

Faculty of Engineering
Department of Textile Engineering

REPORT ON

Application of Line Balancing and Time Study to Minimize the Idle Time in Production Line.
 Course Title: Project Thesis

Course Code: TE-4214

Submitted By

Md.Rabbi Ul Alam ID: 191-23-5600
Md. Ashikullah Mondol ID: 191-23-5620
Md. Manik Mia ID: 191-23-5551

Supervised By

Md. Mominur Rahman

Assistant Professor
Daffodil International University.

A Thesis Submitted in Partial Fulfillment of The Requirements For The Degree of Bachelor of Science in Textile Engineering.

Advance in Apparel Manufacturing Technology.

LETTER OF APPROVAL

March 4, 2023

To

The Head

Daffodil International University

Daffodil Smart City, Birulia, Savar, Dhaka-1216

Subject: Approval of Project Report of B.Sc in TE Program.

Dear Sir,

I am just writing to let you know that this Research in "Application Of Line Balancing And
Time Study To Minimize The Idle Time In Production Line" has been prepared by the student bearing ID 191-23-5600, 191-23-5620 and 191-23-5551 is completed for final evaluation. The whole report is prepared based on the factory data with required belongings. The students were directly involved in their industrial attachment activities and the report become vital to spark of many valuable information for the readers.

Therefore it will highly be appreciated if you kindly accept this report and consider it for final evaluation.

Yours Sincerely

Supervisor
Md. Mominur Rahman

Assistant Professor
Department of Textile Engineering
Daffodil International University.

DECLARATION

We hereby declare that the work which is being presented in this research entitled, "Application Of Line Balancing And Time Study To Minimize The Idle Time In Production Line" is original work of our own, has not been presented for a degree of any other university and all the resources of collected information for this report have been duly acknowledged. We further certify that this report and its components have not been submitted anywhere for the award of any courses.

Md.Rabbi Ul Alam ID: 191-23-5600
Md. Ashikullah Mondol
ID: 191-23-5620
Md. Manik Mia
ID: 191-23-5551

Department of Textile Engineering
Daffodil International University.

ACKNOWLEDGEMENT

Above all, we praise the almighty Allah who gave me his enabling grace to successfully complete this research work.

With sincerity, we extend my warm and deep appreciation and gratitude to our supervisor Md.
Mominur Rahman, Assistant Professor and Head In-Charge, Department of Textile Engineering for his guidance and support to come up with this research work. Being working with him, I have not only earned valuable knowledge but was also inspired by his innovativeness which helped to enrich my experience to a greater extent. His ideas and way of working was truly remarkable. We believe that this research could not be finished if he did not help us continuously.

We also take the opportunity to express our sincerest gratitude and cordial thanks goes to Engr. Akib Javed, IE Manager \& Akteruzzaman Raju, Senior Officer of IE. We would also like to thank all who responded to our questionnaires and interviews, which helped us in coming up with this research.

Finally, We express our sincere gratitude to our father, mother, brother and sister for their continuous support, ideas and love during our studies.

Abstract

This research describes line balancing systems and how to reduce idle time by proper line balancing and time analysis. This article provided a brief description of the knit garment industry's line balancing technique. The objectives of this report is about the implementation of line balancing technique to minimize the idle time. This project explains how line balance may actually accelerate the manufacturing process. Firstly it has been observed that the total no of manpower which has been needed to complete the every operation of a garments before and after the line balancing. Here, the formula was used to calculate the cycle time. Then it has been observed the efficiency of that line. The times were recorded and improved by minimizing downtime and wastes. Because of the time saved, there will be more time available increasing the production. The various line balancing parameters were implemented in this work, and the outcomes were discussed. Process planning, production, and manufacturing in an industry will benefit from the line balancing method.

Table of Contents

CHAPTER 1: INTRODUCTION 1
1.1 Background of The Study 1
1.2 Objectives of The Study 1
1.3 Significance of The Study 2
1.4 Limitations 2
CHAPTER 2: LITERATURE REVIEW 3
2.1 Line Balancing 3
2.1.1 Benefits of Line Balancing 3
2.1.2 Line Balancing Steps 4
2.2 Idle Time 4
2.2.1 What caused the idle time 4
2.2.2 The necessity of keeping records of idle time 5
2.3 SMV/SAM 5
2.3.1 Calculation of SAM through Time Study 5
2.4 Time study 6
2.5 Work study 6
2.6 Bottleneck. 6
2.6.1 Bottleneck occurs before input in line 6
2.6.2 Bottleneck occurs in line 7
2.6.3 Method for minimizing the bottleneck 7
CHAPTER 3: EXPERIMENTAL DETAILS 8
3.1 Experiment: 01 8
3.2 Experiment: 02 16
3.3 Experiment: 03 23
CHAPTER 4: DISCUSSION OF RESULTS 33
4.1 Experiment 1: Capacity Graph 33
4.2 Experiment 2: Capacity Graph 35
4.3 Experiment 3: Capacity Graph 37
CHAPTER 5: PROFESSIONAL RESPONSIBILITIES, HEALTH, SAFETY, SOCIO- CULTURAL AND ENVIRONMENTAL CONSIDERATION. 39
5.1 Codes And Standards Used 39
5.2 Ethical Principles and Professional Commitment 39
5.3 Impact on Society, Health, Safety, Legal and Cultural Issues 40
5.4 Impact on Environment 40
CHAPTER 6: CONCLUSION 41
REFERENCES 42
List of Tables
Table 3.1 Before Balancing 11
Table 3.2 After Balancing 13
Table 3.3 Reduce Helper 14
Table 3.4 Before Balancing 19
Table 3.5 After Balancing 21
Table 3.6 Before Balancing 26
Table 3.7 After Balancing 29
Table 3.8 Reduce Helper 32

