

Faculty of Engineering

Department of Textile Engineering

Comparative Study Between Automated Spreading and Manual Spreading in Cutting Section

Course code: Te-4214

Course title: Project (Thesis)

Submitted by:

Sayem Chowdhury ID:191-23-5529

Md Fayad Noor Shagor ID:191-23-5546

Sayed Mahmudul Haque Anik ID: 191-23-5604

Supervised by: Md. Mominur Rahman Assistant Professor Department Of Textile Engineering Daffodil International University

A thesis submitted in partial fulfillment of the requirements for the degree of **Bachelor of Science in Textile Engineering** Advance in Apparel Manufacturing Technology

March, 2023

LETTER OF APPROVAL

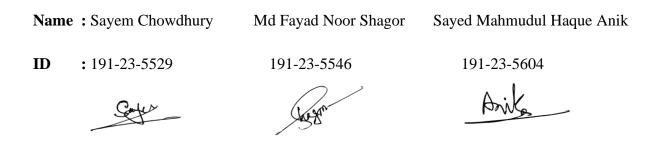
January 13, 2023 To The Head Department of Textile Engineering Daffodil International University Daffodil Smart City, Birulia, Ashulia, Savar, Dhaka-1216

Subject: Approval of Project Report for B.Sc. in TE Program

Dear Sir

We are just writing to let you know that this report titled as **"Comparative Study Between Automated Spreading and Manual Spreading in Cutting"** has been prepared by the students bearing ID 191-23-5529, 191-23-5546 and 191-23-5604 is completed for final evaluation. The whole report is prepared based on the factory data with required belongings. The students were directly involved in their thesis activities and the report became vital to spark of much valuable information for the readers.

Therefore, it will highly be appreciated if you kindly accept this report and consider it for final evaluation.


Sincerely Yours,

Md. Mominur Rahman

Assistant Professor Department of Textile Engineering Faculty of Engineering, Daffodil International University

DECLARATION

We hereby declare that the work which is being presented in this report entitled, "**Comparative Study Between Automated Spreading and Manual Spreading in Cutting**" is original work of our own, has not been presented for a degree of any other university and all the resources of materials used for this thesis have been duly acknowledged.

This is to certify that the above declaration made by the candidate is correct to the best of my knowledge.

Supervisor:

Md. Mominur Rahman

Assistant Professor, TE, FE, DIU

ACKNOWLEDGEMENT

Above all, we praise the almighty Allah who gave me His enabling grace to successfully complete this research work.

With sincerity, we extend our warm and deep appreciation and gratitude to our supervisor, Associate Prof. Md. Mominur Rahman Head of the Textile Engineering Department for his guidance and support to come up with this research work. Being working with him, we have not only earned valuable knowledge but have also been inspired by his innovativeness which helped to enrich our experience to a greater extent. His ideas and way of working were truly remarkable. We believe that this research could not be finished if he did not help us continuously.

We are thankful to Mr. Md. Abdullah Al Mamun, Assistant Professor, Department of Textile Engineering, Daffodil International University and some of our classmates of DIU for their kind help.

We would also like to thank all who responded to our questionnaires and interviews, which helped us in coming up with this research.

We are grateful to all our group members for their encouragement for this research work.

Finally, we express our sincere gratitude to our family members for their continuous support, ideas and love during our studies.

Sayem Chowdhury

Md Fayad Noor Shagor

Sayed Mahmudul Haque Anik

ABSTRACT

This thesis report presents Comparative study Between Automated Spreading and Manual Spreading. Has worked on this report because of the comparison of these two as which one is efficient or useful. It has been observed 1 hours each day and also observed 1-4 week to collect some non-productive time data, Productive time data, Efficiency % data and wastage % data and identified the major differences between automated spreading and manual spreading. This thesis report it has been found one month analysis of productive time, nonproductive time, wastages and Efficiency % between automated spreading and manual spreading. The major differences of this analysis between automated spreading and manual spreading is their wastage % and manpower capabilities. In automated Spreading nonproductive time is lesser than manual spreading and after one month of analysis manual spreading is more efficient due to their manpower than automated spreading. So last but not the least we can say that both the processes are very important in our textile industry. This process should be done under expert supervision and more efficiency will come after that.

TABLE OF CONTENT

LETTER OF APPROVAL	ii
DECLARATION	iii
ACKNOWLEDGEMENT	iv
ABSTRACT	v
TABLE OF CONTENT	vi
LIST OF TABLE	viii
LIST OF FIGURE	ix
LIST OF GRAPH	x
CHAPTER 1	1
INTRODUCTION	1
1.1 Background of The Study	1
1.2 Objectives	2
CHAPTER 2	3
LITARATURE REVIEW	3
2.1 Fabric Spreading:	3
2.2 Marker Efficiency	5
2.3 Waste Management	6
CHAPTER 3	7
EXPERIMENTAL DETAILS/METHODOLOGY	7
3.1 Data Collection for Manual Spreading	7
3.1.1 Order Details	7
3.1.2 Productive and Nonproductive Time of Manual Spreading	9
3.1.3 Amount of Wastage for Manual Spreading	36
3.1.4 Efficiency % Of Manual Spreading	53
3.2 Data Collection for Automated Spreading	54
3.2.1 Order Details	54
3.2.2 Productive and Nonproductive Time for Automated Spreading	55
3.2.3 Amount of Wastage for Automated Spreading	83
3.2.4 Efficiency % of Automated Spreading	98
CHAPTER 4	99
DISCUSSION AND CALCULATION	99

4.1 One Month Productive Time Analysis for Manual Spreading and Auton	
4.2 One Month Nonproductive Time Analysis for Manual Spreading and A	utomated
Spreading	
4.3 One Month Wastage analysis for Manual Spreading and Automated Sp	reading 103
4.4 One Month Analysis of Efficiency between Manual and Automated Spre	eading 105
CHAPTER 5	
PROFESSIONAL RESPONSIBILITIES, HEALTH, SAFETY, SOCIO- CUL ENVIRONMENTAL CONSIDERATION	,
5.1 Codes and standards used	107
5.2 Ethical principles and professional commitment	107
5.3 Impact on society, health, safety, legal and cultural issues	
5.4 Impact on Environment	
CHAPTER 6	109
CONCLUSION	109
REFERENCES	110

LIST OF TABLE

Table 1 Weekly Day wise hourly Table of Productive time in Manual Spreading	9
Table 2 Summary of 4 weeks	22
Table 3 Area Wise 1-hour Nonproductive Time for Manual Spreading	
Table 4 Summary of 4 weeks for nonproductive time	31
Table 5 Weekly Day wise hourly Table of wastage in Manual Spreading	
Table 6 Summary of 4 weeks wastage	48
Table 7 Weekly Table of Efficiency % for Manual Spreading	53
Table 8 Weekly Day wise hourly Table of Productive time in Automated Spreading	
Table 9 Summary of 4 weeks	67
Table 10 Area Wise 1-hour Nonproductive Time for Automated Spreading	71
Table 11 Summary of 4 weeks for Nonproductive time	77
Table 12 Weekly Day wise hourly Table of wastage in Automated Spreading	83
Table 13 Summary of 4 weeks wastage for automated Spreading	94
Table 14 Weekly Table of Efficiency % for Automated Spreading	98
Table 15 One Month productive Time of Manual Spreading	99
Table 16 One Month productive Time of Automated Spreading	100
Table 17 One Month Nonproductive Time of Manual Spreading	102
Table 18 One Month Nonproductive Time of Automated Spreading	102
Table 19 One Month Wastage of Manual Spreading	103
Table 20 One Month Wastage of Automated Spreading	104
Table 21 Final Comparison of Manual Spreading and Automated Spreading	105

LIST OF FIGURE

Figure 1 Order Sheet	8
Figure 2 layer Report of Ha-Meem Group	11
Figure 3 Manual Spreading Operation Scenario 1	12
Figure 4 Manual Spreading Operation Scenario 2	14
Figure 5 Manual Spreading Operation Scenario 3	17
Figure 6 Spreading Quality Control Chart	17
Figure 7 Manual Spreading Operation Scenario 4	19
Figure 8 Fabric lay Height	22
Figure 9 Manual Nonproductive Time Scenario 1	27
Figure 10 Manual Nonproductive Time Scenario 2	33
Figure 11 Manual Nonproductive Time Scenario 3	34
Figure 12 Automated Spreading Machine	54
Figure 13 Automated Spreading Layer Report of Ha-Meem Group	57
Figure 14 Automated Spreading Operation Scenario 1	58
Figure 15 Automated Spreading Operation Scenario 2	60
Figure 16 Automated Spreading Operation Scenario 3	62
Figure 17 Automated Spreading Operation Scenario 4	64
Figure 18 Automated Spreading Operation Scenario 5	66
Figure 19 Automated Nonproductive Time Scenario 1	79
Figure 20 Automated Nonproductive Time Scenario 2	80
Figure 21 Automated Nonproductive Time Scenario 3	82

LIST OF GRAPH

Graph 1 One Month Productive time	
Graph 2 One Month Nonproductive time	
Graph 3 One Month Wastage %	
Graph 4 One Month Efficiency %	

CHAPTER 1 INTRODUCTION

1.1 Background of The Study

Fabric spreading means before cutting a selected number of lays of fabric are spread at a big cutting table. Fabric spreading is a process by which piles of fabric are spread in order to get required length and width as per marker dimension. This is a preparatory operation for cutting and consists of laying. It means the smooth laying out of the fabric in superimposed layers (plies) of specified length. This can be done by automated process or manual process.

