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ABSTRACT 

 

Across several fields of computer vision, deep learning methods are gaining importance. 

While there have been several research on the categorization of pictures and movies, 

prediction of the coming frames of an input sequence in pixel-space has received very 

little attention, despite the fact that many applications may benefit from such information. 

Examples incorporate generated content and robotic agents that must function in natural 

situations and are autonomous. In actuality, learning how to predict the future of a picture 

sequence necessitates that the system comprehend and effectively store the content and 

characteristics for a certain amount of time. Since labelled data video data is rare and 

difficult to get, it is considered as a viable path that might even aid supervised jobs. 

Consequently, this paper provides a summary of scientific advancements pertaining to 

future frame predicting and offers a repeated network model that employs new 

approaches from research in deep learning. The suggested architecture is founded on the 

recurrent process responsible with multilayer cells, which enables spatial-temporal data 

similarities to be maintained. Powered by perceptually driven decision variables and a 

contemporary recurrent working towards achieving, it outperforms previous methods for 

future frame creation in multiple video content genres. All of this may be accomplished 

with fewer training cycles and model parameters. 
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Chapter 1 

Introduction 

People have dreamt about creating robots that can think and behave like humans since 

antiquity. This ushered in the discipline of artificial intelligence (AI), that remains an 

active area of study and is used in a variety of practical applications. Early AI was 

primarily concerned with solving issues that were difficult for humans to solve, such as 

determining the fastest route to an unspecified endpoint that used the well-known 

Dijkstra method 1. Ironically, it turns out that problems that people can answer with pure 

intuition are extraordinarily difficult for computers to perform. It is difficult or 

impossible, for instance, to develop a software from scratch that can identify objects in 

images, pronounce the words in spoken text, or explain events in a video clip. In contrast, 

conventional computer programs must be written algorithmically as a series of 

instructions or a set of mathematical theorems [6]. However, it is rather difficult to apply 

this to multidimensional data, such as images or movies, which consist of an incoherent 

collection of pixels with several color channels, noise, and an infinite number of 

possibilities. Humans approach this kind of information differently. They know items by 

practice and implicitly construct mental connection structures. This fundamental notion 

created the area of machine learning (ML). It describes a process in which information is 

obtained by dynamic and ever changing from raw data and, as a result, enables sensible 

decision-making [6]. However, in order to solve many previously intractable issues, it is 

necessary to know which aspects to study, for instance by constructing a decision tree. 

Returning to our earlier example, this continues to be difficult to apply to photos or video 

data in which we know the characteristics we are searching for but cannot specify 

explicitly how they are represented. This problem is addressed by the discipline of 

representation learning, which attempts to create the representation automatically. Having 

just high-level representation may not be sufficient. In order to solve the issue, artificial 

neural networks (ANN) have indeed been developed. They are physiologically motivated 

by the structures of the brain  and are capable of learning representational hierarchies [8]. 

For visual object identification, one may consider edges that are recognized at a very 

basic level and then constructed into curves or forms. In addition, these basic components 

may be combined in a certain manner such that the neural network can recognize separate 
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complex things within the data. The increase in computer capacity enables the 

development of ever-more-complex representation structures and deeper networks. This 

approach gave rise to the current term deep learning. In recent years, the discipline of 

deep learning has gained significant success, and according to its fundamental concept, 

"we are near to solving the issue if we have a suitable end-to-end model and adequate 

data for training it." [12]. Nevertheless, although there have been many studies and 

practical uses of object identification on static pictures or voice recognition, the use of 

these techniques to video data is only beginning to be investigated. Early attempts to deep 

learning using video data or basic picture sequences target challenges such as human 

action identification [7], [14], [4], and video categorization [8]. Another approach is 

optical flow detection [5], which detects the visual flow between frames. To train a 

network, the majority of these methods need a large quantity of labeled data. The 

laborious labeling procedure and thus limited availability of certain data may be the 

primary reason why this issue has not been well explored to yet. 

This study investigates if deep learning methods may be effectively used to films to 

discover a precise interpretation in an unsupervised manner. It is determined if such a 

presentation is suitable for continuing a video after it has ended. Therefore, to get an 

understanding of the temporally and spatial development of a series of photographs as 

well as the movements and kinetics of a scenario. Such a high-level comprehension 

would be useful for autonomous intelligent beings that must act and, as a result, must 

comprehend our environment, along with its both physical and temporal constraints [14]. 

Other possible application areas include generated content [1], field of vision for 

autonomous vehicles, and optical flow replacement in causal video processing [2]. Other 

supervised learning tasks, such as human action recognition, might also benefit from such 

a which was before network in order to enhance overall performance or minimize 

training time. Obviously, additional types of action recognition are as readily imaginable. 
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Figure 1.1: Example of an image sequence with an unknown future frame. The sequence is starting from 

the left and is taken from UCF-101. 

This job may seem simple for humans because we have developed an intuition about 

motion and our surroundings, as was the case with the previous example of object 

identification in static images. Taking a glance at the images in Figure 1.1, we can form a 

very good guess as to where this series is going. At the very least for a few ticks of the 

clock. Even though the ball remains to descend owing to gravity, the foreground 

youngster will likely move his left foot closer to it. Contrarily, the scenery will remain 

mostly untouched. Because of the complexity of modeling spatial and temporal data 

simultaneously and the exponential growth of the search space in multi-step forecasting, 

creating a deep learning technique to address this problem is no easy job. There are other 

concerns that must be addressed, such as the development of an efficient training 

procedure and the measurement of the perceptual picture consistency between expected 

and ground truth frames. In addition, the current state-of-the-art systems that tackle frame 

prediction must be evaluated and examined thoroughly to understand from their strengths 

and flaws. 

