color of dermatofibroma can range from pink to light 

brown on people with white skin to dark brown to black on people with dark skin; certain 

colors appear paler in the middle. Although dermatofibromas rarely exhibit symptoms, they 

can occasionally be tender, painful, or irritating. Melanocytic nevi (Fig. 3.2-E) typically 

grow to a maximum size of 40 cm. Tan to black is the color spectrum, and it can get lighter 

or darker with time. A nevi's surface can be smooth, uneven, elevated, thickened, or bumpy; 

it can differ in different areas of the nevus and it can alter with time. The nevus's skin is 
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frequently dry, prone to irritation, and itchy. Melanomas (Fig. 3.2-F) usually shaped 

asymmetric with irregular border. The diameter of the melanoma mole is larger than 6 mm 

and has uneven color. The mole size and color changes over time and can face bleeding or 

itching.  Nevus (Fig. 3.2-G) normally has round smooth mole, with a single color. Common 

nevi can seem tan, brown or pink and might have a flat or dome-shaped appearance. 

Typical nevi are unharmful clusters of colored cells. Pigmented benign keratosis (Fig. 3.2-

I) and seborrheic keratosis (Fig. 3.2-J) are similar type and may appear as an oval growth 

with a minor rise or as a flat growth. The average size of a mole is 2.5 centimeters, and it 

can have a single or many growths that range in color from tan to black to brown. Vascular 

Lesions are dark or brilliant red in color and can cause the breakdown of the skin's surface, 

bleeding, and/or infection. It typically expands outward on the surface of the skin, whereas 

deeper lesions resemble bruises on the skin with a mass of soft tissue underneath. 

3.3 Image preprocessing 

Pre-processing images before putting them into a neural network optimizes the model's 

performance and computation time. This study uses different widely-used techniques to 

remove artifacts and enhance image quality by adjusting brightness and contrast. First, 

morphological opening is applied removes artifacts. Non Local Means Denoising (NLMD) 

is introduced to minimize noise and CLAHE to improve brightness and contrast. Finally, 

Gaussian blur algorithm smooths pixels while preserving ROI edges. In this regard, all the 

image pre-processing techniques are applied to all of our three datasets. 

3.3.1 Artifact Removal 

Morphological opening is a technique that eliminates all single-pixel artifacts, such as 

noisy spikes and tiny spurs, and blackens small objects [28]. To apply morphological 

opening, the image is first turned into binary format. Thus, small noises become more 

visible after the conversion to binary format. Using a kernel, morphological opening is 

applied to the binary image. The shape and size of this kernel are determined by the 

characteristics of the artifacts to be removed. After experimenting with a variety of kernel 

shapes and sizes, a rectangular kernel of size 5×5 is applied since, for this kernel, artifacts 

are successfully removed while essential information is preserved. Thus, a noise-free 
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binary mask is produced, which is subsequently combined with the original picture via a 

bitwise AND operation. 

3.3.2 Image Enhancement 

Complex dermoscopy details and concealed information make it difficult for a model to 

accurately classify classes. To attain best performance, appropriate image enhancement 

techniques may assist in enhancing the visual contrast between Regions of Interest (ROIs) 

and backgrounds. 

a) Non-Local Means Denoise (NLMD) 

NLMD algorithm [29] is based on a basic principle: replacing a pixel's color with the 

average of the colors of neighbouring pixels. This leads to significantly improved post-

filtering clarity and less loss of image detail than local mean methods. NLMD is 

implemented to reduce the noise of the images. The denoising of an image 𝑧 =

 (𝑧1;  𝑧2;  𝑧3) in channel 𝑖 to the pixel 𝑗 is executed as follows [nlmd]: 

                                    𝑧�̂�(𝑥) =
1

𝐶(𝑥)
∑ 𝑧𝑖(𝑥)𝜔(𝑥, 𝑘),𝑘∈𝐵(𝑥,𝑟)                                                              (1)                                        

                                       𝐶(𝑥) = ∑ 𝜔(𝑥, 𝑘)𝑘∈𝐵(𝑥,𝑟)                                                                               (2)     

here, 𝐵 (𝑥, 𝑟) denotes the area of pixels 𝑥 inside a radius of 𝑟. The weight 𝜔(𝑥, 𝑘) is 

determined by the squared Frobenius norm distance between color patches with centers at 

𝑥 and 𝑘 that degrade under a Gaussian kernel.                                    

b) Contrast limited adaptive histogram equalization (CLAHE) 

CLAHE [30] is performed to rectify excessive contrast amplification and restore overall 

contrast balance. CLAHE is a variation of adaptive histogram equalization in which 

contrast amplification is limited in order to reduce this noise amplification issue. In 

CLAHE, the contrast enhancement close to a particular pixel value is determined by the 

slope of the transformation function.  
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c) Gaussian blur 

Gaussian blurring [31] is used in image processing to minimize noise and eliminate 

speckles from an image. It is essential to remove the extremely high frequency components 

that surpass those connected with the gradient filter, as these can lead to the detection of 

erroneous edges. A two-dimensional Gaussian function's formula is: 

𝐺(𝑖, 𝑗) =  
1

2𝜋𝜎2 𝑒
𝑖2

2𝜎2     (3) 

Here, 𝑖 represents the horizontal axis' distance from the origin, 𝑗 represents the vertical axis' 

distance, and 𝜎 represents the Gaussian distribution's standard deviation. The origin of 

these axes is (0, 0). The formula creates a surface in two dimensions with concentric circles 

that have a Gaussian distribution away from the center point. Fig. 3.3 shows the whole 

image pre-process steps.  