In spreading, one cutting order may require several markers to achieve optimum material utilization as well as production efficiency. The actual process of spreading involves laying out fabric in the desired number of layers, and the fabric must be kept flat, smooth, and tension- free on the spreading surface. Such processes may be done manually or by spreading and cutting machines. A spread or lay may consist of a single ply or multiple plies of fabric that is the total amount of the fabric prepared for a single marker. The height of a lay or spread is limited by the vertical capacity of the spreading equipment, cutting method, fabric characteristics, and the size of the order to be cut. Another main consideration in the spreading is the spreading mode; that is the manner in which fabric plies are laid out for cutting. In some cases, fabric is laid out continuously as the spreader moves over the spreading table. Sometimes the fabric roll must be cut at each end of the spread and the new end is repositioned.

In this project we are basically stating the comparison between automated process and manual process. The manual spreading process is suitable for small-scale production. Manual spreading may be used for all kinds of fabrics, including those with complex structures and intricate patterns. In large-scale production, manual cutting is often used for working with intricately patterned and high-cut pile fabrics.

When compared to automated spreading, the cost of technical equipment in manual spreading is low, but the productivity is poor. The fabric spreading process is carried out by one/two workers

at each side of the spreading table who move the fabric ply to the beginning of a spread. The spreading process is repeated until the desired number of fabric plies are laid down.

1.2 Objectives

- To find out the differences between Productive and Non-productive time of Manual and Automated fabric spreading process
- To find out the amount of fabric wastage and wastage percentage in Manual and Automated fabric spreading process.
- To analyze Efficiency percentage and required man-power in Manual and Automated fabric spreading process.

So, in this project we have mainly the purpose of comparing the two processes of spreading which are automated process and manual process and measuring the wastage percentage.

CHAPTER 2

LITARATURE REVIEW

2.1 Fabric Spreading:

Spreading is widely used in garments where all the fabric plies are laid for cutting different parts of a different sizes of the garment. There are lot of techniques which has been used in garments for spreading to utilize the time and the worker. During Spreading a lot of problems occurred such as- Uneven Roll, Pattern match etc.

This Book has contributed to the understanding of fabric spreading and cutting. It provides an overview of how fabrics are spread out on a flat surface, cut into pieces according to patterns or designs, and then sewn together for use in clothing production. The Book also discusses various techniques used by professionals when it comes to fabric spreading and cutting as well as some common problems that can arise during this process. Finally, the authors provide recommendations for improving efficiency while still maintaining quality standards in garment manufacturing processes involving these activities.

The Book uses data from a variety of sources, including fabric samples and measurements taken in garment factories. The authors also conducted experiments to test the accuracy of their proposed techniques for spreading and cutting fabrics. They used computer simulations as well as physical tests with actual fabric pieces to measure how accurately they could spread out or cut different types of materials according to patterns or designs.

This Book provides a comprehensive overview of fabric spreading and cutting techniques, as well as the common problems that can arise during this process. It also offers recommendations for improving efficiency while still maintaining quality standards in garment manufacturing processes involving these activities. Additionally, it uses data from various sources to conduct experiments testing the accuracy of its proposed methods for spreading and cutting fabrics using computer simulations and physical tests with actual fabric pieces.

The main approaches discussed in the Book include: - Manual fabric spreading and cutting, which involves laying out fabrics on a flat surface by hand and then using scissors or other tools to cut them into pieces according to patterns or designs. - Automated fabric spreading and cutting, which uses machines such as computerized spreaders that can accurately lay out large amounts of material quickly with minimal human intervention. - Computer aided design (CAD) systems for creating precise digital models of garments before they are produced so that any errors made during fabrication can be identified early on.[1]

This Book discusses the changes that have taken place in garment manufacturing, specifically within cutting rooms. It looks at how manual processes and equipment used to be employed for fabric spreading and cutting but could not ensure high productivity or quality of work. The Book then goes on to discuss how automated systems such as die-cutting presses, numerically controlled machines with specialized cutters, laser technology and water jetting are increasingly being adopted by garment industries due to their increased efficiency compared with traditional methods. The results of this research suggest that automation is becoming more important than ever before when it comes to producing garments efficiently while maintaining a good level of quality control over production lines. Automated tools can help reduce labor costs associated with manually performing tasks like fabric spreading and cutting which require skilled workers who may also experience physical strain from repetitive motions during long shifts in the factory environment. Additionally, these technologies allow for greater flexibility when dealing with frequently changing styles since they do not need constant retooling or reprogramming each time there is an alteration made in design specifications - something which would take much longer if done manually instead! The main approaches discussed in this paper are: - Traditional manual spreading and cutting equipment, which cannot ensure high productivity or work quality. - Mass production techniques such as simple fabric spreading machines to reduce human resource importance in the cutting room. - Die cutting presses for increased efficiency and flexibility but limited adaptability with changing styles. - Numerically controlled machines that perform a continuous cut by means of specialized devices moving around an object's profile. - H Joseph Gerber's invention of the first fully automated multi ply textile system (the GERBERcutter S 70). - Laser Cutting & Water Jet Cutting technologies used due to their increased accuracy, speed & quality compared to traditional methods [2]

The data used for experiments in this paper includes the classical standard sizes, fabric-cutting markers (regarding marker length and cutting length), garment fit evaluation of target population, costs associated with fabric spreading operation and cutting operations.[3]

2.2 Marker Efficiency

This paper discusses the application of machine learning techniques, such as multiple linear regression (MLR) and radial basis function neural network (RBF NN), to estimate marker lengths used in various garment production modes. The practical implications are that these methods can be used for making an accurate prediction of unit cutting costs in both mass production and mass customization scenarios with relatively regular sizes. Additionally, it provides a more sustainable sizing system which satisfies fit requirements while also providing better accuracy when predicting marker length.

The results of this paper show that the proposed approach leads to a good performance in estimating marker lengths of different types of markers (mixed marker and group marker) with diverse size combinations taken from various sets of garment sizes in both mass production and mass customization conditions. Additionally, it was found that RBF NN slightly outperforms MLR when predicting the overall marker length for more complex scenarios such as those involving irregular garment sizes or group markers.

This paper has contributed to the understanding of how machine learning techniques can be used for marker length estimation in garment production. It provides evidence that these methods are capable of providing accurate predictions with relatively regular sizes, and suggests a more sustainable sizing system which satisfies fit requirements while also providing better accuracy when predicting marker lengths.

The main drawback of using machine learning techniques for marker length estimation is that the data sample size used in this study was relatively small, which could lead to inaccurate predictions. Additionally, there may be a negative bias when predicting unit cutting costs with additional sizes in mass customization scenarios due to the complexity of these problems.[4]

2.3 Waste Management

The practical implications of this paper include the development of a line balancing algorithm for cutting department. • This algorithm applies genetic algorithms to reduce effort and time spent by technicians in ready-to-wear companies, as it automates the preparation process which was previously done manually based on technician experience. • It also helps improve fabric usage from 80.88% to 83.5%, reduces number of spreading layers from 56 to 25, and reduces markers required from 6 markers down to 3 markers - all resulting in cost savings for garment industry production processes.

This paper has contributed a new scheduling method which includes the movement of orders when compared to the original process, resulting in reduced fabric waste by 2.62%. It also reduces number of spreading layers from 56 to 25 and markers required from 6 down to 3 - all helping reduce cost and time spent on production processes for garment industry.

This paper is unique in that it uses artificial intelligence algorithms to find the optimal distribution of higher investment of raw materials. It also applies genetic algorithms as a powerful optimization technique, which helps reduce fabric waste by 2.62%, number of spreading layers from 56 to 25 and markers required from 6 down to 3 - all resulting in cost savings for garment industry production processes.

One of the drawbacks of this paper is that it requires a high level analysis and coding to express the problem, which can be time consuming. Additionally, since genetic algorithms are used for optimization techniques in this study, there may be some limitations when dealing with complex problems due to its nature as an evolutionary algorithm.[5]

CHAPTER 3

EXPERIMENTAL DETAILS/METHODOLOGY

In this chapter we have shown the experimental details of our thesis work. We have studied spreading time, manpower, 1 hour Production Studies. And observed productivity through calculation and comparison with the existing data from the cutting department. Calculating Productive Work and Nonproductive Work between Manual Spreading as well as automated spreading. This Data is given below

3.1 Data Collection for Manual Spreading

3.1.1 Order Details

Buyer:	: BANANA REPUBLIC, LLC (BRFS)
Style NO	: 529177
Marker Length	: 20 Yds 18 Inch = 20.5 yds
Size Ratio	: XS=1, S=2, M=5, L=4, XL=3
Garment pcs in Marker	:15 Pcs Marker
Pattern No	: 4