There are several contributions to this theory. To begin, it gives a comprehensive review 

of the current deep learning methods that tackle the issue of video frame prediction in the 

future. Second, it introduces an architecture for neural networks that utilizes unique 

multilayered LSTM implementations and planned sampling to facilitate better training of 

recurrent models, building on the foundation of contemporary techniques such as batch 

normalization. As a result, its prediction error on the Moving MNIST dataset is almost 

half that of other state-of-the-art models. Finally, the research community has 

unrestricted access to all TensorFlow implementations, including the convolutional 

recurrent cell with planned sampling and batch normalization, and the various metrics 

and loss functions used to evaluate perceptual picture similarity during training. Also 

donated is a lightweight, high-level, open-source architecture for TensorFlow that may 
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significantly cut down on repetitive coding tasks often associated with deep learning 

projects. This is made easier by presenting an abstractions for several typical or difficult 

challenges encountered during the construction and training of neural network models. 

 

1.1 Motivation 

Bangladesh experiences serious road accidents and traffic congestion, with an average of 

24945 traffic fatalities per year (2012-2019), which has been increased significantly since 

then. Inadequate safety at manufacturing and building sites leads to an increase in 

accidents and fires breakout causing massive loss of human lives and properties. 

Monitoring crime detection through surveillance to improve safety as crime rate has 

increased to 70% all time high (2019-2022) and lastly to reduce operative cost and fatal 

error implementation of automation in surgical procedures. 

 

1.2 Rationale of the Study 

The study's goal is to create a model that can anticipate future video frames. Video prediction 

models have the potential to improve a wide variety of applications, including video compression, 

video summarization, and autonomous navigation. The algorithm will be trained on big video 

datasets and tested for its ability to anticipate future frames. The study will also look into the 

effect of other aspects on the model's effectiveness, such as the length of the prediction horizon 

and the type of video. The study's overarching goal is to advance the state-of-the-art in video 

prediction and contribute to the creation of more intelligent and efficient video processing 

systems. 
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1.3 Research Questions 

1. What is the most efficient method for predicting future frames in videos? 

2. How does the length of the prediction horizon influence the model's performance? 

3. What effect does the type of video (sports, nature, etc.) have on the model's performance? 

4. What effect does the amount of the training dataset have on the model's accuracy? 

5. Is it possible to utilize the model to improve video compression and summarization? 

6. How does the model's performance stack up against other video prediction methods? 

7. What are the model's limitations, and how might they be addressed in future research? 

8. How can the model be used in real-world scenarios like autonomous navigation? 

9. Is the model suitable for real-time video surveillance or video conferencing? 

10. How does the model's performance alter when used to forecast future frames of varying 

resolutions or frame rates? 

 

1.4 Expected Outcome 

The construction of a model or algorithm that can accurately predict future frames in a video 

based on past frames is the expected conclusion of a "Predict Future Frames in Videos" thesis. 

The model should be capable of generating believable future frames and demonstrating this skill 

on a number of different types of films and scenarios. A full review of the model's performance, 

as well as a discussion of its limitations and potential future enhancements, should also be 

included in the thesis. 
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CHAPTER 2 

Related work 

This chapter presents existing deep learning approaches that have addressed the issue of 

future frame prediction. These are grouped into three sections depending on the model 

implementation, namely neural networks, recurrent networks and adversarial networks. 

The strengths, weaknesses and design decisions of these models are briefly discussed 

together with a short analysis of the achieved outcomes. Further, it is highlighted how 

these approaches have influenced the architecture of our final model that is used 

throughout the evaluation in Chapter 6. Aside from that, their results from the baseline in 

the assessment of our model. 

2.1 Neural Network Approach 

The first attempts to forecast future frame in a picture series were made in, followed by a 

paper in [16] that expanded on these ideas. They attempted to achieve single frame 

prediction using an artificial neural network, most likely as a result of the limited 

computer power available at the time and the lackluster development of CNNs at the 

time. In order to build a model using picture data, they undertook a number of 

preprocessing processes first. In the beginning, the data from the picture was split into 

three sections based on the RGB color channels: red, green, and blue. After that, using 

methods such as principal component analysis, the dimension of the data was decreased 

first from level of 104 to 100 within every individual section (PCA). After that, the 

ultimate learning and inference were carried out on three distinct neural networks with 

the same architecture, each one for each color image. Following each prediction, the 

principal component analysis (PCA) method was turned upside down to determine the 

starting dimensionality, and all triple results were merged to produce the ultimate picture. 
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Figure 2.1: Single frame predictions using an ANN model with two hidden layers.Left: ground truth 

target frame. Right: generated prediction. (From [33]) 

In order to adjust the network to maintain the image's brightness, contrast, and structure, 

the loss incurred during in the training phase is expressed in terms on the MS-SSIM 

index. This index measures the magnitude of the loss. Because the data from the utilized 

Fighter and NASA datasets have a big picture size, using the multi-scale edition of SSIM 

is an option that is fair to make. 