 

Figure 3.3: Image after each pre-process stage 

3.4 Data Augmentation 

The technique of artificially generating new training dataset samples from existing data is 

known as data augmentation. Data augmentation is vital for AI applications in medical 
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imaging asannotated data is expensive and sparse. Data augmentation is essential since it 

increases labelled data. In this study, three different data augmentation techniques named 

photometric augmentation, geometric augmentation and elastic deformation were applied. 

a) Geometric Data Augmentation 

One of the most used augmentation methods to increase the amount of data is geometric 

transformation [32]. Geometric augmentation is the process of modifying an image's 

geometric shape by changing the values to their matching new values. It is a successful 

image enhancement method that just changes the image's shape without affecting the 

image's quality. Among several geometric augmentation methods in medical imaging 

research our study used, vertical flipping which can be used on matrices to flip their rows 

and columns vertically, horizontal flipping which allows the image to be flipped either to 

the left or to the right, vertical and horizontal flipping maintaining the image's natural 

horizontal-vertical column structure and rotation by rotate the images to any degree. 

b) Photometric Data Augmentation 

Photometric augmentation involves modifying pixel values such as brightness, sharpness, 

blurriness, color and contrast. Photometric augmentation transforms RGB channels by 

shifting each pixel's (r, g, and b) value to a new pixel's (r′, g′, and b′) value. It mainly alters 

visual color and lighting, not geometry [33]. It includes color jittering, grayscaling, 

filtering, brightness perturbation, noise addition, contrast adjustment, random erasing, etc 

[33]. However, this process must be carried out in such a way that critical pixel information 

is not lost. Among a number of different photometric methods, altering the brightness by 

maintaining level of lightness or darkness, contrast by making the light regions get lighter 

and the dark regions darker, color by changing the color balance of an image, and sharpness 

by sharping the details of an image yielded the best results as a photometric augmentation 

in this paper.  

c) Elastic Deformation 

Elastic deformations [34]as data augmentation stretches and changes the shape of images 

differently according on skin location and compression strength. 
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There are two steps involved in obtaining a distortion of a skin cancer image. The first step 

is to create a random stress field for the Δ𝑎 and Δ𝑏 directions, respectively. A random 

number between ν × [0.5, 0.5] is selected consistently for each pixel in each direction. The 

obtained horizontal and vertical pictures are applied a Gaussian filter independently (eq. 

(4) and (5)) to ensure that nearby pixels have equal displacement. The transformations 

contain the maximum value for the initial random displacement (ν) and the degree of 

smoothing, which is determined by the Gaussian filter's standard deviation (σ). Based on 

the overall look of the patches, we decided on a value of = 300 and a value of = 20 for 

deformation. Then, the image, skin segmentation mask, and mass annotations are stressed. 

In order to achieve this, each pixel is moved to a new location (eq. (6)), and intensities at 

integer coordinates are obtained using order one spline interpolation [34]. 

                                                   ∆𝑎= 𝐺(𝜎) ∗ (ν × 𝑅𝑎𝑛𝑑(𝑤, 𝑧))                                              (4)                                        

                                                   ∆𝑏= 𝐺(𝜎) ∗ (ν × 𝑅𝑎𝑛𝑑(𝑤, 𝑧))                                              (5)                                                    

                                      𝐼𝑡𝑟𝑎𝑛𝑠𝑓𝑜𝑟𝑚 (𝑗 + ∆𝑥(𝑗, 𝑘), 𝑘 + ∆𝑦(𝑗, 𝑘)) = 𝐼(𝑗, 𝑘)                                 (6)                                        

Here, 𝐼 and 𝐼𝑡𝑟𝑎𝑛𝑠𝑓𝑜𝑟𝑚 are the original and transformation images, respectively; w and z 

are the dimensions of the retinal fundus image.   

3.5 Proposed model 

CCT is a hybrid compact ViT with convolution [35]. With a local receptive field that 

preserves the image's local information, CCT models use CNN blocks as patching blocks. 

The self-attention mechanism detects relationships between image components and 

combines all relevant data. In this study, the original CCT model serves as the foundation 

for an ablation study in which different components are modified to achieve the optimal 

performance configuration. 

3.5.1 Compact Convolutional Transformer (CCT) 

CCT architecture consists of two main blocks. One is Convolutional Tokenization and 

another is Transformer with sequential pooling. The CCT methodology is shown in Figure 

3.4. 
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Figure 3.4: Architecture of base model 

Convolutional Tokenization generates image patches [35]. Convolutional Tokenization 

processes for image z using the following formula: 

𝑧0 =  MaxPool(ReLU(Conv2D(z)))   (7) 

Here, the convolutional layer (Conv2d) contains 64 filters with strides 2 coupled with the 

ReLU activation function. The generated Conv2D feature maps are then downscaled by 

the maxpool layer. The convolutional tokenization block can accept images of any size as 

input. As a result, CCT models do not need that all image patches be the same size. Because 

of these convolutional patches, the CNN layers assist the model in retaining local spatial 

information. 