List of Figures

Figure 3.1 Experiment: 01 8
Figure 3.2 Experiment: 01 9
Figure 3.3 Experiment: 02 16
Figure 3.4 Experiment: 02 17
Figure 3.5 Experiment: 03 23
Figure 3.6 Experiment: 03 24
Figure 3.7 Experiment: 03 25
Figure 4.1 Capacity Before Balancing 33
Figure 4.2 Capacity After Balancing 34
Figure 4.3 Capacity Before Balancing 35
Figure 4.4 Capacity After Balancing 36
Figure 4.5 Capacity Before Balancing 37
Figure 4.6 Capacity After Balancing 38

List of Abbreviation

BPT= Basic Pitch Time.

SMV = Standard Minute Value.

SAM $=$ Standard Allowed Minute.

CHAPTER 1:INTRODUCTION

1.1 Background of The Study

In order to eliminate bottlenecks and excess capacity, line balancing helps to balance the workload across all processes in a line stream. Production lines can be made more flexible to handle both internal and external imperfections by using line balancing. Balancing in the context of a textile line refers to the placement of a sewing machine in conformance with the style and design of a particular product. It is carried out to improve productivity.

Garments are produced in lines or by a large amount of machines instead of a single machine when bulk production is taken into consideration. A line could be an assembly line, a modular line or section, or one with both online and offline packaging and finishing capabilities. A line consists of numerous workstations with different work tasks. The amount of output produced per hour varies depending on the work content (average minutes per operation), the allocation of entire workforce to an operation, the operator's skill level and the machine's capacity. The bottleneck operation for that line is the one with the lowest production per hour.

For example, in a line of 50 machines, 15 workers are not operating without an extra bundle, yet the bundle is functioning as required. Assume that they all wait for the following bundle for 40 seconds. If they produced 500 pieces per day, a single operator will be idle for a total of 2000 seconds.

1.2 Objectives of The Study

a) To minimize the number of machine and manpower.
b) To minimize the cycle time and improve productivity.
c) To remove bottlenecks and idle time.
d) To maximize the workload smoothness.

1.3 Significance of The Study

a) Line balancing ensures in determining the new machine and total number of machine needed for the new style of every student.
b) It becomes faster to provide a specific work to each operator.
c) It also helps to learn about machine layout with actual production of an expert.
d) It also helps to reduce production time and increase productivity in any industry.

1.4 Limitations

a) Application of a data collection strategy.
b) Exclusion of relevant study in the field.
c) Face difficulties to get accurate data as per company policy.

CHAPTER 2: LITERATURE REVIEW

2.1 Line Balancing

In order to match the production rate to the takt time, line balancing involves balancing human and machine time. Takt time is the time at which components or goods must be produced to keep up with demand from customers.

Production time must match takt time perfectly for a given production line to be properly balanced. If not, resources should be redistributed or reconfigured in order to eliminate bottlenecks or excess capacity. To achieve the best production rate, the numbers of people and machines allocated to each activity in the line should be rebalanced.

On that line, the operation with the lowest production per hour is referred to as the bottleneck operation. The output of a line is controlled by its bottleneck operation. The production of bottleneck processes or operations must thus be increased for this reason.

2.1.1 Benefits of Line Balancing

a) Minimize inventory waste.
b) Minimize waiting time waste.
c) Maximum human and machine inputs.
d) Adapt to both internal and external disruptions.
e) Enhance profitability and cut production expenses.
f) Minimal processing period.
g) Reducing down time.
h) Highest productivity.

2.1.2 Line Balancing Steps

In any case, line balancing is concerned with two unique applications: "Opening the line" and "Operating the line." The method of line balancing might vary from factory to factory and depends on the garments developed.
a) Opening the line.

- Calculation of labor requirements.
- Operation breakdown.
- Theoretical operation balance.
- Initial balance.
b) Operating the line.
- Balance control.

2.2 Idle Time

Operators must frequently wait for work between bundles in garment factories that use the line manufacturing system. We refer to this waiting period as idle time. This downtime is a period of little or no work between two bundles of work. The productivity and labor efficiency are both decreased by idle time.

2.2.1 What caused the idle time

a) Establishing a line.
b) Asymmetric cutting bundle.
c) Poor sewing quality.
d) Issue with cutting quality.
e) Load shedding.
f) Planning issue Extra time for material handling.

2.2.2 The necessity of keeping records of idle time

Although factories' best efforts, they occasionally fail to find a solution for efficiency improvement. For them, focusing on lowering idle time is a chance to boost manufacturing productivity. The majority of clothing manufacturing fail to track idle time. They simply let it pass. One explanation could be that management is trying to cover up their inefficiency by not maintaining a balanced line with adequate WIP at each workstation.

2.3 SMV/SAM

SMV for standard minute value, refers to the amount of time typically needed to complete a task using the most effective way.

2.3.1 Calculation of SAM through Time Study

Step 1: Choose one procedure for which you wish to perform SAM calculations.

Step 2: Take One stopwatch. Position yourself close to the operator. cycle time for the operation's capture. Cycle time is the overall amount of time required to accomplish all tasks for one operation. That refers to the interval between picking up the first piece's final portion and the subsequent piece. Perform time studies for five cycles in a row. If any cycle contains an irregular time, discard it. Compute the 5 cycles' average. Cycle time is the time you obtained from your time study. You must multiply cycle time by operator performance rating in order to convert this cycle time to basic time. Here, Basic Time $=$ Cycle Time X performance Rating.