When we take a closer look at the outcomes of the predictions that have been displayed in 

Figure 3.1, we discover that the networking more or less uses an average across the 

sequence that it was given as input. This effect is seen rather clearly in Figure 3.1b, 

where it is expected that the motion of the moon from either the upper left more toward 

the earth's threshold is formed of prior moon locations. As a direct consequence of this, 

the straightforward design does not adequately capture the predict future performance 

that are present in the input data. 

2.2 Recurrent Network Approaches 

In order to leverage the sequential structure and temporal correlations of video data, 

several works performed frame prediction based on recurrent network models. The 

following models have inspired our final model architecture the most. 

2.2.1 LSTM Encoder, Decoder, Predictor Model 

Whenever the recurring encoder-decoder architecture introduced in Section 2.4.2 was 

employed in (SMSIS) to conduct machine learning technique of video representations, 
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a significant advance was realized. The notion that the exact same operation must be 

executed at each time step in order to create the very next state was the key reason 

behind their decision to employ this structure in that scenario. 

They demonstrated in ali an LSTM auto - encoder system that is taught to recreate a 

whole input sequence of around 10 picture frames, similar to Figure 2.14. This model 

was then slightly modified in a second step to predict the future sequence of frames. In 

a last step, both models were combined to a single model that contains only one 

encoder to learn the dynamics of the video, but two separate encoder networks. 

Initialized by a copy of the learned representation, one decoder tries to reconstruct the 

inputs backward in time, while the other decoder predicts the future frames forward in 

time. Consequently, the decoder has to come np with a representation that can be 

handled by both decoders. In this way, they tried to compensate the shortcomings of 

each model, such as the potential tendency of the reconstruction decoder to learn the 

trivial function, or to counteract that the future predictor considers the last frames of the 

input sequence only. This combined model delivers the best results and is shown in 

Figure 3.2. 

Within their work, they also explored if the decoder should condition on the previously 

generated output or not, as earlier discussed in Section 2.4.2. The final choice has fallen 

on the conditioned variant because it delivered slightly sharper frame prediction results 
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Figure 2.2: The composite LSTM autoencoder model. The top branch reconstructs the input sequence 

backwards in time, while the bottom branch performs frame predictions forward in time. (From [14]) 

in the qualitative evaluation. Besides that, they also varied the number of recurrent 

layers with the clear result that deeper LSTMs yields best performance. 

Another contribution of this work was the introduction of a simple dataset that can be 

generated on-the-fly in order to explore the architecture of the model, as well as the 

effects of hyperparameter changes. It uses handwritten numbers that bounce around in 

a short sequence of images. Since this dataset is used in several other subsequent works 

as well, it offers the ability to be used as a basic benchmark to compare the 

performance of various models. The dataset will be presented in detail in Section 

5.1. Sequences from this and another dataset were then used as input to the LSTM 

encoder to train the model. It must be highlight that they utilize the full image patch for 

this purpose. They have also mentioned to use convolutional percepts of the image 

sequence as inputs, but actually used this approach in the second part of their paper 

only, where the pre-trained encoder was transferred to improve the performance of 

supervised human action classification in videos. 

The authors also pointed out that the choice of the loss function is fundamental with 
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respect to quality of results. Nevertheless, they decided to rely on standard error 

functions and kept the use of more advanced objective functions for further research. 

To be more precise, they trained their network using binary cross-entropy when being 

applied to Moving MNIST, and squared error for real world tests on UCF-101. Details 

about the latter dataset can be found in Section 5.3.  

All in all, the strength of this model regarding future frame prediction is that it is able 

to infer a variable number of frames by taking the temporal correlations of the entire 

input sequence into account. But as a downside, the use of FC-LSTM cells with such 

high dimensional inputs implies a huge model complexity in the order of 10 in case of a 

two-layer LSTM with 2048 hidden units each. Consequently, such a model takes a very 

long time to learn useful patterns. Further, it does not consider spatial properties of 

each single input due to the use of fully-connected state transitions. 

2.2.2 Convolutional LSTM Encoding-Forecasting Model 

It was [47]'s overarching objective to build a deep learning strategy for precipitation 

nowcasting, therefore that's how they expanded on the model stated above. In contrast, 

they developed a variant of LSTM with multilayer architecture with both insight and 

state-to-state transfers to reduce the excessive duplication of determine the likelihood in 

conventional FC-LSTM cells. In Section 4.1.1, we will go further into its construction 

and internal structure. In a nutshell, they replaced all of the matrix multiplications with 

convolutions, such that the internal states are now tensors in three dimensions. This 

allowed them to save the spatial information. Once trained, these convolutional LSTM 

(ConvLSTM) cells may be employed in the identical decoder-encoder system as 

previously, as shown in Figure 3.3. The bottom line is that these units have been 

demonstrated to outperform FC-LSTM cells while also including far less 

hyperparameters, all while being better at capturing spatio-temporal features of the 

data. 
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Figure 2.3: The ConvLSTM encoding-forcasting model that was used in the paper on context of 

frame prediction and precipitation nowcasting. (From [12]) 