Following that, the first block's image patches are sent to the transformer-based backbone, 

where an encoder block is composed of a Multihead self-attention (MSA) layer and a 

Multilayer perceptron (MLP) head. The transformer encoder employs layer normalization 

(LN), GELU activation, and dropout. In CCT models where the positional embeddings are 

learnable, layer normalization is applied after positional embedding. 

The sequence pooling layer pools the output of the transformer backbone, rather than 

employing a class token to convert sequential outputs to a single class. The network may 

evaluate the sequential embeddings of latent space created by the transformer encoder and 

improve data correlation for the input data using this sequence pooling. Because it 



©Daffodil International University  18 

 

comprises relevant data from many input image regions, the sequence pooling layer pools 

the entire sequence of data. This is referred to as mapping transformation, and it is defined 

by equation 8: 

𝑥𝐿 = 𝑓(𝑥0) ∈ ℝ(𝑏×𝑛×𝑑)   (8) 

where 𝑥0 is a layer transformer encoder and 𝑥𝐿 is its output. Furthermore, b denotes a mini-

batch size, d the embedding dimension, and n the sequence length. The output is routed 

through equation 9 where a linear layer and the softmax activation function is used. 

𝑥𝐿
′ = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑔(𝑥𝐿)𝑇) ∈ ℝ(𝑏×1×𝑛)   (9) 

The final output can be computed as: 

𝑧 = 𝑥𝐿
′ 𝑥𝐿 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑔(𝑥𝐿)𝑇) × 𝑥𝐿 ∈ ℝ(𝑏×1×𝑑) (10) 

As a result of pooling the second dimension, z is generated as an output. The images are 

then categorized after passing through a linear classification layer. 

3.5.2 Base Model Architecture 

This article presents a SKINNET-14 model, which is achieved by doing ablation studies 

on a CCT model as its foundation. Figure 3.5 depicts the architecture of CCT's Base Model. 

 

Figure 3.5:  Detailed architecture of base model 
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The base CCT architecture includes the input layer, the CCT Tokenizer, the data 

augmentation layer, a regularization (stochastic depth) layer, multi-head attention layers, 

pooling layers, dense layers, dropout layers and output dense layers with softmax 

activation. The data augmentation layer augments 32×32×3 input images geometrically. 

The CCT Tokenizer block resizes the augmented pictures to 64×128. The convolutional 

layer of the CCT Tokenizer block initially consists of strides of size 2 and kernels of size 

4, as well as a pooling layer kernel size of 4. After tokenization, data goes through 

tensorflow addons and the transformer encoder block. This block has numerous layers in a 

specified order: normalization (1), multi-head attention, regularization, normalization (2), 

then two pairs of dense and dropout layers with a 0.1 dropout factor. The transformer 

encoder block ends with an additional regularization layer. This layer's 64×128 output is 

regularized again with the Regularization layer, followed by another transformer encoder 

block. The output of the second transformer encoder block is passed through two layers of 

regularization and normalization. Normalized output travels through dense and softmax 

layers, producing 64×1 output data. This is passed to a sequence pooling layer, which 

produces 1×128 data. Finally, a linear classification layer classifies the images of the skin 

into the different classes of skin cancer. 

3.5.3 Ablation Study 

As previously mentioned, we conducted ablation research by changing the fine-tuning the 

hyper parameters and layer design and in order to maximize the performance of this CCT 

model. There are ten ablation studies, which vary in stride size, pooling layer kernel size, 

kernel size, batch size, loss function, optimizer, learning rate, and input layer image size. 

The number of transformer encoder blocks may also be increased or decreased. The 

activation functions and the type of pooling layers may also be changed. The proposed 

SKINNET-14 model is reached having a more robust design, improved accuracy of 

classification, and faster processing speeds after all ablation studies were finished. The 

findings of the research on ablation are described in Chapter 4. 
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3.5.4 Proposed SKINNET-14 architecture 

 

Figure 3.6: Proposed SKINNET-14 model’s architecture 

The optimized SKINNET-14 design reduces training time, maximizes performance, and 

limits time complexity. The final SKINNET-14 design features fewer transformer encoder 

blocks than the original CCT variant. Figure 3.6 shows that the SKINNET-14 model has 

one transformer encoder block, while the CCT architecture has two. This enables faster 

training and a smaller model. Except for a few model hyper parameters like stride size and 

kernel size, the architecture remains the same. 

This model does not require positional encoding, reducing processing costs. The 

computational complexity of self-attention is 𝑂(𝑛2. 𝑑), where n is the length of the input 

sequence and d is the number of vector dimensions. The addition of positional encoding 

𝑂(𝑛2. 𝑑 + 𝑛. 𝑑2))  increases the computational complexity [8]. Since positional encoding is 

not required in the SKINNET-14 model and the transformer backbone only uses self-

attention, the training and testing phases of the proposed model are shorter and require 

fewer resources. Therefore, the model is significantly more efficient. 

3.5.5 Training Strategy 

In order to train the base CCT model the batch size was set at 128, learning rate as 0.001 

with optimizer Adam. For the PAD dataset, there will be 400 epochs; for the HAMM and 
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ISIC datasets. Categorical cross-entropy is employed initially as this is the standard loss 

function in multiclass instances [36]. The same configuration is considered while training 

the transfer learning models. = However, while conducting ablation study the model is 

experimented with different hyperparameters. In order to test different models and 

configurations, we used three PCs, each of which has an Intel Core i5-8400 processor, 16 

GB of RAM, an NVidia GeForce GTX 1660 GPU, and a 256 GB DDR4 SSD for storage. 