Date 11/03/2022

BANANA REPUBLIC, LLC BRFS L9HM5 L9HM5TA

Page 1 of 5

11/01/2022 **Commitment Created Date** Corp Dept BRFS 5 3Q1307 Commitment PO Created Date DPO Created Date 5210 MENS CASUAL PANTS 11/01/2022 L9HM5 L9HM5TA Market PO 11/03/2022 Packing PO 01/22/2023 Do Not Ship Before Date 01/28/2023 Ctrct Ship Cancel Date GAP INTL SOURCING LTD. C/O INO Agent Name Ship Cancel Date 01/28/2023 04/07/2023 Planned Stock Date In DC Date 01/30/2023 Order Carton Pack Factor 27 Wire Transfer Purchaser Payment Type BANANA REPUBLIC, LLC (BANANA REPUBLIC, LLC) NET 105 DAYS Payment Terms 2 FOLSOM STREET Sales Term Code FCA San Francisco CA 94105 OPEN ACCOUNT Payment Method Freight Paid By BP US Country of Origin BD Ship To TDC - 0020[[BANANA REPUBLIC, LLC (000000020) **Country of Destination** US 200 GAP BLVD. Ship Mode Ocean USD Gallatin TN 37066 Purchaser Currency Chattogram US Transfer Point Factory THAT'S IT SPORTSWEAR LTD (000911429) Vendor REFAT GARMENTS LIMITED (000306488) 144 ,147-148,East Narashinghpur, 147-148, EAST NARASHINGHPUR ASHULIA,SAVAR Ashulia,Savar DHAKA 1341 Dhaka Dhaka zila 1341 BD BD

Powered by Infor Nexus

Figure 1 Order Sheet

3.1.2 Productive and Nonproductive Time of Manual Spreading

Table 1 Weekly Day wise hourly Table of Productive time in Manual Spreading

Manpower: 10 persons

Observation Time: 1 hour each day.

Lay No	Per Lay Time (seconds)
1	26
2	25
3	27
4	23
5	25
6	28
7	24
8	25
9	26
10	25
11	27
12	23
13	25
14	28
15	24
16	26
17	25
18	27
19	23
20	25
21	28
22	24
23	26
24	25
25	27
26	23
27	25
28	28
29	24

Week 1 (Day 1)

30	26
31	25
32	27
33	23
34	25
35	28
36	24
37	26
38	25
39	27
40	23
41	25
42	28
43	24
44	26
45	25
46	27
47	23
48	25
49	28
50	24
51	28
52	24
53	26
54	25
55	27
56	23
57	25
58	28
59	24
60	25

Here,

60 layers take total productive time = 1526 seconds

= 24.43 Minutes

	E#	ANAI 2.9.14 Lock		COTT./NC NSEAM PTN -No :	<u>R REPO</u>			: ATH: 'H: 'Y:	17-12- 40-5- 51-5	22 1d.s.=t. 3
SL.	KS/ Roll No	Yds.	Lay	Total	L/4, Shade	KL/ Balance	3		REMARKS	
NO.	2303	83	64	Lay		Balance	+ -		nemanko	
2	2305	90	64	8	A	8				
3	9362	95	64	12	T	B				
4	7307	88.	64	1.6	A	2	Sec. 1	1		1 P
5.	2200	87	89	20	A	STA				
2	23/2	90.	019	24	A	8			See State	
¥ 8	2321	85	04	28	A	2				
	2321	827	54	32	A	1				
9	2315	91'	64	36	B	9				
18	2313	96	84	40	B	19		1000	Sector State	
11	2314	92	89	24	D	12		-	1	. Barthala
12	2392	81	64	18	B			-	1	<u></u>
13	2328	86	64	SY	B	3				-
14	2330	97	04	56	C	15	1	1.1.1		10496
5	2326	83	07	60	C	2				
			/		1		-			
				-			5.772	1.1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
								1		
	10 A		Sec. 2.				7	19.7%	-	-
			1.75					11-222	20	
					1					1.21 - A
5.1				1. 2. 6	N				Service 1	
1					1.86.1.1				1.1.1	
	1.1		1	and the second	1945 B			a sete		
					Carlo Sala					
-			the states	Sec. 2	1.1.1.1.	1000	Star Parts	a start	1 1 1 2 2	Page The

Figure 2 layer Report of Ha-Meem Group

Figure 3 Manual Spreading Operation Scenario 1

Day-02

Lay No	Per Lay Time (seconds)
1	26
2	25
3	27
4	23
5	25
6	28
7	24
8	25
9	26
10	25
11	27
12	23
13	25
14	28
15	24
16	25
17	26

18	29
19	24
20	22
21	27
22	24
23	26
24	26
25	27
26	23
27	25
28	28
29	24
30	26
31	25
32	24
33	23
34	25
35	28
36	24
37	26
38	25
39	24
40	23
41	25
42	28
43	24
44	26
45	25
46	27
47	23
48	25
49	23
50	28
51	28
52	24
53	26
54	25
55	27
56	28
Total	1423

Here,

56 layers take total productive time = 1423 seconds

= (1423/60) Minutes

= 23.71 Minutes

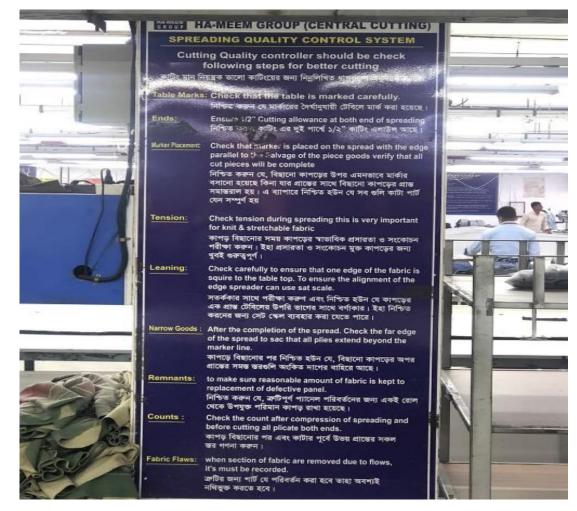
Figure 4 Manual Spreading Operation Scenario 2

Lay No	Per Lay Time (seconds)
1	26
2	25
3	27
4	23
5	25
6	28
7	24
8	25
9	26
10	25
11	27
12	23
13	25
14	28
15	24
16	26
17	25
18	27
19	23
20	25
21	28
22	24
23	26
24	25
25	27
26	23
27	25
28	28
29	24
30	26
31	25
32	27
33	23
34	25
35	28
36	24
37	26
38	25
39	27
40	23

Day-03

41	25
42	28
43	24
44	26
45	25
46	27
47	23
48	25
49	28
50	24
51	28
52	24
53	26
54	25
55	27
56	23
57	25
58	28
59	24
60	25
61	23
62	22
63	24
Total	1595

Here,


63 layers take total productive time = 1595 seconds

= (1595/60) Minutes

= 26.58 Minutes

Figure 5 Manual Spreading Operation Scenario 3

Figure 6 Spreading Quality Control Chart

Lay No	Per Lay Time (seconds)		
1	23		
2	24		
3	27		
4	23		
5	25		
6	28		
7	23		
8	25		
9	26		
10	25		
11	26		
12	20		
13	25		
14	26		
15	24		
16	24		
17	26		
18	24		
19	24		
20	25		
21	26		
22	24		
23	26		
24	25		
25	27		
26	23		
27	25		
28	28		
29	24		
30	23		
31	25		
32	27		
33	24		
34	25		
35	28		
36	24		
37	25		
38	25		
39	27		

40	27
40	27
41	25
42	29
43	24
44	26
45	22
46	26
47	23
48	24
49	22
50	24
51	29
52	24
53	26
54	25
55	27
Total	1377

Here,

55 layers take total productive time = 1377 seconds

= (1377/60) Minutes

= 22.95 Minutes

Figure 7 Manual Spreading Operation Scenario 4

Lay No	Per Lay Time (seconds)		
1	24		
2	25		
3	27		
4	23		
5	25		
6	28		
7	24		
8	25		
9	26		
10	25		
11	27		
12	23		
13	25		
14	28		
15	24		
16	26		
17	25		
18	27		
19	23		
20	25		
21	28		
22	24		
23	26		
24	25		
25	27		
26	23		
27	25		
28	28		
29	24		
30	26		
31	25		
32	27		
33	23		
34	25		
35	28		
36	24		
37	26		
38	25		

Day-05

39	27
40	23
41	25
42	28
43	24
44	26
45	25
46	27
47	23
48	25
49	28
50	24
51	27
52	24
53	26
54	25
55	27
56	23
57	25
58	28
Total	1474

Here,

58 layers take total productive time = 1474 seconds

= (1474/60) Minutes

= 24.57 Minutes

Figure 8 Fabric lay Height

Table 2 Summary of 4 weeks

Data was taken for 4 weeks as per the week 1 tables of 5 working days and summarized below week wise:

Week 1

Day	Date	Time of	Total Number	Total Productive Time for Lays
		Observation	of Lay	
		(Hour)		
1	17.12.2022	1	60	24.43 min
2	18.12.2022	1	56	23.71 min
3	19.12.2022	1	63	26.58 min
4	20.12.2022	1	55	22.95 min

5	21.12.2022	1	58	24.57 min
Total	Total	5 hours	292	122.24 min

Here,

Total Observed Time For 5 days= 5 Hours

Total Layers = 292

Total productive time for 292 layers = 122.24 Min

= (122.24/60) Hours

= 2.03 Hour

Day	Date	Time of	Total Number	Total Productive Time for Lays
		Observation	of Lay	
		(Hour)		
1	24.12.2022	1	61	25.53 min
2	25.12.2022	1	54	24.50 min
3	26.12.2022	1	62	27.94 min
4	27.12.2022	1	57	22.20 min
5	28.12.2022	1	59	25.75 min
Total		5 Hours	293	125.92