Among other datasets, the authors trained this model on Moving MNIST in the course 

of their work and therefore it is another good candidate to compare our model with. The 

model was thereby fed with reshaped tensors of size 16 x 16 x 16 by splitting the 

original frames using a 4 x 4 grid [12]. The reason for this reshaping was not argued in 

the paper, despite the fact that this unnecessarily increases the spatial 

redundancies. But since it divides the size of the image by a factor of 16, one simple 

reason might be to reduce the computational complexity because the depth is increased 

by the ConvLSTM's convolutions nevertheless. To generate the final prediction, the state 

of each ConvLSTM layer per time stepr is concatenated and led into a 1 x 1 

convolutional layer for the purpose of reducing their depth to match with the ground truth 

target [12]. Also at this point, it was not explained why the concatenated hidden state of 

all layers is used to generate the prediction, instead of the more intuitive choice like 

relying on the output of the final layer only. 

To condense the three most important findings of their evaluations, it was shown that 

the kernel size of the state-to-state transitions has to be at least bigger than 1 x 1 to 

capture spatio-temporal motion patters. The windows size of this kernel can be 

interpreted as the maximum motion that the model is able to detect from one time step 

to the next. The second outcome is that deeper models can produce better results even 

when each layer contains fewer parameters. And last but not least, as already stated 

earlier in this section, the use of convolutional LSTM cells instead of FC-LSTM cells 

enables to reach better performance with less training examples, requires less iterations 

to converge and is less likely to overfit. 
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 2.3 Adversarial Network Approach 

In the final stage of this thesis, we came across a novel approach to train neural 

networks to perform frame prediction without using recurrent cells. The authors of [10] 

used a very simple overcomplete convolutional generator network G(X) in order to 

generate a single or multiple frames from an input sequence X. This simple network is 

displayed in Figure 3.6 and consists of convolutional layers only with a constant height 

and width but variable number of feature maps. Training a model of such a simple 

architecture has several weaknesses, such as that it could only capture short-range 

dependencies across the entire input sequence with the size of the kernel due to the 

fixed size feature maps. Also, default loss functions such as P or *2 during the training 

experientially lead to blurry results, as previous studies have already shown. 

 

 

Figure 2.4: A very basic convolutional network that maps a fixed number of input frames X to predict 

one or multiple future frames ? = G(X). The feature maps exhibit the same height and width at each 

layer, but different depth. (From [38]) 

To overcome these issues, they proposed three different but complementary learning 

strategies. Firstly, they used a multi-scale approach where multiple generator networks 

are iteratively trained on different scales of the input patch, starting from the lowest 

scale. The prediction of the next larger scale then used the upscaled prediction of the 

previous scale as a starting point. This technique enabled the network to consider 

motion patterns of longer range. Secondly, they extended their loss function with an 

additional GDL term in order to penalize blurry outputs in image space. This gradient-

based loss function has already been introduced in Section 2.6.3. And lastly, they 

plugged this simple convolutional network into the adversarial training framework. The 

described network therefore defines a generator network C to predict the next frame, 
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while a second discriminator network D is consulted in order to assess whether the 

output of the generator network is the real target frame of the future or just a generated 

fake. Using an alternating training procedure, both networks learn to perfect the 

system. In other words, the discriminator network of this adversarial training process 

can be seen as an adaptive loss layer that assesses the generated output in feature space. 

Also other works highlight the usefulness of considering the error in feature space in 

addition to the image space error, such as in [3]. Summarizing the last two proposed 

learning strategies, a triplet loss is used where a standard loss function in image space 

in combined with a perceptional motivated loss function to preserve sharpness, as well 

as an adversarial error function which quantifies the realness of the generated frames. 

 

 

 

Figure 2.5: Comparison of different loss function combinations using a simple CNN to predict one 

frames given four inputs. The second future frame is predicted recursively. (From [9]) 

 

 

 

 

The performance of different loss function combinations was also compared in a 

qualitative evaluation. Several output samples are shown in Figure 3.7. As it can be 

seen, the combination of multiple loss functions with different objectives enables to 

end up with predictions of higher quality and realism. Besides that, a detailed 

comparison to other LSTM based models on the UCF-101 video dataset was given. 

Thus, it allows us to compare our outcomes to all these results as well. 
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But even when this network using all the proposed learning strategies is able to produce 

outstanding frame prediction results, it comes with some weaknesses nevertheless. For 

instance, the temporal correlations of the input sequence are not explicitly modelled in 

the generator network. Hence, it has to explore the sequential structure of the data by 

its own from scratch. Furthermore, adversarial networks are said to be hard to train, 

because the oscillating loss values of the generator and discriminator networks are 

tough to interpret. Also experience is from advantage since the learning rates of both 

networks have to be kept in balance. 
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CHAPTER 3 

Datasets 

This chapter presents all datasets that are going to be used in the following evaluation. 

Three different video datasets were chosen that are used in related works in order to be 

able to compare the results and analyze the strength and weaknesses of different 

network models. The selected datasets will be introduced one after another, ordered by 

the content complexity with respect to the possible variations in color, motion and 

physical environment. Additionally, random samples from each dataset are shown to 

get a better idea of how the data looks like that is fed to the network. 

Moving MNIST 

To develop the algorithm, we use a simulated dataset of black-and-white pictures 

including soaring handwritten numbers. To better forecast the next frame in a video, 

[13] introduces the Moving MNI8T. But since, it has been referenced several times in 

subsequent publications like [11] and [12]. 