Step 3: Score for performance. When you see the operator's movement and work speed, you must now assign him a performance rating based on how well he completed the task. Consider an 80% operator performance rating. For example, 0.50 minute cycle time. Basic time $=(0.50 \mathrm{X}$ $80 \%)=0.4$ minutes.

Step 4: Standard allowed minutes $(S A M)=($ Basic minute + Bundle allowances + machine and personal allowances). Add bundle allowances (10\%) and machine and personal allowances (20%) to basic time. Now you got Standard Minute value (SMV) or SAM. SAM= $(0.4+0.04+0.08)=0.52$ minutes .

2.4 Time study

A qualified worker analyzes a certain task to determine the most efficient way to complete it in terms of time and effort. This process is known as time study. The study uses the best approach available to calculate the amount of time required for the work or job at hand.

2.5 Work study

Work study is the analysis of an activity-conducting strategy. It gauges the available resources, the performance of a given task, and its usual setup. Productivity is increased by work study.

2.6 Bottleneck

When input enters a process more quickly than the subsequent phase can use it to produce output, the process becomes bottlenecked. In Annexure 3, which is highlighted in light brown, we have identified the bottleneck operations that are marked as make and join care label, back neck elastic tape joint, match sleeve pair and sleeve and body, sleeve hem, hem raw edge cut, security tack and thread cut body turn. These seven workstations have slowed down production, and the bottleneck processes are still holding a lot of unfinished work.

2.6.1 Bottleneck occurs before input in line

a) If cutting material supplies from other sections and sub stores are not delivered in a timely manner.
b) If the material is delayed.
c) Serial number issue in the bundle.
d) Bundling fault.

2.6.2 Bottleneck occurs in line

a) Incorrect worker selection.
b) Incorrect order of the pieces.
c) Unbalanced elemental distribution.
d) Employee negligence at work.
e) Employee absence.
f) Machine stutters.
g) Absence of supply.

2.6.3 Method for minimizing the bottleneck

a) To schedule a meeting before production.
b) Before entry into the line, prepare the layout sheet.
c) Before releasing items into the line, to inspect textiles and accessories.
d) To better prepare, the layout sheet should be submitted to the maintenance section at least 2-3 days in advance.
e) Before supplying the line, to inspect the pattern.
f) To choose the best employees for the job.
g) To maintain supply timely attainable.
h) To preserve the serial number. Rejected clothing shouldn't be distributed.
i) After verifying, the supply should be forwarded.
j) Warning when bundling (maintain serial number).
k) By enhancing the representation of employees.

CHAPTER 3: EXPERIMENTAL DETAILS

3.1 Experiment: 01

Item: Basic T-Shirt

Buyer: H\&M

Figure 3.1 Experiment: 01
©Daffodil International University

Figure 3.2 Experiment: 01

According to the factory data, It has been observed that The Standard SMV Of The Basic T-SHIRT $=4.13$

Here,
BPT $=$ SMV/ Total No. Of Process
$=4.13 / 17$
$=0.24 \mathrm{Min}$.

So, Line Production Target $=60 / \mathrm{BPT}$

$$
\begin{aligned}
& =60 / 0.24 \\
& =250
\end{aligned}
$$

Before Balancing:

Table 3.1 Before Balancing

$\begin{gathered} \hline \text { SL } \\ \text { No. } \end{gathered}$	Process Name	M/C Type	Work station	Average Time	$\begin{gathered} \text { Capacity } \\ 85 \% \end{gathered}$	$\begin{gathered} \text { Line } \\ \text { Target } \end{gathered}$	$\begin{aligned} & \hline \text { Idle } \\ & \text { Pcs } \end{aligned}$	Idle Time
1	$1^{\text {st }}$ shoulder join	OL	1	10.2	300	250	50	510
2	Shoulder thread cut	Helper	1	5.25	582	250	332	1743
3	Neck joint	OL	1	11.9	257	250	7	83.3
4	Back tape attach	FLFS	1	11.8	259	250	9	106.2
5	Back tape excess cut	Helper	1	5.5	556	250	306	1683
6	Back tape close with label	SNLS	1	12.05	253	250	3	36.15
7	$2^{\text {nd }}$ side shoulder joint	OL	1	11.75	260	250	10	117.5
8	Neck tack \& $1 / 4$ tack	SNLS	1	11.9	257	250	7	83.3
9	Sleeve hem	FLCB	1	12.1	252	250	2	24.2
10	Sleeve hem thread cut	Helper	1	5.3	577	250	327	1733.1
11	Care label make	SNLS	1	12	255	250	5	60
12	Sleeve joint	OL	1	34.57	88	250	-162	-5600

$\mathbf{1 3}$	Side seam with care label	OL	$\mathbf{1}$	$\mathbf{2 4 . 2}$	$\mathbf{1 2 6}$	$\mathbf{2 5 0}$	$\mathbf{- 1 2 4}$	$\mathbf{- 3 0 0 0}$
$\mathbf{1 4}$	Side seam thread cut	Helper	$\mathbf{1}$	$\mathbf{5 . 4 5}$	$\mathbf{5 6 1}$	$\mathbf{2 5 0}$	$\mathbf{3 1 1}$	$\mathbf{1 6 9 5}$
15	Sleeve tack \& $1 / 4$ tack	SNLS	1	12.07	253	250	3	36.21
16	Body fold before bottom hem	Helper	1	11.37	269	250	19	216.03
17	Bottom hem	FLH	1	12.11	252	250	2	24.22
	Total		17	209.52				8151.41

Before balancing, It has been observed that different process have different capacity in production line. It has been also found that the bottleneck points in identified operation. For that It has been observed more idle time produced. Generally It decreased the production and line efficiency.