3.5.6 Transfer Learning Models 

We compare the performance of multiple Transfer Learning models trained with the same 

datasets, taking training time into account, in order to assess the performance of our 

proposed technique. In total, 128 batches are executed over 400 epochs for the PAD 

dataset, 200 for HAMM, and 200 for ISIC. 

a) VGG Architecture 

The VGG networks [37] with 16 (VGG16) and 19 (VGG19) layers served as the foundation 

for the Visual Geometry Group (VGG) entry to the ImageNet Challenge 2014. 

VGG16 having 16 weighted layers is a cutting-edge transfer learning algorithm that 

achieved 92.7% accuracy for the top five test results in the ImageNet dataset. Because the 

VGG model has more depth, it can assist the kernel in learning more complicated features. 

VGG19 is a VGG model version with 19 weighted layers. In addition to the VGG16 model, 

there are three additional FC layers of 4096, 4096, and 1000 neurons, respectively. There 

are also five maxpool layers and a Softmax classification layer. In the convolutional layers, 

the ReLU activation function is utilized. 

b) ResNet Architecture 

Residual Networks (ResNets) [38] skip blocks of convolutional layers to create residual 

blocks. Stacking residual blocks improves training and reduces network deterioration. 

ResNet50 employs different-sized convolution filters to reduce CNN model deterioration 

and training time. 48 convolutional layers, a maxpool, and an average pool layer make up 

this architecture. Model has 23 million trainable parameters. 
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ResNet152 has 152 layers. ResNet152 allowed training of neural networks with more than 

150 layers. ResNet is an easy-to-optimize and effective deep learning architecture. As the 

network design contains several layers,  it is time-consuming. 

ResNet50V2 [38] is a modified version of the original ResNet50. ResNet50V2 outperforms 

ResNet50 and ResNet101 on ImageNet. ResNet50V2 modified how block connections 

propagate. 

c) MobileNet  

MobileNet [39] models are designed to replace costly convolutional layers with depth-

separable convolutional blocks. MobileNet is a faster, smaller CNN that uses Depth-wise 

Separable Convolution. MobileNet models are beneficial for mobile and embedded devices 

due to their small size. 
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CHAPTER 4 

Experimental Results and Discussion  

4.1 Result and discussion 

In this section, the results of this research are explained, including the outcomes of 

numerous ablation experiments and model validation metrics. This part also includes a 

description of the accuracy loss curves and confusion matrix to further examine the efficacy 

of the proposed SKINNET-14 model.   

Evaluation metrics 

Several metrics are investigated to determine how well the suggested classification model 

performs. A true positive (TP) is a finding where the model correctly classifies the positive 

category. A result is considered to be true negative (TN) if the model correctly identified 

the negative class. False positive (FP) and false negative (FN) outcomes are those in which 

the model wrongly predicts the positive class and the negative class, respectively. The 

percentage of accurate predictions is known as accuracy. Equations of the performance 

metrices used in this study are given below.  

Accuracy =
TP + TN

TP + TN + FP + FN
                                                                       (11) 

RecaIl =
TP

TP + FN
                                                                                        (12) 

Precision =
TP

TP + FP
                                                                                   (13) 

F1 = 2 
precision ∗ recall

precision + recall
                                                                          (14) 

4.2 Ablation study Results 

This section contains the details of all the ablation studies undertaken to achieve the 

optimal model architecture. First, in order to discover the optimal augmentation method, a 
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total of three augmentation methods are investigated by training the base model, and test 

accuracy results are shown in Table 4.1. 

Table 4.1: Ablation study on various augmentation techniques on HAMM dataset 

Technique Paramet

ers 

Size of 

Image 

Training time 

× epoch 

Test 

accuracy 

(%) 

Outcomes 

Geometric  0.41M 32×32 16s × 100 87.68 Poor accuracy 

Photometric 0.41M 32×32 16s × 100 89.85 Best accuracy 

Elastic 

Deformation 

0.41M 32×32 15s × 100 83.83 Poor accuracy 

With a test accuracy of 89.85%, the photometric augmentation methodology clearly 

exceeds the other data augmentation methods. Consequently, additional ablation studies 

have been conducted employing photometric augmented images. 

By adjusting the model's features various experiments are conducted to evaluating the 

model's performance. The performance of a classification model can be enhanced by 

changing a few of its features. Ten separate studies are conducted for this research. The 

outcomes of these ablation experiments are given in Tables 4.2, Tables 4.3, and Tables 4.4. 
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Table 4.2: Ablation study on modifying transformer layer, activation function, pooling layer, stride size. 