3.1 Characteristics and Data Generation 

Each series in the suggested configuration consists of 20 64 × 64 picture frames, each of 

which contains two randomly moving numerals from the MNIST collection. This 

straightforward dataset has the primary benefit of having a practically limitless size due 

to its ability to be produced instantly. Consequently, randomly generated digits are 

randomly selected from the beginning 55,000 digits of such training dataset and placed 

on any point of the initial picture patch while training a model. Each digit is given a 

velocity for the creation of succeeding frames, with the orientation of the velocity being 

evenly selected from a number line. Furthermore, when any digit with a size of 28 x 28 

meets the wall, the straightforward physical rule that the incident angle equals the angle 

of reflecting is applied. Due to the need to anticipate the correct trajectory when a ball 

bounces off a wall, this also makes the dataset more dynamic and allows for numerous 

occlusion effects from overlapping digits. As a result, despite the dataset's ease of 

creation, it is challenging for models to provide reliable predictions for the test set 
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without first establishing a representation that captures the system's internal dynamics 

[Shi+ 15, p. 6]. Last but just not least, we may start understanding the performance of the 

model with regard to its hyperparameters by using a smaller dataset. Particularly in light 

of the extensive training period required when using more complicated or even natural 

video. 

 

Figure 3.1: Randomly chosen samples of generated image sequences of size 64 x 64 from the Moving 

MNIST dataset. 

With the exception of utilizing the final 5000 digits of both the previous MNIST 

training split, the production technique for the validation data is the same as the 

approach for producing the training data that was previously discussed. On the other 

hand, the MNIST sample split is not used to create the test set. Alternatively, the which 

was before test set from [11] was used, which consists of 10,000 instances of patterns 

that are precisely 20 frames long. More similar findings to at minimum one rival model 

may be obtained in this method. Figure 5.1 displays a representative sample from each 

of the above divides. 

Even though some other works have used only a fixed number of pre-generated frame 

sequences, the on-the-fly generation process of the initial paper was kept for at least 

three reasons. First, it limits the amount of data and therefore increases the chance of 

overfitting. Seconds, loading the pre-generated frames from disk takes more time than 

generating them on the fly; hence it could have a slightly negative impact on the overall 
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training time. And third, it reduces the total memory requirements in case the whole 

data would otherwise be pre-loaded into memory in order to eliminate the second 

mentioned issue. 

3.2 Data Preprocessing 

To balance the data, as the actual input image of both the MNIST dataset are in the 

range [55], a simple way to go in order to [0, 1] is done. In addition, the subtraction of 

the mean adjacent pixels has been examined, since grayscale pictures possess the serial 

correlation condition. In view of the fact that it's seldom implemented in operation once 

the MNIST database is utilized [INg+13] and that it did not result in any observable 

benefits, average subtracting is not used when pretreatment the data. In addition, one 

may conclude that because the majority of an image's pixels are black (and hence zero), 

further data processing is not necessary. 

In addition, instead of giving the model continuous floating values within the 

normalized range, only binary pixel values are employed. This selection is the 

consequence of using binary bridge as the primary error function for all of this dataset, 

as it has been proved to be the best option for picture producing models using MNIST 

[13]. Therefore, each pixel p is given a value of zero if p 0.5, and a value of one to all 

other pixels. In addition, the output layer uses the sigmoid activation method to 

facilitate the washout of all pixels either as zero or one. 

3.3 Data Augmentation 

In regards to data augmentation, the luminance or brightness of the picture samples are 

not randomly altered, since it would create no sense within the framework of this video 

game, which utilizes a fixed color palette. However, since the game environment is 

replicated horizontally, unexpected horizontal flipping occurs if the selected crop does 

not reveal anything of the technical performance at the bottom. In addition, it iterates 

through all sequencing 256 times every epoch because to the premise that now the 

dataset contains only a small number of extremely lengthy sequences. A second reason 

is that just a brief clip and a modest random cut are taken from these frame sequences. 
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CHAPTER 4 

UCF-101 

Thirdly, a dataset consisting of complicated, natural films is employed to see whether 

the model can handle these as well. For this reason, we use the UCF-101 dataset [15]. It 

is one of the most extensive labeled datasets for video sequences identification, with 

13,320 clips and over 27 hours worth of video data. User-uploaded films with chaotic 

backgrounds and shaky cameras make up the dataset. Each of the 101 categories may 

be further broken down into 25 broad groups, with videos in the same group all sharing 

characteristics like an about equal perspective. Interaction, bodily functions just, 

interpersonal communication, human social interaction with stringed instruments, and 

sports are the five action kinds that may be distinguished from one another. Although 

initially created for human action recognition, this dataset may also be utilized for 

frame prediction using just the raw video data. It's worth quickly mentioning that there's 

even bigger video dataset that can be used for feature representation preceding diving 

into the details of the features and preprocessing methods that were put into play. Over 

1.1 million Video on youtube links belonging to 478 classes have indeed been 

automatically categorized in this massive dataset termed Sports-1M [17]. However, it is 

not used in this thesis because to infrastructure concerns with such a large dataset and a 

substantial time commitment for data pretreatment. 