Here,

Sum Of Total Idle Time $=8151.41 \mathrm{Sec}$

$$
=2.3 \text { Hour }
$$

Line Efficiency = Sum Of Task Time / Work Station * Max. Working Time * 100\%

$$
\begin{aligned}
& =209.52 / 17 * 34.57 \\
& =35.7 \%
\end{aligned}
$$

Balancing Rate $=(\text { Minimum Output } / \text { Target Output })^{*} 100 \%$

$$
\begin{aligned}
& =88 / 250 * 100 \% \\
& =35 \%
\end{aligned}
$$

After Balancing:

Table 3.2 After Balancing

$\begin{gathered} \hline \text { SL } \\ \text { No. } \end{gathered}$	Process Name	$\begin{aligned} & \text { M/C } \\ & \text { Type } \end{aligned}$	Work station	Average Time	$\begin{gathered} \hline \text { Capacity } \\ 85 \% \end{gathered}$	$\begin{gathered} \hline \text { Line } \\ \text { Target } \end{gathered}$	$\begin{aligned} & \hline \text { Idle } \\ & \text { Pcs } \end{aligned}$	Idle Time
1	$1^{\text {st }}$ shoulder join	OL	1	10.2	300	250	50	510
2	Neck joint	OL	1	11.9	257	250	7	83.3
3	Back tape attach	FLFS	1	11.8	259	250	9	106.2
4	Back tape excess cut \& Shoulder thread cut	Helper	1	10.75	334	250	84	903
5	Back tape close with label	SNLS	1	12.05	253	250	3	36.15
6	$2^{\text {nd }}$ side shoulder joint	OL	1	11.75	260	250	10	117.5
7	Neck tack \& 1/4 tack	SNLS	1	11.9	257	250	7	83.3
8	Sleeve hem	FLCB	1	12.1	252	250	2	24.2
9	Care label make	SNLS	1	12	255	250	5	60
10	Sleeve joint	OL	3	34.57	264	250	14	484

11	Side seam with care label	OL	2	24.2	252	250	2	48.4
$\mathbf{1 2}$	Sleeve hem Side seam thread cut	Helper	$\mathbf{1}$	$\mathbf{1 0 . 8}$	$\mathbf{3 3 3}$	$\mathbf{2 5 0}$	$\mathbf{8 2}$	$\mathbf{8 5 5}$
13	Sleeve tack \& 1/4 tack	SNLS	1	12.07	253	250	3	36.21
14	Body fold before bottom hem	Helper	1	11.37	269	250	19	216.03
15	Bottom hem	FLH	1	12.11	252	250	2	24.22
	Total		18	302.91				3617.51

After balancing, It has been observed that In production line, every process have the capacity were nearly closed. Here It has been found that the idle time and bottleneck points were reduced by the increasing number of machine, manpower and sharing the process among the same machine.

Reduce Helper:

Table 3.3 Reduce Helper

SL No.	Process Name	M/C Type	Work station	Average Time	Capacity 85%	Line Target	Idle Pcs	Idle Time
1	Shoulder thread cut \& Back tape excess cut	Helper	1	10.75	334	250	84	903

2	Sleeve hem thread cut \& Side seam thread cut	Helper	1	10.8	333	250	82	885

Before balancing, It has been observed that the identifying four helpers were more idle in production line. For that there were two helpers reduced to achieve the line target. For that there were minimized idle time and increased line efficiency.

Here,

Sum of total idle time $=3617.51 \mathrm{Sec}$

$$
=1 \text { Hour }
$$

Line Efficiency = Sum Of Task Time / Work Station * Max. Working Time * 100\%

$$
\begin{aligned}
& =302.91 / 18 * 34.57 \\
& =49 \%
\end{aligned}
$$

Balancing Rate $=(\text { Minimum Output } / \text { Target Output })^{*} 100 \%$

$$
\begin{aligned}
& =252 / 250 * 100 \% \\
& =100 \%
\end{aligned}
$$

3.2 Experiment: 02

Item: LEGGINGS

Buyer: SAINSBURYS

Figure 3.3 Experiment: 02

Figure 3.4 Experiment: 02

According to the factory data, It has been observed that The Standard SMV Of The LEGGINGS $=3.49$

Here,
BPT $=$ SMV/ Total No. Of Process
$=3.49 / 15$
$=0.23 \mathrm{Min}$.

So, Line Production Target $=60 / \mathrm{BPT}$

$$
\begin{aligned}
& =60 / 0.23 \\
& =261
\end{aligned}
$$

Before Balancing:

Table 3.4 Before Balancing

$\begin{gathered} \hline \text { SL } \\ \text { No. } \end{gathered}$	Process Name	M/C Type	Work station	Average Time	Capacity 85\%	$\begin{gathered} \text { Line } \\ \text { Target } \end{gathered}$	$\begin{aligned} & \hline \text { Idle } \\ & \text { Pcs } \end{aligned}$	Idle Time
1	Back \& front rise	OL	1	21.2	144	261	-117	-2480.4
2	Trim back \& front rise	Helper	1	11.15	274	261	13	145
3	Leg hem	FLCB	1	20.2	151	261	-110	-2222
4	Leg hem raw edge cut	Helper	1	19.3	158	261	-103	-1988
5	Elastic measure \& cut	Helper	1	10.75	284	261	23	247.25
6	Elastic tack	SNLS	1	8.6	355	261	94	808.4
7	Elastic joint with waist belt	OL	1	20.4	150	261	-111	-2264.4
8	Mark for label attach	Helper	1	8.4	364	261	103	865.2
9	Care \& main label attach	SNLS	1	20.6	148	261	-113	-2327.8
10	Waist belt top stitch	FLCB	1	18.4	166	261	-95	-1748
11	Body fold sticker	Helper	1	11.3	270	261	9	101.7
12	Inseam	OL	1	23.2	131	261	-130	-3016
13	Inseam tack	BT	1	8.8	347	261	86	756.8