Week 2

Here,

Total Observed Time For 5 days= 5 Hours

Total Layers = 293

Total productive time for 293 layers = 125.92 Min

= (125.92/60) Hours

= 2.09 Hours

Day	Date	Time of	Total Number	Total Productive Time for Lays
		Observation	of Lay	
		(Hour)		
1	01.12.2022	1	65	26.43 min
2	02.12.2022	1	70	27.50 min
3	03.12.2022	1	61	26.94 min
4	04.12.2022	1	60	27.20 min
5	07.12.2022	1	61	26.75 min
Total		5	317	134.82

Week 3

Here,

Total Observed Time For 5 days= 5 Hours

Total Layers = 317

Total productive time for 317 layers = 134.82 Min

= (134.82/60) Hours

= 2.24 Hours

Day	Date	Time of	Total Number	Total Productive Time for Lays
		Observation	of Lay	
		(Hour)		
1	08.12.2022	1	56	23.43 min
2	09.12.2022	1	58	22.50 min
3	10.12.2022	1	65	29.94 min
4	11.12.2022	1	61	25.20 min
5	14.12.2022	1	57	21.75 min
Total		5 Hours	297	122.82

Week 4

Here,

Total Observed Time For 5 days= 5 Hours

Total Layers = 297

Total productive time for 297 layers = Min

= (122.82/60) Hours

= 2.04 Hour

Week 1- Day 1

Per Roll	Loading And Unloading (Min)	Cut piece Changing (Min)	Power Failure (Min)
	Unioading (Min)	Changing (wini)	
01	1	.5	0
02	1.5	.6	0
03	2	.5	0
04	1.5	.4	0
05	2	.7	2
06	2	.4	0
07	3	.5	0
08	2	.7	0
09	1.8	.5	0
10	2	.4	0
11	2	.6	0
12	1.5	.4	0
13	1	.5	0
14	2.5	.5	0
15	1.2	.3	0
Total	27	7.5	2

Table 3 Area Wi	ise 1-hour Nonpro	oductive Time for	Manual Spreading
-----------------	-------------------	-------------------	------------------

Here,

Total Non- Productive time in 1 hour for 15 roll = (27+7.5+2) Min

= 36.5 Min

Figure 9 Manual Nonproductive Time Scenario 1

Per Roll	Loading And Unloading (Min)	Cut piece Changing (Min)	Power Failure (Min)
01	1.2	.4	0
02	2.5	.5	0
03	2.2	.5	0
04	2	.8	0
05	1.9	.7	0
06	2	.4	0
07	1.8	.5	0
08	2	.3	0
09	1.8	.5	0
10	2.4	.4	0
11	3	.6	0
12	2	.4	0
13	2	.5	0

14	2.5	.5	0
Total	29.3	7.6	0

Here,

Total Non- Productive time in 1 hour = (29.9+7.6) Min

= 36.9 Min

Per Roll	Loading And Unloading (Min)	Cut piece Changing (Min)	Power Failure (Min)
01	1.2	0.4	0
02	1.5	0.5	0
03	2.2	0.5	0
04	1.5	0.8	0
05	1.9	0.6	0
06	1	0.4	0
07	1.7	0.5	0
08	2	0.3	0
09	1.8	0.5	0
10	2.3	0.4	0
11	1	0.2	0
12	1.6	0.3	0
13	1	0.6	0
14	2.5	0.5	0

Total	26.2	7.5	0
16	1.5	0.4	0
15	1.5	0.6	0

Here,

Total Non- Productive time in 1 hour = (26.2+7.5) Min

= 33.7 Min

Per Roll	Loading And Unloading (Min)	Cut piece Changing (Min)	Power Failure (Min)
01	1.2	.5	0
02	2.5	.5	0
03	2.7	.5	0
04	1.5	.8	1
05	2	.7	0
06	2	.6	0
07	1.7	.5	0
08	2	.4	0
09	2.8	.5	0
10	2.3	.4	0
11	2	.6	0
12	1.6	.4	0
13	2	.5	0

14	2.5	.5	0
Total	28.8	7.4	1

Here,

Total Non- Productive time in 1 hour = (28.8+7.4) Min

= 37.2 Min

Per Roll	Loading And Unloading (Min)	Cut piece Changing (Min)	Power Failure (Min)
01	1.2	0.7	0
02	1.5	0.9	0
03	2.2	0.5	0
04	1.5	0.8	0
05	1.9	0.6	0
06	2	0.8	0
07	1.7	0.5	0
08	1	0.6	0
09	1.8	0.4	0
10	2.3	0.7	0
11	2	0.6	0
12	1.5	0.4	0
13	2	0.9	0

14	1.5	0.7	0
15	1.5	0.8	0
Total	25.6	9.9	0

Here,

Total Non- Productive time in 1 hour = (25.6+9.9) Min

= 35.5 Min

Table 4 Summary of 4 weeks for nonproductive time

Data was taken for 4 weeks as per the week 1 tables of 5 working days and summarized below week wise:

Date	Observation Time	Total Roll	Total nonproductive
	(Hour)		Time for Lays
17.12.22	1	15	36.5
18.12.22	1	14	36.9
19.12.22	1	16	33.7
20.12.22	1	14	37.2
21.12.22	1	15	35.5
Total	5	74	179.8

Week 1

Here,

Total Observation time in 5 days = 5 hours

Total Roll = 74 roll

Total nonproductive time for 75roll = 179.8 Min

= 179.8/60 Hour

= 2.99 Hour

Date	Observation Time	Total Roll	Total nonproductive
	(Hour)		Time for Lays
24.12.22	1	16	35
25.12.22	1	14	35.5
26.12.22	1	15	32.2
27.12.22	1	15	37.9
28.12.22	1	15	34.3
Total	5	75	174.9

Week 2

Here,

Total Observation time in 5 days = 5 hours

Total Roll = 75 roll

Total nonproductive time for 75roll = 174.9 Min

= 174.9/60 Hour

= 2.91 Hour

Figure 10 Manual Nonproductive Time Scenario 2

Date	Observation Time	Total Roll	Total Nonproductive
	(Hour)		Time
01.12.2022	1	16	33.58
02.12.2023	1	18	32.5
03.01.2023	1	15	33.06
04.01.2023	1	15	32.8
07.01.2023	1	16	3.3
Total	5 Hours	80	135.24

Week	3
------	---

Here,

Total Observation time in 5 days = 5 hours

Total Roll = 80 roll

Total nonproductive time for 75roll = 135.24 Min

= 135.24/60 Hour

= 2.25 Hour

Figure 11 Manual Nonproductive Time Scenario 3

Date	Observation Time	Total Roll	Total Nonproductive
	(Hour)		Time
08.12.2023	1	14	36.58
09.01.2023	1	15	37.5
10.01.2023	1	17	30.06
11.01.2023	1	16	34.81
14.01.2033	1	17	38.25
Total	5 Hours	79	177.2 Min

Week	4
------	---

Here,

Total Observation time in 5 days = 5 hours

Total Roll = 79 roll

Total nonproductive time for 75roll = 177.2 Min

= 177.2/60 Hour

= 2.95 Hour

3.1.3 Amount of Wastage for Manual Spreading

Table 5 Weekly Day wise hourly Table of wastage in Manual Spreading

Week 1 (Day 1)

Lay No	Total Yds	Wastage of Ends (inch)
	(Including 1" Allowance)	
1	20.542	1.512
2	20.544	1.584
3	20.542	1.512
4	20.539	1.404
5	20.536	1.296
6	20.539	1.404
7	20.542	1.512
8	20.544	1.584
9	20.544	1.584
10	20.542	1.512
11	20.544	1.584
12	20.539	1.404
13	20.536	1.296
14	20.542	1.512
15	20.544	1.584
16	20.542	1.512
17	20.542	1.512
18	20.542	1.512
19	20.539	1.404
20	20.539	1.404
21	20.544	1.584
22	20.539	1.404
23	20.539	1.404
24	20.539	1.404
25	20.536	1.296
26	20.539	1.404
27	20.539	1.404
28	20.542	1.512
29	20.542	1.512
30	20.544	1.584
31	20.539	1.404

Total	1232.427	87.372
60	20.539	1.404
59	20.542	1.512
58	20.542	1.512
57	20.542	1.512
56	20.539	1.404
55	20.536	1.296
54	20.536	1.296
53	20.539	1.404
52	20.536	1.296
51	20.539	1.404
50	20.536	1.296
49	20.536	1.296
48	20.539	1.404
47	20.539	1.404
46	20.539	1.404
45	20.542	1.512
44	20.542	1.512
43	20.542	1.512
42	20.536	1.296
40	20.544	1.584
40	20.542	1.584
39	20.530	1.512
38	20.535	1.404
37	20.539	1.384
36	20.542	1.512
35	20.544 20.542	<u>1.584</u> 1.512
<u>33</u> 34	20.544	1.584
32	20.542	1.512