Modification 1: Transformer layer changes 

No. Transform

er encoder 

block 

count 

Parameters Training time 

× epoch 

Overall 

time 

Test 

accuracy 

(%) 

Outcomes 

1 3 0.57M 200 x 26s 41-44 

minutes 

89.63 Good accuracy 

with High time 

2 2 0.41M 200 x 16s 33-35 

minutes 

89.85 Good accuracy 

with medium 

time 

3 1 0.24M 200 x 7s 21-24 

minutes 

89.55 Almost good 

accuracy with 

lower time 

Modification 2: Activation function changes 

No. Activation 

function 

Parameters Training time × 

epoch 

Test accuracy 

(%) 

Outcomes 

1 softplus 0.24M 10s × 200 88.97 Poor accuracy 

2 softsign 0.24M 10s × 200 90.88 Almost good 

accuracy 

3 elu 0.24M 11s × 200 90.38 Almost good 

accuracy 

4 relu 0.24M 10s × 200 91.24 Best accuracy 
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 Modification 1: Transformer layer changes 

In this research, the transformer layer is changed by varying the number of encoder 

blocks. In table 4.2, it is visible that increasing the number of blocks increases the number 

of parameters and the duration of time, yet the accuracy is nearly identical. A single 

transformer block with 0.24M parameters, 21–24 minutes, and 89.55% accuracy achieves 

the maximum performance. The configuration has the smallest number of trainable 

parameters and the least training time per epoch. Therefore, configuration 3 is selected for 

additional ablation experiments. 

5 Tanh 0.24M 10s × 200 89.55 Poor accuracy 

Modification 3: Pooling layer changes 

No. Pooling 

layer types 

Parameters Training time × 

epoch 

Test accuracy 

(%) 

Outcomes 

1 Average 0.24M 7s × 200 91.24 Good accuracy 

2 Max 0.24M 7s × 200 92.37 Best accuracy 

Modification 4: Stride size changes 

No. Strides 

numbers 

Parameters Training time × 

epoch 

Test accuracy 

(%) 

Outcomes 

1 1 0.24M 7s × 200 93.57 Best accuracy 

2 2 0.24M 4s × 200 91.14 Almost good 

accuracy 

3 3 0.24M 4s × 200 91.37 Almost good 

accuracy 

4 4 0.24M 4s × 200 89.63 Poor accuracy 
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 Modification 2: Activation function changes 

Different activation functions influence the classification model, and the optimal 

activation function improves model performance. Six different activation functions named 

Tanh, ELU, ReLU, SoftSign, and SoftPlus are applied to the model (Table 4.2). ReLU 

scored the highest accuracy among six activation functions, 91.24 %, with 10 seconds each 

epoch. Therefore, ReLU activation is selected for additional ablation experiments. 

 Modification 3: Type of pooling layer changes 

Pooling layers downsample feature maps by summarizing feature presence in patches. 

Average pooling and maxpooling layers are applied for this experiment (Table 4.2). The 

test accuracy went from 91.24 % to 92.37 % after using the max pooling layer. As a result, 

maxpooling layer is selected for additional ablation experiments. 

 Modification 4: Stride size changes 

The stride selection impacts the network's matrix structure after convolution. Various 

stride sizes like 4, 3, 2 and 1 are applied in the transformer layers. Table 4.2 shows that 

using a single stride improved the accuracy to 93.57% with 7 seconds per epoch. So, further 

ablation experiments continued with stride size 1. 

Table 4.3: Ablation study on modifying kernel size, pooling layer kernel size, loss function, batch size 

Modification 5: Kernel size changes 

No. Kernel size 

count 

Parameters Training time × 

epoch 

Test 

accuracy 

(%) 

Outcomes 

1 4 0.3M 8s × 200 93.83 Good accuracy 

2 3 0.24M 7s × 200 94.77 Best accuracy 

3 2 0.2M 9s × 200 93.57 Good accuracy 
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4 1 0.17M 10s × 200 88.33 Poor accuracy 

Modification 6: Loss function changes 

No. Loss Function Parameters Training time × 

epoch 

Test 

accuracy 

(%) 

Outcomes 

1 Binary 

Crossentropy 

0.24M 7s × 200 94.88 Good accuracy 

2 Categorical 

Crossentropy 

0.24M 7s × 200 95.80 Best accuracy 

3 Mean Squared 

Error 

0.24M 7s × 200 94.81 Good accuracy 

4 Mean absolute 

error 

0.24M 7s × 200 94.63 Good accuracy 

5 Mean squared 

logarithmic 

error 

0.24M 7s × 200 28.76 Poor accuracy 

Modification 7: Batch size changes 

No. Batch size Parameters Training time × 

epoch 

Test 

accuracy 

(%) 

Outcomes 

1 256 0.24M 6s × 200 94.09 Good accuracy 

2 128 0.24M 7s  × 200 96.68 Best accuracy 

3 64 0.24M 11s × 200 95.56 Good accuracy 
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4 32 0.24M 16s × 200 95.30 Good accuracy 

 

 Modification 5: Kernel size changes 

The kernel size impacts transition speed and can be optimized through calculation of 

kernel density. Various kernel sizes including 4, 3, 2, and 1 are utilized, and Table 4..3 

demonstrates that kernel size 3 yielded the highest accuracy of 94.77% and the shortest 

time per epoch of 7 seconds. Consequently, the kernel size of 3 is maintained for future 

ablation studies. 

 Modification 6: Loss function changes 

Loss functions are used to assess how effectively a model predicts the outcome. In the 

experiment, five distinct loss functions are implemented. They are Categorical 

Crossentropy, Binary Crossentropy, Mean Squared Logarithmic Error, Mean Absolute 

Error, and Mean Squared Error. Categorical Crossentropy's 95.80% result was the highest 

of all five loss functions (Table 4.3). Categorical Crossentropy is therefore adjusted for 

subsequent ablation experiments. 