4.1 Characteristics 

Videos in this dataset differ in length from around 1 second to such a peak of 71 

seconds, with a mean duration of 6.2 seconds. However, there are a few films with 

somewhat different resolutions than the stated 320 x 240 (30 fps) and 25 fps (25 frames 

per second) in the original study. To make all films seem the same, these frames are 

either padded using zeros or cut in the middle. Figure A.1b shows one such padding 

film along with several additional segments as examples. Whether you're interested in 

action recognition or movement detection, this dataset has you covered with its three 

predefined train/test splits. In this study, we choose the 3rd standards split for activity 

recognition since it provides the greatest number of training films and the easiest test 
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split. Because it is assumed that a large training set is crucial for the network to 

thoroughly investigate the underlying dynamics, all validation data is drawn first from 

testing split rather than the training split. Others have utilized UCF-101 for framing 

prediction before, however they either didn't remark on the data partitions they used for 

validation and testing, or they only utilized 10% of the testing dataset. [10] In the end, 

the training set, the validation set, and the test set include 9624, 1232, and 2464 movies, 

respectively. 

4.2 Data Processing 

UCF-101's data preparation is fairly similar to the method outlined in Section 5.2.2, with 

both the following exceptions. Before using linear interpolation to create a smaller frame 

size, we first halve the width and height of each picture, resulting in 160 x 120 pixel 

films. This is carried out to make up for the films' loud, pixelated artifacts. A randomized 

crop of 32 by 32 pixels offers a better probability of having genuine motion in it rather 

than merely flickering due to noise. Second, while choosing the crop zone from the 

randomly chosen clip, the movement filtering limitation is relaxed significantly. A 

sequence with no motion at all in the last frame is not automatically rejected only because 

the motion was absent in the preceding frames. Numerous sequential samples plucked 

from the various dataset splits used to train our model are shown in Figure 5.3. 
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Figure 4.1: Sequence examples from UCF-101. These frames have been randomly selected from the 

different splits, cropped to 32 x 32 and filtered to ensure they contain at least a small proportion of 

motion. 

In addition, because it is inefficient to load the entire video file into memory, 

particularly when considering that only a relatively small amount of the information is 

definitely used to create one example for the subsequent group, a supplementary 

interactive pre - processing step of the data is performed prior to the beginning of the 

actual training process. This occurs before the beginning of the official training process 

because it's incredibly inefficient to pack the entire movie document into memory. As a 

consequence of this, it cycles through all of the video footage files and creates semi 

binary scenes that are each 30 frames long. After carrying out this procedure only once, 

the files that are produced may, thankfully, be utilized again. In the end, it comes down 

to having 14,451 footage for the test set, 55,150 clips for the test dataset, and 7183 clips 

for the test dataset. 
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4.3 data Augmentation 

In terms of the enhancement of the data, the sharpness and luminance levels of the whole 

picture sequence are randomized to be changed by a differential of 20%. In addition to 

that, the training data go through a random process of horizontal flipping. Even if there is 

no random fluctuation in the intensity or brightness of the verification or test data, their 

size is increased by employing both of the normal as well as the flipped examples. In 

order to strike a compromise between the need for more uniform assessments and the 

want to maintain an acceptable level of processing speed, each review iteration makes use 

of four crops taken from each video. The processes necessary for this enhancement are 

carried out in real time. An enhanced double-buffered entry queue is used in order to 

make this process easier. The very first dynamic Scene is then arbitrarily populated 

containing reference to the binary sequential files that were produced before. After that, 

sixteen different CPU threads simultaneously similar material a reference from any of 

this queue, load it into memory, and then proceed to complete all of the preprocessing 

stages in parallel. This is done with the intention of producing a single example for 

training purposes. The last step is to add this example to the shuffled group queue, which 

is the location from where the model pulls the batches that it uses for each iteration. As a 

direct result of this, there is no downtime during the various stages of training. 
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CHAPTER 5 

Experiments on Moving MINIST 

To test how well our model performs, we begin with the fabricated Moving MNIST 

dataset. The network must decode the motion of an input pattern of 10 frames in order to 

forecast the following ten frames in the future. Because this dataset has been utilized in a 

number of earlier publications, we compare our findings to those of other network models 

here, both qualitatively and numerically. In this subsection, we use a loss layer that 

initially establishes ssim = 0. 

5.1 Scheduled Sampling 

In this first part, we take a look at the aftereffects of the planned sampling method. We 

use a modeling approach, and Figure 6.1 shows the binary cross-entropy during training 

and validation using both scheduled sampling (SS) and always sampling (AS). It is 

analogous to SS with a continuous selection probability of p = 0 that the latter technique 

employs, meaning that it always samples from the previously created frame. In the first 

stage, when the SS-approach primarily educated on input samples retrieved from the 

ground truth, a large gap can be detected between the generalization error and the 

validation error. Since no cell in the recurrent network needs to make up for the mistakes 

of its predecessors, training loss converges much more quickly when ground-truth 

samples are used at every time step. On the other hand, the validation loss is quite high at 

this stage since the results are the mean of 10 predictions as well as the spatio-temporal 

decoder unexpectedly uses its own deep feature projections to make a prediction on the 

following frame, which is not how it was operated during training. However, the key 

takeaway here is that, in comparison to the strategy of always taking samples from 

previously generated frames at the very beginning, the accomplished prediction accuracy 

is consistently better once the scheduled sample selection component has completely 

switched the input behaviour patterns to inference mode. 
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Figure 5.1: Influences of scheduled sampling regarding the training and validation error in context of 

recurrent networks and future frames prediction on Moving MNIST.  