Here, Total yds for 60 lays = 1232.427 yds

Total Wastage = 87.372/36

=2.427 yds

So, wastage % = 2.427/1232.427*100= 0.19%

Lay No	Total Yds	Wastage of Ends (inch)
	(Including 1" Allowance)	
1	20.539	1.404
2	20.544	1.584
3	20.542	1.512
4	20.539	1.404
5	20.536	1.296
6	20.539	1.404
7	20.544	1.584
8	20.544	1.584
9	20.543	1.548
10	20.537	1.332
11	20.539	1.404
12	20.535	1.260
13	20.538	1.368
14	20.546	1.656
15	20.541	1.476
16	20.542	1.512
17	20.534	1.224
18	20.536	1.296
19	20.542	1.512
20	20.539	1.404
21	20.544	1.584
22	20.539	1.404
23	20.539	1.404

Day 2

24	20.539	1.404
25	20.536	1.296
26	20.539	1.404
27	20.545	1.620
28	20.546	1.656
29	20.542	1.512
30	20.546	1.656
31	20.534	1.224
32	20.543	1.548
33	20.538	1.368
34	20.534	1.224
35	20.537	1.332
36	20.540	1.440
37	20.539	1.404
38	20.536	1.296
39	20.540	1.440
40	20.542	1.512
41	20.544	1.584
42	20.539	1.404
43	20.541	1.476
44	20.544	1.512
45	20.545	1.620
46	20.538	1.368
47	20.539	1.404
48	20.534	1.224
49	20.535	1.260

20.536 20.538 20.547	1.296 1.368
20 547	1.600
20.017	1.692
20.536	1.296
20.536	1.296
20.546	1.656
1150.234	80.352
-	20.536 20.536 20.546

Here, Total yds for 56 lays = 1150.234 yds

Total Wastage = 80.352/36

=2.232 yds

So, wastage % = 2.232/1150.234*100= 0.19%

Lay No	Total Yds	Wastage of Ends (inch)
	(Including 1" Allowance)	
1	20.543	1.548
2	20.537	1.332
3	20.539	1.404
4	20.535	1.260
5	20.538	1.368
6	20.546	1.656
7	20.545	1.620

Day 3

~		
Comparative Study Between	Automated Spreading and Manua	I Spreading in Cutting Section
1 2	1 8	

8	20.546	1.656
9	20.542	1.512
10	20.546	1.656
11	20.534	1.224
12	20.544	1.584
13	20.544	1.584
14	20.536	1.296
15	20.542	1.512
16	20.542	1.512
17	20.542	1.512
18	20.539	1.404
19	20.539	1.404
20	20.539	1.404
21	20.536	1.296
22	20.536	1.296
23	20.544	1.584
24	20.544	1.584
25	20.536	1.296
26	20.542	1.512
27	20.542	1.512
28	20.542	1.512
29	20.539	1.404
30	20.539	1.404
31	20.539	1.404
32	20.536	1.296
33	20.536	1.296

Comparative Study Between Au	utomated Spreading and Manual	Spreading in Cutting Section
	······································	~F

34	20.544	1.584
35	20.539	1.404
36	20.541	1.476
37	20.535	1.260
38	20.539	1.404
39	20.536	1.296
40	20.539	1.404
41	20.544	1.584
42	20.542	1.512
43	20.539	1.404
44	20.536	1.296
45	20.539	1.404
46	20.544	1.584
47	20.542	1.512
48	20.542	1.512
49	20.542	1.512
50	20.539	1.404
51	20.542	1.512
52	20.544	1.584
53	20.542	1.512
54	20.539	1.404
55	20.536	1.296
56	20.539	1.404
57	20.542	1.512
58	20.544	1.584
59	20.542	1.512

Total	1294.048	91.728
63	20.539	1.404
62	20.544	1.584
61	20.542	1.512
60	20.542	1.512

Here, Total yds for 63 lays = 1294.048 yds

Total Wastage = 91.728/36

=2.548 yds

So, wastage % = 2.427/1294.048*100= 0.20%

Lay No	Total Yds	Wastage of Ends (inch)
	(Including 1" Allowance)	
1	20.544	1.584
2	20.544	1.584
3	20.536	1.296
4	20.542	1.512
5	20.544	1.584
6	20.542	1.512
7	20.542	1.512
8	20.536	1.296
9	20.536	1.296
10	20.539	1.404

Comparative Study Between Auto	omated Spreading and Man	nual Spreading in Cutting Section	on

11	20.536	1.296
12	20.539	1.404
13	20.541	1.476
14	20.542	1.512
15	20.534	1.224
16	20.536	1.296
17	20.542	1.512
18	20.539	1.404
19	20.544	1.584
20	20.539	1.404
21	20.539	1.404
22	20.539	1.404
23	20.536	1.296
24	20.539	1.404
25	20.539	1.404
26	20.541	1.476
27	20.544	1.512
28	20.545	1.620
29	20.538	1.368
30	20.539	1.404
31	20.534	1.224
32	20.539	1.404
33	20.545	1.620
34	20.546	1.656
35	20.547	1.692
36	20.536	1.296

37	20.536	1.296
38	20.546	1.656
39	20.539	1.404
40	20.544	1.584
41	20.542	1.512
42	20.542	1.512
43	20.542	1.512
44	20.539	1.404
45	20.542	1.512
46	20.539	1.404
47	20.536	1.296
48	20.539	1.404
49	20.544	1.584
50	20.542	1.512
51	20.542	1.512
52	20.542	1.512
53	20.539	1.404
54	20.539	1.404
55	20.541	1.476
Total	1129.718	79.776

Here, Total yds for 55 lays = 1129.718 yds

Total Wastage = 87.372/36

=2.216 yds

So, wastage % = 2.216/1129.718 *100= 0.20%

Lay No	Total Yds	Wastage of Ends (inch)
	(Including 1" Allowance)	
1	20.545	1.620
2	20.546	1.656
3	20.547	1.692
4	20.536	1.296
5	20.536	1.296
6	20.546	1.656
7	20.539	1.404
8	20.544	1.584
9	20.542	1.512
10	20.542	1.512
11	20.542	1.512
12	20.539	1.404
13	20.542	1.512
14	20.539	1.404
15	20.536	1.296
16	20.539	1.404
17	20.544	1.584
18	20.542	1.512
19	20.539	1.404
20	20.542	1.512
21	20.542	1.512
22	20.542	1.512

Day 5

20.539 1.404 23 20.539 1.404 24 25 20.539 1.404 20.536 1.296 26 27 20.546 1.656 28 20.545 1.620 20.546 1.656 29 30 20.542 1.512 20.546 1.656 31 32 1.224 20.534 1.584 33 20.544 1.584 20.544 34 20.536 35 1.296 1.512 36 20.542 37 20.542 1.512 38 20.542 1.512 39 20.539 1.404 1.296 40 20.536 20.536 1.296 41 20.544 1.584 42 1.404 20.539 43 1.476 20.541 44 45 20.545 1.620 20.538 1.368 46 20.539 1.404 47 48 20.534 1.224

Total	1191.362	85.032
58	20.542	1.512
57	20.536	1.296
56	20.534	1.224
55	20.542	1.512
54	20.541	1.476
53	20.546	1.656
52	20.538	1.368
51	20.535	1.260
50	20.545	1.620
49	20.539	1.404

Here, Total yds for 58 lays = 1191.362 yds

Total Wastage = 85.032/36

=2.362 yds

So, wastage % = 2.362/1191.362*100= 0.20%

Table 6 Summary of 4 weeks wastage

Data was taken for wastage in 4 weeks as per the week 1 tables of 5 working days and summarized below week wise:

Date	Observation	Total Number	Total yds	Wastage of Ends
	Time (Hour)	of Lay		(inch)
17.12.22	1	60	1232.427	87.372
18.12.22	1	56	1150.234	80.352
19.12.22	1	63	1294.048	91.728
20.12.22	1	55	1129.718	79.776
21.12.22	1	58	1191.362	85.032
Total	5	292	5997.789	424.26

Week 1 Wastages for Manual Spreading

Here,

Total Observation time in 5 days = (1*5) = 5 hours

Total yds = 5997.789 yds

Total Wastage in 1st week = 424.26 inches

= 11.785 yds

Date	Observation	Total Number	Total yds	Wastage of Ends
	Time (Hour)	of Lay		(inch)
24.12.2022	1	65	1335.126	95.372
25.12.2022	1	56	1156.426	79.365
26.12.2022	1	68	1396.747	99.456
27.12.2022	1	55	1136.569	79.025
28.12.2022	1	58	1195.562	86.032
Total	5	302	6220.430	439.25

Week 2 Wastages for Manual Spreading

Here,

Total Observation time in 5 days = (1*5) = 5 hours

Total yds = 6220.430 yds

Total Wastage in 2nd week = 439.25 inches

= 12.201 yds

Date	Observation	Total Number	Total yds	Wastage of Ends
	Time (Hour)	of Lay		(inch)
01.01.2023	1	66	1355.669	96.874
02.01.2023	1	60	1238.334	89.023
02.01.2025	1	00	1230.334	09.025
03.01.2023	1	61	1250.233	98.036
04.01.2023	1	59	1210.305	85.092
0.1102020	-		12100000	
07.01.2023	1	57	1169.221	82.212
Total	5	303	6223.762	451.237

Week 3 Wastages for Manual Spreading

Here,

Total Observation time in 5 days = (1*5) = 5 hours

Total yds = 6223.762 yds

Total Wastage in 3rd week = 451.237 inches

= 12.534 yds

Date	Observation	Total Number	Total yds	Wastage of Ends
	Time (Hour)	of Lay		(inch)
08.01.2023	1	62	1270.354	91.230
09.01.2023	1	56	1153.854	80.052
10.01.2023	1	63	1292.850	90.764
11.01.2023	1	58	1198.562	86.032
14.01.2023	1	58	1196.954	85.523
Total	5	297	6112.574	433.601