 Modification 7: Batch size changes 

Different batch sizes affect a classification model's performance. For the modification, 

256, 128, 64, and 32-batch sizes are evaluated (Table 4.3). Training the model with 128 

batches results in a maximum accuracy of 96.68% with 10 seconds for each epoch. 

Whereas, other batch sizes reduce accuracy (Table 4.3). Further ablation studies use batch 

size 128. 
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Table 4.4: Ablation study on modifying optimizer, learning rate, image size 

Modification 8: Optimizer changes 

No. Optimizer Parameters Training time × 

epoch 

Test 

accuracy 

(%) 

Outcomes 

1 Adam 0.24M 7s × 200 96.68 Best accuracy 

2 Nadam 0.24M 7s × 200 88.62 Poor accuracy 

3 SGD 0.24M 7s × 200 94.46 Good accuracy 

4 Adamax 0.24M 7s × 200 95.23 Good accuracy 

5 RMSprop 0.24M 7s × 200 94.48 Good accuracy 

Modification 9: Learning rate changes 

No. Learning rate Parameters Training time × 

epoch 

Test 

accuracy 

(%) 

Outcomes 

1 0.01 0.24M 7s × 200 92.23 Poor accuracy 

2 0.006 0.24M 7s × 200 95.47 Good accuracy 

3 0.001 0.24M 7s × 200 97.85 Best accuracy 

4 0.0008 0.24M 7s × 200 96.68 Good accuracy 

Modification 10: Image size changes 

No. Image size Parameters Training time × 

epoch 

Test 

accuracy 

(%) 

Outcomes 
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1 64 0.24M 24s × 200 96.17 Near best 

accuracy 

2 32 0.24M 7s  × 200 97.85 Best accuracy 

3 28 0.24M 6s  × 200 95.17 Good accuracy 

4 16 0.24M 5s  × 200 94.88 Good accuracy 

 Modification 8: Optimizer  changes 

An optimizer for neural networks modifies weights and learning rate. It decreases loss 

and increases accuracy. In this study, five optimizers named Nadam, Adam, Adamax, 

RMSprop, and SGD were tested with a learning rate of 0.001. The best accuracy 

of 96.68%, is attained with the Adam optimizer (Table 4.4). Therefore, Adam optimizer is 

retained for the remainder of the ablation research. 

 Modification 9: Learning rate changes 

Learning rate affects loss gradient weights in neural networks. With the Adam 

optimizer, learning rates of 0.0008, 0.01, 0.001 and 0.006 are utilized. The Adam optimizer 

still obtains the best result of 97.85% with a learning rate of 0.001 (Table 4.4). Hence, a 

learning rate of 0.001 was established for the following ablation studies. 

 Modification 10: changing the image size  

The final study involves doing experimentation with the input layer picture dimensions 

(image height and width). We test 64×64, 32×32, 28×28, and 16×16 pixel sized images. 

The study's findings are presented in Table 4.4. The model was able to be trained in just 10 

seconds per epoch, while still achieving the best testing accuracy of 97.85%, with an image 

size of 32×32 on HAMM dataset. However, the image size of 64×64 also achieved a very 

good test accuracy of 96.17%, but the training time was 24 seconds per epoch.   

The input image dimension is 32 × 32 pixels since it takes minimal training time while 

keeping high performance. This is essential because our objective is to design a model with 
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high performance that also takes time complexity into account. Figure 4.1 depicts how test 

accuracy grew gradually during all ablation studies conducted on the base model. 

 

Figure 4.1: Test Accuracy increasing over 10 ablation study 

After ablation study, the configuration of the proposed SKINNET-14 are, 32 × 32 image 

size, Adam optimizer with learning rate of 0.001, batch size of 128 and kernel size 3. The 

activation function of SKINNET-14 is relu, loss function is Categorical Crossentropy and 

pooling layer is Max Pooling. Pooling layer kernel size is 3 and stride size is 1. Finally, 

model’s projection_dim is 128, stochastic_depth_rate is 0.1 and weight_decay is 0.0001. 

4.2.1 Performance evaluation of the proposed model 

By completing ablation experiments on the base model, the final SKINNET-14 model has 

been created whose classification performance is significantly enhanced. This is 

accomplished by modifying and configuring the model in various ways. Table 4.5 shows 

some statistical analysis for the proposed SKINNET-14 model, such as precision, recall, 

f1-score, and number of images tested on each class for three dataset. 
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Table 4.5: Different matrices calculated for SKINNET-14 model performance evaluation 

 Skin Class Precision Recall F1-

score 

Support  
H

A
M

1
0

0
0

 D
a

ta
se

t 

Actinic Keratosis 0.99 0.98 0.99 245  

 

Test 

Accuracy: 

97.85% 

Basal Cell Carcinoma 1.00 0.99 0.99 386 

Benign Keratosis 1.00 0.99 0.99 824 

Dermatofibroma 1.00 1.00 1.00 86 

Melanoma 0.99 0.98 0.98 835 

Melanocytic Nevi 0.98 0.99 0.99 5135 

Vascular Lesions 0.18 0.04 0.06 107 

IS
IC

 D
a
ta

se
t 

Actinic Keratosis 1.00 1.00 1.00 85  

 

 

 

Test 

Accuracy: 