$\mathbf{1 4}$	Leg tack \& leg $1 / 4$ tack	SNLS	$\mathbf{1}$	$\mathbf{1 9 . 8}$	$\mathbf{1 5 4}$	$\mathbf{2 6 1}$	$\mathbf{- 1 0 7}$	$\mathbf{- 2 1 1 8 . 6}$
15	Finishing thread cut	Helper	1	11.5	266	261	5	57.5
	Total		15	233.6				

Before balancing, It has been observed that different process have different capacity in production line. It has been also found that the bottleneck points in identified operation. For that It has been observed more idle time produced. Generally It decreased the production and line efficiency.

Here,
Line Efficiency = Sum Of Task Time / Work Station * Max. Working Time * 100\%

$$
\begin{aligned}
& =233.6 / 15 * 23.2 \\
& =67 \%
\end{aligned}
$$

Balancing Rate $=(\text { Minimum Output } / \text { Target Output })^{* 100 \%}$

$$
\begin{aligned}
& =131 / 261 * 100 \% \\
& =50 \%
\end{aligned}
$$

After Balancing:

Table 3.5 After Balancing

$\begin{gathered} \text { SL } \\ \text { No. } \end{gathered}$	Process Name	M/C Type	Work station	Average Time	$\begin{array}{\|c} \hline \text { Capacity } \\ 85 \% \end{array}$	$\begin{gathered} \text { Line } \\ \text { Target } \end{gathered}$	$\begin{aligned} & \hline \text { Idle } \\ & \text { Pcs } \end{aligned}$	Idle Time
1	Back \& front rise	OL	2	21.2	288	261	27	572.4
2	Trim back \& front rise	Helper	1	11.15	274	261	13	145
3	Leg hem	FLCB	2	20.2	302	261	41	828.2
4	Leg hem raw edge cut	Helper	2	19.3	316	261	55	1061.5
5	Elastic measure \& cut	Helper	1	10.75	284	261	23	247.25
6	Elastic tack	SNLS	1	8.6	355	261	94	808.4
7	Elastic joint with waist belt	OL	2	20.4	300	261	39	795.6
8	Mark for label attach	Helper	1	8.4	364	261	103	865.2
9	Care \& main label attach	SNLS	2	20.6	296	261	35	721
10	Waist belt top stitch	FLCB	2	18.4	332	261	71	1306.4
11	Body fold sticker	Helper	1	11.3	270	261	9	101.7
12	Inseam	OL	2	23.2	262	261	1	23.2
13	Inseam tack	BT	1	8.8	347	261	86	756.8
14	Leg tack \& leg 1/4 tack	SNLS	2	19.8	308	261	47	930.6

15	Finishing thread cut	Helper	1	11.5	266	261	5	57.5
	Total		23	396.7				9220.75

After balancing, It has been observed that In production line, every process have the capacity were nearly closed. Here It has been found that the idle time and bottleneck points were reduced by the increasing number of machine, manpower and sharing the process among the same machine.

Here,

Sum of total idle time $=9220.75 \mathrm{Sec}$

$$
=2.5 \text { Hour }
$$

Line Efficiency = Sum Of Task Time / Work Station * Max. Working Time * 100\%

$$
\begin{aligned}
& =396.7 / 23 * 23.2 \\
& =74 \%
\end{aligned}
$$

Balancing Rate $=(\text { Minimum Output } / \text { Target Output })^{*} 100 \%$

$$
\begin{aligned}
& =262 / 261 * 100 \% \\
& =100 \%
\end{aligned}
$$

3.3 Experiment: 03

Item: SWEAT SHORTS

Buyer: VARNER

Figure 3.5 Experiment: 03

Figure 3.6 Experiment: 03

Figure 3.7 Experiment: 03

According to the factory data, It has been observed that

The Standard SMV Of The SWEAT SHORTS = 10.77

Here,
BPT $=$ SMV/ Total No. Of Process
$=10.77 / 37$
$=0.29 \mathrm{Min}$.

So, Line Production Target $=60 /$ BPT

$$
\begin{aligned}
& =60 / 0.29 \\
& =207
\end{aligned}
$$

Before Balancing:

Table 3.6 Before Balancing

$\begin{gathered} \hline \text { SL } \\ \text { No. } \end{gathered}$	Process Name	$\begin{aligned} & \hline \text { M/C } \\ & \text { Type } \end{aligned}$	Work station	Average Time	$\begin{gathered} \hline \text { Capacity } \\ 85 \% \end{gathered}$	$\begin{gathered} \hline \text { Line } \\ \text { Target } \end{gathered}$	$\begin{aligned} & \hline \text { Idle } \\ & \text { Pcs } \end{aligned}$	$\begin{gathered} \hline \text { Idle } \\ \text { Time } \end{gathered}$
1	Back \& front rise	OL	1	25.8	118	207	-89	-2296.2
2	Trim back \& front rise	Helper	1	11.13	274	207	67	745.71
3	Back \& front rise t/s	FLCB	1	24.75	123	207	-83	-2063.2
4	Pocket cut	Helper	1	8.2	373	207	166	1361.2
5	Pocket mark	Helper	1	6.25	489	207	282	1762.5
6	Pocketing attach	SNLS	1	40.9	74	207	-133	-5439.7
7	Pocketing t/s	SNLS	1	29.4	104	207	-103	-3028.2
8	Pocket tack with body	SNLS	1	25.2	121	207	-86	-2167.2
9	Pocket beg close	OL	1	25.71	119	207	-88	-2262.4
10	Pocket side tack \& waist side attach	SNLS	1	13.9	220	207	13	180.7
11	Pocket bar tack	BT	1	14.2	215	207	8	113.6
12	Inseam	OL	1	27.9	109	207	-97	-2706.3
13	Trim inseam	Helper	1	7.6	402	207	195	1482
14	Inseam tack	BT	1	10.8	283	207	76	820.8
15	Leg servicing	OL	1	28.2	108	207	-99	-2791.8
16	Leg hem	FLCB	1	29.2	105	207	-102	-2978.4

©Daffodil International University

17	Body fold and thread cut	Helper	1	14.6	209	207	2	29.2
18	Side vent mark	Helper	1	13.45	227	207	20	269
19	Side seam with vent	OL	1	57.8	52	207	-155	-8959
20	Trim side seam	Helper	1	7	437	207	230	1610
21	Care label make \& attach	SNLS	1	14.5	211	207	4	58
22	Side vent tack	SNLS	1	28.4	107	207	-100	-2840
23	Side vent t/s	SNLS	1	58.6	52	207	-155	-9083
24	Side vent bar tack	BT	1	11.2	273	207	66	739.2
25	Hole mark	Helper	1	7.25	422	207	215	1558.75
26	Waist side hole	B/H	1	29.4	104	207	-103	-3028.2
27	Elastic measure \& cut	Helper	1	13.75	222	207	15	206.25
28	Elastic tack	SNLS	1	11.85	258	207	51	604.35
29	Elastic joint with waist side	OL	1	29.4	104	207	-103	-3028.2
30	Elastic false tack with waist belt	SNLS	1	28.6	106	207	-101	-2888.6
31	Waist belt t/s	KA	1	29.2	104	207	-103	-3007.6
32	Drowestring measure, cut \& mark	Helper	1	14.2	215	207	8	113.6

27 | Page
©Daffodil International University

33	Drawcord knot make \& insert	Helper	1	26.2	116	207	-91	-2384.2
34	Mark for label attach	Helper	$\mathbf{1}$	7.37	415	$\mathbf{2 0 7}$	$\mathbf{2 0 8}$	$\mathbf{1 5 3 3}$
35	Main label attach	SNLS	1	14.7	208	207	1	14.7
36	Drowestring waist back side sequrity tack	SNLS	1	12.8	239	207	32	409.6
37	 finishing thread cut	Helper	1	14.6	209	207	2	29.2
	Total		37	774.01				13509.86

Before balancing, It has been observed that different process have different capacity in production line. It has been also found that the bottleneck points in identified operation. For that It has been observed more idle time produced. Generally It decreased the production and line efficiency.

Here,
Sum of total idle time $=13509.86 \mathrm{Sec}$

$$
=3.75 \text { Hour }
$$

Line Efficiency = Sum Of Task Time / Work Station * Max. Working Time * 100\%

$$
\begin{aligned}
& =774.01 / 37 * 58.6 \\
& =35 \%
\end{aligned}
$$

Balancing Rate $=(\text { Minimum Output } / \text { Target Output })^{*} 100 \%$

$$
\begin{aligned}
& =52 / 207 * 100 \% \\
& =25 \%
\end{aligned}
$$

After Balancing:

Table 3.7 After Balancing

$\begin{aligned} & \hline \text { SL } \\ & \text { No. } \end{aligned}$	Process Name	$\begin{aligned} & \hline \text { M/C } \\ & \text { Type } \end{aligned}$	Work station	Average Time	Capacity 85%	Line Target	Idle Pcs	Idle Time
1	Back \& front rise	OL	2	25.8	236	207	29	748.2
2	Trim back \& front rise	Helper	1	11.13	274	207	67	745.71
3	Back \& front rise t/s	FLCB	2	24.75	246	207	39	965.25
4	Pocket cut $\quad \&$ Pocket mark	Helper	1	14.45	211	207	4	57.8
5	Pocketing attach	SNLS	3	40.9	222	207	15	613.5
6	Pocketing t/s	SNLS	2	29.4	208	207	1	29.4
7	Pocket tack with body	SNLS	2	25.2	242	207	35	882
8	Pocket beg close	OL	2	25.71	238	207	31	797.01
9	Pocket side tack \& waist side attach	SNLS	1	13.9	220	207	13	180.7
10	Pocket bar tack	BT	1	14.2	215	207	8	113.6
11	Inseam	OL	2	27.9	218	207	11	306
12	Inseam tack	BT	1	10.8	283	207	76	820.8
13	Leg servicing	OL	2	28.2	216	207	9	253.8
14	Leg hem	FLCB	2	29.2	210	207	3	87.6