Week 4 Wastages for Manual Spreading

Here,

Total Observation time in 5 days = (1*5) = 5 hours

Total yds = 6112.574 yds

Total Wastage in 4th week = 433.601 inches

=12.044 yds

3.1.4 Efficiency % Of Manual Spreading

In this Section it was observed by us how much efficient or productive manual spreading was throughout the week and this data was given below

We know, Efficiency % = Total Productive time/Total Hour * 100

Table 7 Weekly Table of Efficiency % for Manual Spreading

Week	Time of Observation	Total Productive Time	Efficiency %
	(Hour)		
1 st	5 hours	2.03 Hours	40.8 %
2 nd	5 Hours	2.09 Hours	41 %
3 rd	5 hours	2.24 Hours	44.8%
4 th	5 Hours	2.04 Hours	40.8%

3.2 Data Collection for Automated Spreading

3.2.1 Order Details

Buyer:	: BANANA REPUBLIC, LLC (BRFS)
Style NO	: 529177
Marker Length	: 20 Yds 18 Inch = 20.5 yds
Size Ratio	: XS=1, S=2, M=5, L=4, XL=3
Garment pcs in Marker	:15 Pcs Marker
Pattern No	: 4
Machine Name	:IMA
Model	:890 13 0180B

Figure 12 Automated Spreading Machine

3.2.2 Productive and Nonproductive Time for Automated Spreading

Table 8 Weekly Day wise hourly Table of Productive time in Automated SpreadingManpower: 3 persons

Observation Time: 1 hour each day.

Week 1	(Day 1)
--------	------------------

Lay No	Per Lay Time (seconds)
1	45
2	46
3	44
4	45
5	45
6	44
7	43
8	42
9	44
10	45
11	44
12	42
13	43
14	45
15	42
16	46
17	44
18	43
19	44
20	42
21	45
22	44
23	44
24	43
25	45
26	44
27	45
28	45
29	44

30	43
31	45
32	44
33	44
34	43
35	45
36	44
37	42
38	44
39	44
40	45
41	45
Total	1805

Here,

41 layers take total productive time = 1805 seconds

= (1805/60) Minutes

= 30.08 Minutes

HA-MEEM GROUP

SIZE					.09		M/WID	ТН :. ТҮ :.	18-02 20:54 55 70	inch
RATIO	257	1 ,5/	2 , M	1/5	. 41	XL	3			
SL. NO.		Yds.	Lay	Total Lay	Shade	Balance	* +	-	REMARKS	1
1	2507	108	5	5	A	6				
V	2509	95	4	2	A	16				
3	2303	130	6	15	A	Y				
9	2501	110	5	20	A	8				e le s
5	2.506	70	3	23	A	8		1999 C.		
ß	2512	135	5366	29	A	12			. A March 1	
¥	2516	128	6	35	B	5				and and a second
8	2513	125	.5	10	B	2		and the second second		1
1.200				Section in	a second					
2.	10-1-1-1		4				S. S. A.L.			
		1.12.20						1.1		Sec.
			1.20	2				1.2	1	1.00
8.172	and the second		1.1							
	1.22		1 . S . S		13 x			1	171,25,7	
Stale.	14.00		1.1.1	· · · ·	an York				-01/10	
	1.1	and the second s		1 N. 1940	1	Sec. in		1		
		1.11				*				1
					and the second					1. A.
1500		1. (A)				1 to the second				
				· · · · ·	1	1.00			1	1.
	1.0.3					1.1.1.1.1		1.1		
	and Area	Sec. 1				1				
	1	a/ 4	1.4	1.2.5				1		
AU-	1000		1		1.			1		1.1
1	1.19				10150		1	1		
1.2	1.199	1. 1. 1.	1. 1.		N. 3. 34		1		1. Mar.	1
	1.1.1.1	0.0	1			A States				
/	7		11.53				Sec. 1			1.

Figure 13 Automated Spreading Layer Report of Ha-Meem Group

Figure 14 Automated Spreading Operation Scenario 1

Day	2
-----	---

Lay No	Per Lay Time (seconds)
1	45
2	44
3	44
4	45
5	42
6	45
7	44
8	43
9	42
10	43
11	44
12	45
13	44
14	46
15	45
16	44
17	45
18	45

19	44
20	44
21	43
22	45
23	44
24	46
25	43
26	42
27	45
28	44
29	44
30	43
31	43
32	44
33	45
34	44
35	43
36	45
37	45
38	46
39	44
40	45
Total	1766

Here,

40 layers take total productive time = 1766 seconds

= (1766/60)

= 29.433 Minutes

Figure 15 Automated Spreading Operation Scenario 2

Day	3
-----	---

Lay No	Per Lay Time (seconds)	
1	44	
2	44	
3	45	
4	42	
5	45	
6	44	
7	44	
8	44	
9	45	
10	42	
11	45	
12	44	
13	44	
14	44	

15	45
16	44
17	45
18	45
19	42
20	44
21	45
22	43
23	43
24	45
25	42
26	46
27	44
28	45
29	43
30	42
31	44
32	45
33	43
34	43
35	43
36	45
37	45
38	46
39	44
40	43
41	45
42	42
43	42
Total	1890
10001	10/0

Here,

43 layers take total productive time = 1890 seconds

= (1890/60) Minutes

= 31.50 Minutes

Figure 16 Automated Spreading Operation Scenario 3

Day	4
-----	---

Lay No	Per Lay Time (seconds)
1	43
2	45
3	44
4	43
5	44
6	45
7	43
8	45
9	45
10	42
11	45
12	43
13	45
14	44
15	45
16	44

17	45
18	45
19	42
20	44
21	45
22	43
23	43
24	45
25	42
26	46
27	44
28	45
29	43
30	42
31	44
32	45
33	43
34	43
35	43
36	45
37	45
38	46
Total	1716

Here,

38 layers take total productive time = 1716 seconds

= (1716/60) Minutes

= 28.6 Minutes

Figure 17 Automated Spreading Operation Scenario 4

Lay No	Per Lay Time (seconds)
1	44
2	44
3	45
4	42
5	43
6	46
7	44
8	44
9	45
10	42
11	45
12	43
13	45
14	44
15	45
16	44
17	45
18	45

19	42
20	44
21	45
22	43
23	43
24	45
25	42
26	46
27	44
28	45
29	43
30	42
31	44
32	45
33	43
34	43
35	43
36	45
37	45
38	46
39	42
40	44
Total	1802

Here,

40 layers take total productive time = 1802 seconds

= (1802/60) Minutes

= 30.03 Minutes

Figure 18 Automated Spreading Operation Scenario 5

Table 9 Summary of 4 weeks

Data was taken for 4 weeks as per the week 1 tables of 5 working days and summarized below week wise:

Week	1
------	---

Day	Date	Time of Total Number		Total Productive Time for Lays
		Observation	of Lay	
		(Hour)		
1	17.12.2022	1	41	30.08 min
2	18.12.2022	1	40	29.43 min
3	19.12.2022	1	43	31.50 min
4	20.12.2022	1	38	28.60 min
5	21.12.2022	1	40	30.03 min
Total		5 hours	202	149.64 min

Here,

Total Observation time in 5 days = (1*5) = 5 hours

Total Layers = 40 + 41 + 43 + 38 + 40 = 202

Total productive time for 202 layers = (30.08+29.43+31.50+28.60+30.03) Min

Day	Date	DateTime of ObservationTotal Number of LayTotal Prod(Hour)(Hour)Image: Constraint of Constraint o		Total Productive Time for Lays
1	24.12.2022	1	40	29.90 min
2	25.12.2022	1	42	31.20 min
3	26.12.2022	1	38	29.55 min
4	27.12.2022	1	39	30.02 min
5	28.12.2022	1	42	31.05 min
Total			201	151.72

Week 2

Here,

Total Observation time in 5 days = (1*5) = 5 hours

Total Layers = 40+42+38+39+42 = 201 lays

Total productive time for 201 layers = (24.25 + 24.50 + 26.74 + 25.20 + 25.75) Min

= 151.72 Min = (151.72/60) Hours = 2.53 Hour

Day	Date	Time of Observation (Hour)	Total Number of Lay	Total Productive Time for Lays
1	01.12.2022	1	45	32.20 min
2	02.12.2022	1	42	31.43 min
3	03.12.2022	1	40	30.35 min
4	04.12.2022	1	43	31.65 min
5	07.12.2022	1	42	31.37 min
Total		5	212	157 min

Week 3

Here,

Total Layers = 45+42+40+43+42=212 lays

Total productive time for 212 layers = (32.20+31.43+30.35+31.65+31.37) Min

= 157 Min = (157/60) Hours = 2.62 Hour

Day	Date	Date Time of Total Number Observation of Lay (Hour) (Hour)		Total Productive Time for Lays
1	08.12.2022	1	38	28.82
2	09.12.2022	1	40	29.60
3	10.12.2022	1	42	31.03
4	11.12.2022	1	41	30.15
5	14.12.2022	1	39	29.40
Total		5 Hours	200	149