96.01% 

Basal Cell Carcinoma 1.00 1.00 1.00 282 

Dermatofibroma 1.00 0.99 0.99 71 

Melanoma 0.91 0.90 0.90 329 

Nevus 0.98 0.99 0.99 268 

Pigmented Benign 

Keratosis 

1.00 1.00 1.00 347 

Seborrheic Keratosis 0.50 0.52 0.51 58 

Squamous Cell 

Carcinoma 

1.00 0.99 1.00 136 

Vascular Lesions 1.00 1.00 1.00 104 

P
A

D
-U

F
E

S
-2

0
  
  
  

D
a

ta
se

t 

Actinic Keratosis 0.98 0.98 0.98 548  

 Basal Cell Carcinoma 0.99 0.98 0.98 634 

Melanoma 0.93 1.00 0.96 39 
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Nevus 0.99 0.99 0.99 183 Test 

Accuracy: 

98.14% 

Seborrheic Keratosis 0.99 0.99 0.99 176 

Squamous Cell 

Carcinoma 

0.93 0.97 0.95 144 

The resultsof Table 6 clearly shows that the proposed model performed exceptionall

y well on all three datasets. In the Ham dataset, the model achieved a good statistical score 

on six classes of the dataset except vasculer lesion. Though the average accuracy obtained 

on the HAM dataset is 97.85%. In the ISIC dataset, the model gained a good statistical 

score on all eight datasets, except Seborrheic Keratosis. The average accuracy on the 

dataset is 96.01%. Finally, on the most challenging PAD-UFES dataset, the proposed 

model achieved the highest average accuracy of 98.14%. It is visible that the model 

obtained a good statistical score of precision, recall, and f1-score on all six classes of this 

dataset. 

The confusion matrix on three datasets produced by the SKINNET-14 model is shown 

in Figure 4.2. The true labelling of the test photos are indicated by row values. Column 

values are used to represent the labels that the model predicted for the test set photos. The 

confusion matrix (Figure 4.2)'s diagonal values show how many test images the model 

successfully predicted. It is clear that the model is not biased toward any one class or 

classes, nor does it predict any class significantly more accurately than the others. In fact, 

the model provides about equal numbers of accurate predictions for each class, further 

demonstrating the model's robustness.  



©Daffodil International University  35 

 

 

Figure 4.2: Confusion matrix for the proposed SKINNET-14 model on all three datasets following the 

ablation 

Figure 4.3 depicts the SKINNET-14 model's accuracy and loss curves on HAMM, 

ISIC and PAD dataset. From the figures of all three dataset, it is visible that the model's 

training and validation curves converging without substantial gaps, indicating no 

overfitting. Similarly, Loss curves (Figure 4.3) converging steadily from start to ending 

epoch. It can be said that neither overfitting nor under-fitting occurred during the model's 

training phase. 
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Figure 4.3: Accuracy curve and loss curve of SKINNET-14 model on (A) HAMM dataset (B) ISIC 

Dataset (C) PAD dataset. 

4.2.2 Comparison with CNN based transfer learning models  

Six state-of-the-art transfer learning CNN models are used to evaluate the proposed 

approach. All six models are trained and tested on the three dataset as the proposed model, 

with 32×32 pixel input images. The optimizer is Adam, the batch size is 128, and the 

learning rate for each model in the table is 0.001. Table 4.6 shows experiment results. 
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Table 4.6: Comparison of performance with six state-of-the-art transfer learning models 

Model Paramet

ers 

HAM DATASET ISIC DATASET PAD DATASET 

epoch

s 

Per 

epoch 

time 

Accura

cy 

epochs Per 

epoch 

time 

Accur

acy 

epochs Per 

epoch 

time 

Accurac

y 

VGG19 2002643

6 

200 65-67s 80.47

% 

200 30-34s 70.87

% 

400 28-30s 82.97% 

VGG16 1471674

0 

200 65-67s 81.21

% 

200 30-34s 71.21

% 

400 28-30s 81.38% 

ResNet15

2 

5837914

0 

200 65-67s 65.79

% 

200 30-34s 75.79

% 

400 28-30s 78.79% 

ResNet50 2359590

8 

200 65-67s 69.27

% 

200 30-34s 68.57

% 

400 28-30s 72.97% 

ResNet50

V2  

2357299

6 

200 65-67s 66.25

% 

200 30-34s 63.21

% 

400 28-30s 77.15% 

MobileNet 3232964 200 65-67s 43.42

% 

200 30-34s 49.12

% 

400 28-30s 55.48% 

SKINNET

-14 

241861 200 7-8s 97.85

% 

200 2-3s 96.01

% 

400 2-3s 98.14% 

VGG16 achieved the highest test accuracy of 81.21 % on the HAM dataset and 71.21 % 

on the ISIC dataset, outperforming all other transfer learning models. On the PAD dataset, 

VGG19 achieved the highest score of the six CNN-based pre trained models with 82.97 %. 