This could happen because the SS approach has a kind of pre-training phase, during 

which the network could indeed gain knowledge to anticipate the next frame whenever 

the current frame is ideal. So, it doesn't have to deal with mistakes made in the last time 

step. By slowly switching this actions to the method it uses during implication, it starts to 

learn how to deal with input frames that aren't perfect. When you look at Figure 6.2b and 

compare the PSNR results for AA and SS, you can see that they behave in a similar way. 

But then when people look just at edge enhancement differential measure in Figure 6.2a, 

we can see that scheduled sampling makes the predictions more accurate over time. 

 

Figure 5.2: Comparison of validation results based on a model with either using the scheduled 

sampling or the always sampling training technique. 
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5.2 Experiment on UCF-101 

In the last test, we look at how well the suggested neural network model works with 

genuine footage. In Section 5.3, we go further into the specifics of how we train our 

networks: using 32x32 UCF-101 patches. This dataset's clips depict real situations with 

such a lot of motion and noise, thus it's reasonable to assume that the addition of 

perceptually driven bias factors inside the error function may have its full impact. With 

the goal of finding even more substantial gains, we redo the analysis of various gradient 

descent configurations from of the experiment 2 on MsPacman and apply it to this 

database. 

5.3 Hyperparameter Tuning 

Finding optimal hyper - parameter values and subsequent parameters is quite similar to 

the method described in Section 6.2.1. A number of model examples are trained with 

different rates of learning, but time is saved by restricting the search space for the 

regularization coefficients to, for example, = 1e 6, 1e 5. In addition, the lessons from both 

prior trials suggest that no single-layer ConvLSTM arrangement has been evaluated. In 

particular, most experiments are run on two-layer ConvLSTM configurations, and then 

the same setup is tested with a three-layer ConvLSTM. While it has been proved that 

using MSE as the primary objective element of the triplet loss function yields the greatest 

results on MsPacman, the error percentage is still employed as the primary loss term. 

That's because, as discussed in Section 2.6.1 in Chapter 3, it works very well in the 

context of natural imagery. The grid search converges on the identical model setup as the 

preceding test. However, at this stage, the benefits of utilizing lower learning levels 

become more apparent than they were before. Researches below assume a mass decay of 

= 1e 5 and a learning rate of = 0.0005 to simplify matters. 

5.4 Test Results 

In the following, the test results of different network configurations are presented in a 

quantitative and qualitative analysis. In analogy to the previous experiments on 
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MsPacman, it is worth mentioning that the video patches from the test set are not filtered 

in case they show very less movement. 

 

 

Figure 5.3: Computed image metrics computed on the UCF-101 dataset. All four networks use the 

same hyperparameter settings, but differ in the number of recurrent layers, as well as the used 

objective function. 

5.5 Quantitative Results 

Starting with the qualitative test results, Table 6.4 compares several configurations 

of our model with outcomes from related works on various image similarity or 

sharpness metrics. It demonstrates test results of the first predicted frame, as well 

as the average metric values of the forecasted 10 frames long sequence. However, 

the results of our model are not really comparable with [10], since they calculate 

the metrics only on specific regions of the image, where the optical flow exceeds a 

specified threshold. 
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Table 1: Metric results of predicted patch sequences using our approach on the UCF-101 test split. The 

achieved similarity and sharpness results by using different loss layers are given for both the first frame 

only and the mean of the generated sequence. All our models are trained for the same amount of time, in 

detail the 2-layer networks for 100,000 and the 2-layer network for 68,000 iterations. The outcomes of 

other approaches are not comparable to the proposed model in rows 5-9, because the mertic results of the 

given other solution takes only moving areas of the images into account. 
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CHAPTER 6 

Contribution 

Before concluding this thesis, we would like to present a side contribution that arised in 

parallel to this thesis. When the implementation of this final project has started, the 

TensorFlow library for machine intelligence had just published its second public 

release with version 0.7. Thus, there has not been that much experience and best 

practices around with TensorFlow, as well as its API is very low-level for several use 

cases even today. As a result, there has been the desire to create a reusable library to 

reduce boilerplate code of TensorFlow based projects, as well as to retain best practices 

of existing examples and also the lessons learned from thesis. A second idea has been 

that future theses or other deep Learning projects of the Computer Vision Group' at 

TUM might benelit from such a library. However, this project has grown larger and 

larger over time and ended up in a powerful high-level framework, that has been 

developed independently from other high-level APIs for TensorFlow like TF-Sfiin
2 

or 

Reras
3

. Ultimately, about 99% of the overall code of this thesis has been transferred 

into this framework, consistently with having abstraction and reusability in mind. 