©Daffodil International University

15	Body fold and thread cut	Helper	1	14.6	209	207	2	29.2
16	Side vent mark	Helper	1	13.45	227	207	20	269
17	Side seam with vent	OL	4	57.8	211	207	4	231.2
18	Trim inseam \& Trim side seam	Helper	1	14.6	209	207	2	29.2
19	Care label make \& attach	SNLS	1	14.5	211	207	4	58
20	Side vent tack	SNLS	2	28.4	214	207	7	198.8
21	Side vent t/s	SNLS	4	58.6	208	207	1	58.6
22	Side vent bar tack	BT	1	11.2	273	207	66	739.2
23	Hole mark \& Mark for label attach	Helper	1	14.62	209	207	2	29.24
24	Waist side hole	B/H	2	29.4	208	207	1	29.4
25	Elastic measure \& cut	Helper	1	13.75	222	207	15	206.25
26	Elastic tack	SNLS	1	11.85	258	207	51	604.35
27	Elastic joint with waist side	OL	2	29.4	208	207	1	29.4
28	Elastic false tack with waist belt	SNLS	2	28.6	212	207	5	143
29	Waist belt t/s	KA	2	29.2	208	207	1	29.2

©Daffodil International University

30	Drowestring measure, cut \& mark	Helper	1	14.2	215	207	8	113.6
31	Drawcord knot make \& insert	Helper	2	26.2	232	207	25	655
32	Main label attach	SNLS	1	14.7	208	207	1	14.7
33	Drowestring waist back side sequrity tack	SNLS	1	12.8	239	207	32	409.6
34	Remove sticker \& Helper finishing thread cut	1	14.6	209	207	2	29.2	
	Total		56	1592.37				9285.41

After balancing, It has been observed that In production line, every process have the capacity were nearly closed. Here It has been found that the idle time and bottleneck points were reduced by the increasing number of machine, manpower and sharing the process among the same machine.

Reduce Helper:

Table 3.8 Reduce Helper

SL No.	Process Name	M/C Type	Work station	Average Time	Capacity 85%	Line Target	Idle Pcs	Idle Time
1	 Pocket mark	Helper	1	14.45	211	207	4	57.8
2	 Trim side seam	Helper	1	14.6	209	207	2	29.2
3	 Mark for label attach			14.62	209	207	2	29.24

Before balancing, It has been observed that the identifying six helpers were more idle in production line. For that there were three helpers reduced to achieve the line target. For that there were minimized idle time and increased line efficiency.

Here,
Sum of total idle time $=9285.41 \mathrm{Sec}$

$$
=2.5 \text { Hour }
$$

Line Efficiency = Sum Of Task Time / Work Station * Max. Working Time * 100\%

$$
\begin{aligned}
& =1592.37 / 56 * 58.6 \\
& =49 \%
\end{aligned}
$$

Balancing Rate $=(\text { Minimum Output } / \text { Target Output })^{* 100 \%}$

$$
\begin{aligned}
& =208 / 207 * 100 \% \\
& =100 \%
\end{aligned}
$$

CHAPTER 4: DISCUSSION OF RESULTS

4.1 Experiment 1: Capacity Graph

Figure 4.1 Capacity Before Balancing

It has been observed that every process have different capacity before balancing. Because it has been used 1 operator in every single process and maximum operator did not fill up their target output. For that bottleneck points were produced and Line efficiency and Balancing rate were decreased. In the table, It has been found that 4 helpers were more idle in production line. Their output production was much higher than the target production. For that more idle time were produced. Before balancing In this graph, It has been found that the Idle Time was 2.3 Hour where as the Line Efficiency 35.7% and Balancing Rate 35\%.

Figure 4.2 Capacity After Balancing

After balancing, It has been observed that every process have the capacity were nearly closed. Because it has been used required number of operator in every single process. For that every operator were filled up their target output and reduced bottleneck point. For that Line Efficiency and Balancing Rate were increased. After balancing, It has been observed that there were 2 helpers were reduced to minimize the idle time. Because 2 operators have been able to do same work that 4 operators did. In this graph, After balancing It has been found that the Idle Time was 1 Hour where as the Line Efficiency 49\% and Balancing Rate 100\%.

4.2 Experiment 2: Capacity Graph

Figure 4.3 Capacity Before Balancing

It has been observed that every process have different capacity before balancing. Because it has been used 1 operator in every single process and maximum operator did not fill up their target output. For that bottleneck points were produced and Line efficiency and Balancing rate were decreased. For that It has been observed more idle time produced. In this graph, It has been found that the Line Efficiency 67% and Balancing Rate 50%.

Figure 4.4 Capacity After Balancing

After balancing, It has been observed that every process have the capacity were nearly closed. Because it has been used required number of machine and operator in every single process. For that every operator were filled up their target output and reduced bottleneck point. For that Line Efficiency and Balancing Rate were increased. Here Idle time were reduced by increasing number of machine and manpower. In this graph, It has been found that the Idle Time was 2.5 Hour where as the Line Efficiency 74\% and Balancing Rate 100\%.

4.3 Experiment 3: Capacity Graph

Figure 4.5 Capacity Before Balancing

Before balancing It has been observed that every process have different capacity. Because it has been used number of 1 machine and helper in every single process and maximum operator did not fill up their target output. For that bottleneck points were produced and Line efficiency and Balancing rate were decreased. In the table, It has been found that 6 helpers were more idle in production line. Their output production was much higher than the target production. For that more idle time were produced. Before balancing In this graph, It has been found that the Idle Time was 3.75 Hour where as the Line Efficiency 35% and Balancing Rate 25%.

Figure 4.6 Capacity After Balancing

After balancing, It has been observed that every process have the capacity were nearly closed. Because it has been used required number of operator in every single process. For that every operator were filled up their target output and reduced bottleneck point. For that Line Efficiency and Balancing Rate were increased. After balancing, It has been observed that there were 3helpers were reduced to minimize the idle time. Because 3 operators have been able to do same work that 6 operators did. After balancing In this graph, It has been found that the Idle Time was 2.5 Hour where as the Line Efficiency 49\% and Balancing Rate 100\%.