On all three datasets containing 32-32 pixel pictures, the accuracy of the remaining transfer 

learning models varied between 40% and 80%. It is also evident that the parameters of all 

transfer learning models were high, which raised the temporal complexity and per epoch 

time, which ranged between 65 and 67 seconds for the HAM dataset, 30 and 34 seconds 

for the ISIC dataset, and 28 and 30 seconds for the PAD dataset. In contrast, our suggested 

model achieves the highest accuracy of 97.85 % on the HAM dataset, 96.0 % on the ISIC 
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dataset, and 98.14 % on the PAD dataset. In terms of accuracy, the SKINNET-14 model 

outperformed all six transfer learning methods. In addition, the suggested model's 

parameter size is 241861, resulting in a reduced temporal complexity of 7 to 8 seconds per 

epoch on the HAM dataset, 2 to 3 seconds on the PAD dataset, and 1 to 2 seconds on the 

ISIC dataset. With our methodology, training takes about 6–24 minutes as opposed to 

approximately two hours for transfer learning methods. This is a substantial improvement 

in terms of time-intensiveness. Additionally, achieving near-optimal performance with 

smaller image sizes takes less memory and storage space, making the model less resource-

hungry and contributing to a reduction in space complexity. 
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CHAPTER 5 

Impact on Society, Environment and Sustainability 

5.1 Impact on Society 

The use of skin cancer prediction can have a significant impact on society by improving 

the early detection and treatment of skin cancer. Early detection and treatment of skin 

cancer can significantly increase the chances of successful treatment and can potentially 

save lives. 

One potential benefit of skin cancer prediction is that it can help to reduce the burden on 

healthcare systems and providers by increasing the efficiency and accuracy of the 

diagnostic process. This can potentially reduce the need for multiple diagnostic tests or 

visits to the doctor, which can help to reduce healthcare costs and increase access to care. 

Another potential benefit of skin cancer prediction is that it can help to reduce the risk of 

misdiagnosis or delayed diagnosis, which can have serious consequences for patients. By 

identifying potential skin cancers early on, skin cancer prediction can help to ensure that 

patients receive prompt and appropriate treatment, which can improve outcomes and 

reduce the overall burden of the disease on society. 

Overall, the use of skin cancer prediction can have a significant positive impact on society 

by improving the early detection and treatment of skin cancer, reducing the burden on 

healthcare systems, and reducing the risk of misdiagnosis or delayed diagnosis. 

5.2 Impact on Environment 

The use of computer vision for the early detection of skin cancer can potentially have both 

positive and negative impacts on the environment. 

On the positive side, using computer vision for early detection can increase the efficiency 

and accuracy of the diagnostic process, potentially reducing the need for multiple visits to 

the doctor or specialist and the use of certain diagnostic tools. This can in turn reduce the 

environmental impact of transportation and the production and disposal of certain 

diagnostic materials. 



©Daffodil International University  40 

 

However, it is also important to consider the energy and resources required to power and 

maintain the computer systems and other equipment used for the diagnostic process. These 

systems may rely on non-renewable energy sources and the production and disposal of 

electronic devices can also have environmental impacts. 

Overall, the environmental impact of using computer vision for early detection of skin 

cancer will depend on the balance between the potential positive and negative impacts of 

the technology. It is important to carefully consider these potential impacts and take steps 

to minimize any negative effects. 

5.4 Sustainability Plan 

Here are some potential components of a sustainability plan for using computer vision for 

the early detection of skin cancer: 

a) Energy efficiency: Ensuring that the computer systems and other equipment used 

for the diagnostic process are energy efficient can help to reduce the environmental 

impact of the process. 

b) Use of renewable energy: Using renewable energy sources, such as solar or wind 

power, to power the computer systems and equipment used for the diagnostic 

process can further reduce the environmental impact. 

c) Responsible disposal of equipment: Properly disposing of equipment, such as 

computers and other electronic devices, at the end of their useful life can help to 

reduce waste and prevent harmful substances from entering the environment. 

d) Collaboration with healthcare providers: Partnering with healthcare providers 

to ensure that the diagnostic process is integrated into regular care can help to 

reduce the overall environmental impact by reducing the need for additional 

transportation and other resources. 

e) Education and outreach: Providing education and outreach to patients and 

healthcare providers about the benefits of using computer vision for early detection 

of skin cancer can help to increase the adoption of this diagnostic approach and 

contribute to its sustainability. 
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f) Continuous improvement: Regularly evaluating and improving the sustainability 

of the diagnostic process can help to ensure that it is as environmentally friendly as 

possible over the long term. 
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CHAPTER 6 

Conclusion and Future Work 

5.1 Conclusion 

This research proposes a robust model for detecting skin cancer. First, three distinct 

renowned publically accessible datasets are gathered to evaluate the model's performance. 

Several image preparation approaches are then employed to eliminate artifacts, improve 

the quality of skin lesions, and prevent the overfitting problem. On the foundational model 

CCT, an ablation investigation is conducted to propose the resilient model SkinNet-14. The 

suggested model achieved an accuracy of 97.85 % on the HAM dataset, 96.0 % on the ISIC 

dataset, and 98.14 % on the PAD dataset. The proposed model utilized a low-quality, 32-

by-32-pixel picture and a small number of parameters with a time-intensive addressing 

process. The results of the suggested model are compared to the outcomes of six transfer 

learning models, with the new model performing better. The accuracy is significantly 

higher than comparable works, demonstrating the effectiveness of the suggested system. 

5.2 Limitation and Future Work 

Despite of a good result, the dataset is insufficient for the model. Lack of Real data. Future 

proposals may include a model that is more precise and robust. Some different image 

preprocess methods and augmentation techniques can be applied to help the model under 

the ROI. Different types of segmentation work can be carried out. Other illnesses can be 

studied using the model. Later on, a similar smartphone application will be developed to 

detect skin cancer and display skin data to users. 
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