Week 4

Here,

Total Layers = 38+40+42+41+39 = 200 lays

Total productive time for 200 layers = (28.82+29.60+31.03+30.15+29.40) Min

= 149 Min = (149/60) Hours = 2.483 Hour
 Table 10 Area Wise 1-hour Nonproductive Time for Automated Spreading

Per Roll	Loading And Unloading (Min)	Cut piece Changing (Min)	Total lay loss Time	Power Failure (Min)	Machine Adjusting	Machine Set Up	Personal Allowance (Min)
01	2	0.33	0.23	0	0.28	2	0.5
02	2.5	0.44	0.22	0	0	.75	0
03	1.5	0.32	0.24	0	0	1	1.50
04	2	0.35	0.23	0	0.38	0	1
05	2.5	0.40	0.22	0	0	0	0
06	2	0.32	0.21	0	0	0	0.75
07	1.6	0.32	0.25	0	0	0	0
08	2	0.25	0.24	0	0.25	.35	1
Total	16.1	2.73	1.84	0	0.91	1.75	4.75

Total Non- Productive time in 1 hour for 08 roll = (16.1+1.98+1.84) Min

= 30.43 Min

Day 2

Per Roll	Loadin g And Unload ing (Min)	Cut piece Changing (Min)	Total lay loss Time (Min)	Power Failure (Min)	Machine Adjusting	Machine Set Up	Personal Allowance (Min)
01	2.5	0.25	0.20	0	0.28	1	0
02	2	0.35	0.21	0	0	.75	0
03	1.75	0.20	0.15	0	0	0	1.75
04	1.75	0.35	0.24	0	0	0	1
05	2.5	0.30	0.25	0	0.47	0	0
06	1.9	0.39	0.18	2	0	2	0.50
07	1.5	0.34	0.20	0	00	0	1
08	2.5	0.25	0.29	0	0	0	1
Total	16.4	2.43	1.72	2	0.75	2.75	5.25

г

Total Non- Productive time in 1 hour for 08 roll = (16.4+2.43+1.72+2+0.75+2.75+5.25) Min

= 31.3 Min

Per Roll	Loadin g And Unloadi ng (Min)	Cut piece Changing (Min)	Total lay loss Time (Min)	Power Failure (Min)	Machine Adjusting	Machine Set Up	Personal Allowance (Min)
01	1.25	0.30	0.15	0	0.28	1.50	2
02	2	0.40	0.25	0	0	0	0
03	1.70	0.20	0.15	0	0	0	1.75
04	1.80	0.32	0.30	0	0	0	1
05	2	0.30	0.25	0	0.47	0	0
06	1.85	0.35	0.20	0	0	0.75	1.35
07	1.20	0.28	0.25	0	0	.15	0
08	1.95	0.25	0.14	0	0	0	0

Day 3

09	1	0.20	0.30	0	0.50	0.30	0
Total	14.75	2.6	1.99	0	1.25	2.7	6.1

Total Non- Productive time in 1 hour for 08 roll = (14.75 + 2.6 + 1.99 + 1.25 + 2.7 + 6.1) Min

= 29.39 Min

Day	4
-----	---

Per Roll	Loading And Unloadin g (Min)	Cut piece Changing (Min)	Total lay loss Time (Min)	Power Failure (Min)	Machine Adjusting	Machine Set Up	Personal Allowance (Min)
01	1.75	0.33	0.16	0	0	2	2
02	1.90	0.25	0.22	3	0.35	0	0
03	1.50	0.26	0.20	0	0	0.75	0
04	1.75	0.30	0.35	0	0	0	2
05	2	0.27	0.18	0	0.	0	0

06	1.9	0.34	0.20	0	0	1	0
07	2.20	0.15	0.25	0	0.65	0	1
08	1.95	0.35	0.14	0	0	0	0
Total	14.95	2.25	1.7	2	1	3.75	5

Total Non- Productive time in 1 hour for 08 roll = (14.95 + 2.25 + 1.7 + 2 + 1 + 3.75 + 5) Min

= 31.65 Min

Per Roll	Loading And Unloading (Min)	Cut piece Changin g (Min)	Total lay loss Time	Power Failur e (Min)	Machine Adjusting	Machine Set Up	Personal Allowance (Min)
01	2.25	0.33	0.23	0	0.28	2	0
02	2	0.44	0.22	0	0	.75	0.75
03	1.75	0.32	0.24	0	0	1	1.50
04	1.75	35	0.23	0	0.40	0	0.75
05	2.75	.40	0.22	0	0	1	0
06	1.75	0.32	0.21	0	0.25	0	0.50
07	1.6	0.32	0.25	0	0	0	0
08	1.75	0.25	0.24	0	0	.35	1
Total	15.6	2.73	1.84	0	0.93	5.1	4.50

Day 5

Total Non- Productive time in 1 hour for 08 roll = (15.6+2.73+1.84+0.93+5.1+4.50) Min

= 30.70 Min

Table 11 Summary of 4 weeks for Nonproductive time

Data was taken for 4 weeks as per the week 1 tables of 5 working days and summarized below week wise:

Day	Date	Time of	Total	Number of	Total Nonproductive Time
		Observatio	Number of	Roll	for Lays
		n	Lay		
		(Hour)			
1	17.12.2022	1	41	8	30.43 Min
2	18.12.2022	1	40	8	31.30 Min
3	19.12.2022	1	43	9	29.39 Min
4	20.12.2022	1	38	8	31.65 Min
5	21.12.2022	1	40	8	30.70 Min
	Total	5 hours	202	41	153.47 min

Week 1

Here,

Total Observation time in 5 days = (1*5) = 5 hours

Total Layers = 40 + 41 + 43 + 38 + 40 = 202

Total Nonproductive time for 202 layers = (30.43+31.30+29.39+31.65+30.70) Min

= 153.47 Min = (153.47/60) Hours = 2.56 Hour

Day	Date	Time of	Total	Number of	Total Nonproductive Time
		Observatio	Number of	Roll	for Lays
		n	Lay		
		(Hour)			
1	24.12.2022	1	40	8	30.75 min
2	25.12.2022	1	42	9	29.02 min
3	26.12.2022	1	38	8	30.70 min
4	27.12.2022	1	39	8	30.10 min
5	28.12.2022	1	42	9	29.50 min
	Total	5 Hours	201	42	150.07 Min

Week 2

Here,

Total Observation time in 5 days = (1*5) = 5 hours

Total Layers = 40+42+38+39+42 = 201 lays

Total Nonproductive time for 201 layers= (30.75+29.02+30.70+30.10+29.50) Min= 150.07 Min = (150.07/60) Hours = 2.50 Hour

Figure 19 Automated Nonproductive Time Scenario 1

Day	Date	Time of Observatio n (Hour)	Total Number of Lay	Number of Roll	Total Nonproductive Time for Lays
1	01.12.2022	1	45	8	28.79 Min
2	02.12.2022	1	42	9	29.45 Min
3	03.12.2022	1	40	9	30.94 Min
4	04.12.2022	1	43	9	29.04 Min
5	07.12.2022	1	42	8	28.97 Min
	Total	5	212	42	147.19 Min

Here,

Total Layers = 45+42+40+43+42=212 lays

Total productive time for 212 layers = (28.79+29.45+30.94+29.04+28.97) Min = 147.19 Min = (147/60) Hours = 2.45 Hour

Figure 20 Automated Nonproductive Time Scenario 2

Day	Date	Time of Observatio n (Hour)	Total Number of Lay	Number of Roll	Total Non Productive Time for Lays
1	08.12.2022	1	38	8	31.24 Min
2	09.12.2022	1	40	8	31.78 Min
3	10.12.2022	1	42	9	30.09 Min
4	11.12.2022	1	41	8	30.56 Min
5	14.12.2022	1	39	8	31.45 Min
	Total	5 hours	200	41	155.12 Min

Week 4

Here,

Total Layers = 38+40+42+41+39 = 200 lays

Total productive time for 200 layers = (31.24+31.78+30.09+30.56+31.45) Min

= 155.12 Min = 2.585 Hours

Figure 21 Automated Nonproductive Time Scenario 3

3.2.3 Amount of Wastage for Automated Spreading

 Table 12 Weekly Day wise hourly Table of wastage in Automated Spreading

Lay No	Total Yds	Wastage of Ends (inch)
	(Including 0.5" Allowance)	
1	20.514	0.504
2	20.514	0.504
3	20.514	0.504
4	20.514	0.504
5	20.514	0.504
6	20.514	0.504
7	20.514	0.504
8	20.514	0.504
9	20.514	0.504
10	20.514	0.504
11	20.514	0.504
12	20.514	0.504
13	20.514	0.504
14	20.514	0.504
15	20.514	0.504
16	20.514	0.504
17	20.514	0.504

Week 1 (Day 1)

Total	841.074	20.664
41	20.514	0.504
40	20.514	0.504
39	20.514	0.504
38	20.514	0.504
37	20.514	0.504
36	20.514	0.504
35	20.514	0.504
34	20.514	0.504
33	20.514	0.504
32	20.514	0.504
31	20.514	0.504
30	20.514	0.504
29	20.514	0.504
28	20.514	0.504
27	20.514	0.504
26	20.514	0.504
25	20.514	0.504
24	20.514	0.504
23	20.514	0.504
22	20.514	0.504
21	20.514	0.504
20	20.514	0.504
19	20.514	0.504
18	20.514	0.504