CHAPTER 5:PROFESSIONAL RESPONSIBILITIES, HEALTH, SAFETY, SOCIO-CULTURAL AND ENVIRONMENTAL CONSIDERATION.

5.1 Codes And Standards Used

One of Bangladesh's well-known textile companies is Echotex Ltd. The majority of Echotex customers are well-known individuals who care about the environment. As a result, maintaining all international standards of conduct and abiding by BSCI and CSR rules and regulations is a requirement for their order. Zero tolerance for underage labor, in order to prevent unique issues. Maintain ISO 9001 as well which outlines the global norm for quality management. The ETP process needs to be maintained. Thus that the amount of water needed from sample manufacturing to bulk production cannot have a negative impact on the environment.

5.2 Ethical Principles and Professional Commitment

The core element and commitment is to conduct ourselves properly while preserving the environment's health for future generations. Consider creating sustainable products. Making clothing with organic cotton yarn is a common practice. Using high-quality dye chemicals that are safe for the health and the environment. Avoid harassment and abuse while working. After the primary task, you're not required to work part-time for a while. Discrimination against women and men must end.

Preferably once per month, a fire drill. And to make sure that everyone leaves the factory in only six minutes.

5.3 Impact on Society, Health, Safety, Legal and Cultural Issues

The upkeep of international organizations' codes of behavior benefits society. For instance, all of the worker benefits are guaranteed when the BSCI standards are followed. After a specified obligation, no further workers may be assigned to overtime. The standards of BSCI include timely payment of salaries, abstaining from using child labor, and rigorously monitoring any instances of harassment or abuse of female employees. Even now, maintaining BSCI standards is a necessity for the majority of customers. By doing this, employers ensure that employees receive their just benefits, benefiting society as a whole. Another international organization's norms and regulations apply to CSR operations. All societal issues are guaranteed here. For instance, make sure that female employees receive benefits like maternity leave. Create a mosque or a school next to where there are businesses. It consequently has a favorable effect on society. Social audits are used to keep track of safety concerns in various businesses. Because of this, industries are always ready to put out a fire. This includes installing fire alarms all around the place, creating a few emergency exits, and always keeping a few employees in the facility to put out a fire. The social audit also looks at the workplace's properness and whether or not the employees have access to a standard restroom. Here, both the working environment and the workers' safety are taken into consideration.

5.4 Impact on Environment

The term "ETP" is now widely used in the textile industry. We are aware that making clothes uses a lot of water. Also, the ecology is seriously harmed if these waters are discharged in the same state in which they were utilised. This is eliminated with the introduction of ETP Process. The environment is not harmed as a result of the treatment and release of the water into the environment. The ecology is benefiting greatly from this ETP procedure. Yet, the industry is making an effort to create sustainable products. To make it functional, dry wash is being used. the use of organic yarn. The ecosystem is benefiting greatly from all of these efforts.

CHAPTER 6: CONCLUSION

The most crucial stage in the manufacturing of clothing is line balancing. Following analyzing, it was discovered that line balancing approach, as well as reduced idle time, increasing efficiency and balancing rate. The resulting value of this research-
a) Minimized of Idle time by reducing the number of manpower, helper.
b) Fulfilled the target output and balancing rate 100%.
c) Line efficiency was increased by increasing the number of machine and manpower to get required output.

Remarks: After balancing, It has been observe that there were a small amount of idle time remains which time should be used in others machine and helping process. For that this idle time should be strongly minimized.

REFERENCES

[1] Farhatun Nabi, Rezwan Mahmud, Md. Mazedul Islam(2015) " Improving Sewing Section Efficiency through Utilization of Worker Capacity by Time Study Technique".
[2] Ahmad Naufal Adnan, Nurul Ain Arbaai and Azianti Ismail(VOL. 11, NO. 12, JUNE 2016)
"IMPROVEMENT OF OVERALL EFFICIENCY OF PRODUCTION LINE BY

USING LINE BALANCING".
[3] A. Neely, (2005), International journal of operations and production management, 25(12),

1264-1277. "The Evolution of performance measurement research".
[4]S. K. Bahadır, "Assembly line balancing in garment production by simulation (2014).

Document Viewer			
Turnitin Originality Report			
Processed on: 03-Mar-2023 21:56 +06			
ID: 2028019074			
Word Count: 7280		Similarity by Source	
Submitted: 1	Similarity Index	Internet Sources:	14\%
5551,5600,5620 By Manik Rabbi, Mondol	16\%	Publications: Student Papers:	5\%

exclude quoted	include bibliography	exclude small matches	mode:	quickview (classic) report	\checkmark	print	refresh	download	
3% match (student papers from 09-Apr-2018)									
2\% match (Internet from 06-Jan-2023) http://dspace.daffodilvarsity.edu.bd:8080									
1\% match (student papers from 06-Jan-2021)									
1% match (student papers from 16-Apr-2018)									
1\% match (Internet from 21-Nov-2022) http://dspace.daffodilvarsity.edu.bd:8080									
1\% match (Internet from 21-Nov-2022) http://dspace.daffodilvarsity.edu.bd:8080									
1\% match (student papers from 04-Nov-2022)									
1% match (Internet from 28-Apr-2020)									
<1\% match (student papers from 10-Apr-2018)									
<1\% match (student papers from 10-Apr-2018)									