6.1 Architecture 

The framework may be broken down into three primary components when looking at it 

from an architectural vantage point. To begin, a set of utility maximization that have 

nothing to do with machine learning is presented here. A few examples of such 

functions are those that process photos and videos, download and extract databases, 

process pictures and videos, and make animations and movies from data arrays, just to 

mention a few. The second component is the high-leiiel library, which is built on 

TensorFlow. It encompasses various modules that either give a simple access to 

functions that it regularly requires while constructing deep learning applications or 

features that are not yet available in TensorFlow. Either way, it was necessary when 

creating deep learning applications. For example, it takes care of the construction of 

bias and weight parameters on its own, provides a number of ready-to-use methods for 
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loss and activation, and has some sophisticated visualization tools that can show feature 

maps or output pictures direct in an IPython Notebook. Third, an encapsulation layer to 

simplify the entire lifecycle, to extend the description of model graphs, and to allow 

reusable and uniform access to datasets. This layer will also help generalize the concept 

of a model graph. TensorLight's general architecture is shown in Figure 5.1 for your 

reference. 

 

 

Figure 6.1: Architecture diagram of the TensorLight framework and its modules. The user program can 

take advantage of the provided abstraction layer, but also use the library and utility functions standalone. 

 

The user program has the option of either using the high-level framework and the 

supplied functionalities for his already established projects or making use of 

TensorLight's encapsulation layes while developing new deep learning projects. Because 

of the latter, it is possible to significantly cut down on the amount of programming that 

needs to be written in order to train or evaluate the model. This is accomplished by 

enclosing inside a runtime module not only the full training or assessment loop but also 

the lifespan of TensorFlow's session, structure, summary-writer, or checkpoint-saver. 

This makes it possible to attain this goal. 
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6.2 Discussion 

After applying batch normalization and the scheduled sampling learning strategy, we 

were honestly surprised that our model was able to outperform related models by such a 

large margin. Nevertheless, we belief that is still space to improve the proposed 

architecture, the chosen hyperparameter configuration and particularly the data 

preprocessing. Regarding the latter, only simple rescaling of the data has been 

performed to be roughly zero mean, but dedicated the scaling of the values completely 

to batch normalization layers and the entire network. 

We could also figure out that the choice of the appropriate loss function has a huge 

impact regarding the generated future frame predictions, if not even the most tremen- 

dous effects. However, as the evaluation in chapter 6 clearly shows, there is no perfect 

solution for this purpose. But it must be emphasized that the detailed properties of the 

used image or video data have to be analyzed in detail, in order to be able to achieve 

good results. Having said that, the fine-tuning of neural networks in context of image 

processing tasks remains to be very difficult even with a good loss function at hand. 

This can be attributed to the discrepancy between the mathematical and perceptual 

similarity of two images. Also the use of perceptual motivated metrics presented in 

Section 2.6.2 is not always very helpful, because an increase in one metric can lead to a 

decline in others. It is easy to get lost when multiple metrics are used. 

Finally, in can be assumed that the proposed model could be currently trained more 

effectively using a different deep learning framework than TensorFlow, at least at the 

time of this writing. This can be argued with the fact that the current batch 

normalization layer in this framework currently depends on some operations where no 

GPU kernel is implemented yet. Such a bottleneck might be the root cause why the 

training process of our model is so slow that it requires up to four days to train the 

network for only 100,000 steps. But this will certainly change in one of its next 

releases. 
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6.3 Future Work 

At least the five suggestions listed below have been made for potential future work: 

To begin, the suggested model for the network should be scrutinized and its parameters 

adjusted in more depth. We have a strong opinion that this architecture is capable of 

achieving even better results by undertaking a more in-depth hyper - parameter 

discovery, training it for a much greater number of iterations, or using a bigger dataset 

such as Sports-lM. Regrettably, this is outside the scope of the timescale for this thesis; 

hence, certain assessments were carried out on networks that still had additional 

potential in the event that further training iterations were carried out. 

Secondly, because the application of the scheduled sampling learning strategy for 

recurrent networks has improved our results in such an extent, it would be worthwhile 

experimenting with new variants of this approach. For instance, the recurrent network 

could dynamically grow in the course of the training process. Thereby, it could start to 

predict a single frame only until the validation loss reaches a specified threshold. 

Afterwards, the decoder RNN can be extended at runtime to predict more and more 

future frames per training iteration. As a result, such a network should be able to predict 

longer sequences with a higher stability regarding the quality of generated frames. 

Thirdly, since the GAN approach described in Section 3.3 yields such promising 

results, one has to imagine what might be possible when the proposed model is plugged 

into this adversarial framework. Despite the fact that they use the probably simplest 

generator network one can think of, our proposed model as a replacement for their 

generator network would explicitly take advantage of the spatio-temporal properties of 

the data. Especially without the need that the model would have to learn these 

correlations from scratch. As a consequence, the additional adversarial network would 

introduce an additional objective function in feature space, whose benefits have already 

been mentioned in the end of section.  

Next, a trained network instance of our model can be examined to serve as a pre- 

training for supervised learning tasks like human action recognition, which can be very 

helpful according to [18]. Similar efforts have already been taken in [13] with positive 

results. In detail, it should be possible to detach the encoder components of our trained 
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model, including its ability to generate a useful feature space representation given a 

sequence of frames, and plug it into a different network architecture specialized for 

classification. Unfortunately, performing such experiments with labeled video data is 

beyond the scope of this thesis. 

Lastly, the proposed network architecture itself can be further extended to cope with 

different unsupervised tasks. To name just one, the recurrent components can be 

updated to bidirectional RNNs in order to solve tasks like slow motion video generation 

or video compression more effectively. 
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