Here, Total yds for 41 lays = 841.074 yds

Total Wastage = 20.664/36

=0.574 yds

So, wastage % = 0.574/841.074*100= 0.07%

Day 2				
Lay No	Total Yds	Wastage of Ends (inch)		
	(Including 1" Allowance)			
1	20.514	0.504		
2	20.514	0.504		
3	20.514	0.504		
4	20.514	0.504		
5	20.514	0.504		
6	20.514	0.504		
7	20.514	0.504		
8	20.514	0.504		
9	20.514	0.504		
10	20.514	0.504		
11	20.514	0.504		
12	20.514	0.504		
13	20.514	0.504		
14	20.514	0.504		
15	20.514	0.504		
16	16 20.514			
17	17 20.514			
18	20.514	0.504		
19	20.514	0.504		

Day 2

20	20.514	0.504
21	20.514	0.504
22	20.514	0.504
23	20.514	0.504
24	20.514	0.504
25	20.514	0.504
26	20.514	0.504
27	20.514	0.504
28	20.514	0.504
29	20.514	0.504
30	20.514	0.504
31	20.514	0.504
32	20.514	0.504
33	20.514	0.504
34	20.514	0.504
35	20.514	0.504
36	20.514	0.504
37	20.514	0.504
38	20.514	0.504
39	20.514	0.504
40	20.514	0.504
Total	820.514	20.160

Here, Total yds for 40 lays = 820.514 yds

Total Wastage = 20.16/36

=0.56 yds

So, wastage % = 0.56/820.514*100= 0.07%

Lay No	Total Yds	Wastage of Ends (inch)	
	(Including 1" Allowance)		
1	20.514	0.504	
2	20.514	0.504	
3	20.514	0.504	
4	20.514	0.504	
5	20.514	0.504	
6	20.514	0.504	
7	20.514	0.504	
8	20.514	0.504	
9	20.514	0.504	
10	20.514	0.504	
11	20.514	0.504	
12	20.514	0.504	
13	20.514	0.504	
14	20.514	0.504	
15	20.514	0.504	
16	20.514	0.504	
17	20.514	0.504	
18	20.514	0.504	
19	20.514	0.504	

Day 3

20	20.514	0.504
21	20.514	0.504
22	20.514	0.504
23	20.514	0.504
24	20.514	0.504
25	20.514	0.504
26	20.514	0.504
27	20.514	0.504
28	20.514	0.504
29	20.514	0.504
30	20.514	0.504
31	20.514	0.504
32	20.514	0.504
33	20.514	0.504
34	20.514	0.504
35	20.514	0.504
36	20.514	0.504
37	20.514	0.504
38	20.514	0.504
39	20.514	0.504
40	20.514	0.504
41	20.514	0.504
42	20.514	0.504
43	20.514	0.504
Total	882.102	21.672

Here, Total yds for 43 lays = 882.102 yds

Total Wastage = 21.672/36

=0.602 yds

So, wastage % = 0.602/882.102*100= 0.07%

Dav 4	ŀ
-------	---

Lay No	Total Yds	Wastage of Ends (inch)	
	(Including 1" Allowance)		
1	20.514	0.504	
2	20.514	0.504	
3	20.514	0.504	
4	20.514	0.504	
5	20.514	0.504	
6	20.514	0.504	
7	20.514	0.504	
8	20.514	0.504	
9	20.514	0.504	
10	20.514	0.504	
11	20.514	0.504	
12	20.514	0.504	
13	20.514	0.504	
14	20.514	0.504	
15	20.514	0.504	
16	20.514	0.504	
17	20.514	0.504	

18	20.514	0.504
19	20.514	0.504
20	20.514	0.504
21	20.514	0.504
22	20.514	0.504
23	20.514	0.504
24	20.514	0.504
25	20.514	0.504
26	20.514	0.504
27	20.514	0.504
28	20.514	0.504
29	20.514	0.504
30	20.514	0.504
31	20.514	0.504
32	20.514	0.504
33	20.514	0.504
34	20.514	0.504
35	20.514	0.504
36	20.514	0.504
37	20.514	0.504
38	20.514	0.504
Total	779.532	19.152

Here, Total yds for 38 lays = 779.532 yds

Total Wastage =19.152/36

=0.532 yds

So, wastage % = 0.532/779.532*100= 0.07%

Lay No	Total Yds	Wastage of Ends (inch)	
	(Including 1" Allowance)		
1	20.514	0.504	
2	20.514	0.504	
3	20.514	0.504	
4	20.514	0.504	
5	20.514	0.504	
6	20.514	0.504	
7	20.514	0.504	
8	20.514	0.504	
9	20.514	0.504	
10	20.514	0.504	
11	20.514	0.504	
12	20.514	0.504	
13	20.514	0.504	
14	20.514	0.504	
15	20.514	0.504	
16	20.514	0.504	
17	20.514	0.504	
18	20.514	0.504	
19	20.514	0.504	
20	20.514	0.504	

Day 5

21	20.514	0.504
22	20.514	0.504
23	20.514	0.504
24	20.514	0.504
25	20.514	0.504
26	20.514	0.504
27	20.514	0.504
28	20.514	0.504
29	20.514	0.504
30	20.514	0.504
31	20.514	0.504
32	20.514	0.504
33	20.514	0.504
34	20.514	0.504
35	20.514	0.504
36	20.514	0.504
37	20.514	0.504
38	20.514	0.504
39	20.514	0.504
40	20.514	0.504
Total	820.514	20.16

Here, Total yds for 40 lays = 820.514 yds

Total Wastage = 20.16/36

=0.56 yds

So, wastage % = 0.56/820.514*100= 0.07%

Table 13 Summary of 4 weeks wastage for automated Spreading

Date	Observation	Total Number	Total yds	Wastage of Ends
	Time (Hour)	of Lay		(inch)
17.12.22	1	41	841.074	20.664
18.12.22	1	40	820.514	20.160
19.12.22	1	43	882.102	21.672
20.12.22	1	38	779.532	19.152
21.12.22	1	40	820.514	20.664
Total	5 Hours	202	4143.828	101.808

Week 1 Wastages for Automated Spreading

Here,

Total Observation time in 5 days = (1*5) = 5 hours

Total yds = 54143.828yds

Total Wastage in 1st week = 101.808 inches

= 2.828 yds

Observation	Total Number	Total yds	Wastage of Ends
Time (Hour)	of Lay		(inch)
1	40	820.514	20.160
1	42	861.588	21.168
1	29	770 522	10.152
1	38	119.532	19.152
1	39	800.046	19.656
1	42	861.588	21.168
5 Hours	201		
		4123.314	101.304
	Time (Hour) 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Time (Hour) of Lay 1 40 1 42 1 38 1 39 1 42	Time (Hour) of Lay 1 40 820.514 1 42 861.588 1 38 779.532 1 39 800.046 1 42 861.588 5 Hours 201 201

Week 2 Wastages for Automated Spreading

Here,

Total Observation time in 5 days = (1*5) = 5 hours

Total yds = 4123.314 yds

Total Wastage in 1st week = 101.304 inches

= 2.814 yds

Date	Observation	Total Number	Total yds	Wastage of Ends
	Time (Hour)	of Lay		(inch)
01.01.2023	1	45	923.130	22.680
02.01.2023	1	42	861.588	21.168
03.01.2023	1	40	820.514	20.160
04.01.2023	1	43	882.102	21.672
07.01.2023	1	42	861.588	21.168
Total	5 Hours	212	4348.968	106.848

Week 3 Wastages for Automated Spreading

Here,

Total Observation time in 5 days = (1*5) = 5 hours

Total yds = 4348.968 yds

Total Wastage in 1st week = 106.848 inches

= 2.968 yds

Date	Observation Time (Hour)	Total Number of Lay	Total yds	Wastage of Ends (inch)
08.01.2023	1	38	779.532	19.152
09.01.2023	1	40	820.514	20.160
10.01.2023	1	42	861.588	21.168
11.01.2023	1	41	841.074	20.664
14.01.2023	1	39	800.046	19.656
Total	5 Hours	200	4102.8	100.8

Week 4 Wastages for Automated Spreading

Here,

Total Observation time in 5 days = (1*5) = 5 hours

Total yds = 4102.8 yds

Total Wastage in 1st week = 100.8 inches

= 2.8 yds

3.2.4 Efficiency % of Automated Spreading

Simultaneously it was observed by us how much efficient or productive automated spreading was throughout the week and this data was given below

We know, Efficiency % = Total Productive time/Total Hour * 100

Table 14 Weekly Table of Efficiency % for Automated Spreading

Week	Time of Observation	Total Productive Time	Efficiency %
	(Hour)		
1 st	5 hours	2.50 Hours	50 %
2 nd	5 Hours	2.53 Hours	50.6%
3 rd	5 hours	2.62 Hours	52.4 %
4 th	5 Hours	2.483 Hours	49.66%

CHAPTER 4 DISCUSSION AND CALCULATION

From the above data we have made Analysis of the result of manual Spreading and automated spreading compared with their one Month Productive, nonproductive time and Amount of wastage as well as efficiency % of both manual and automated spreading. At first, we have compared monthly productive time for both manual spreading and automated spreading.

4.1 One Month Productive Time Analysis for Manual Spreading and Automated Spreading

Manpower for Manual Spreading: 10

Total Observed time in 5 days = 5 Hours

Table 15 One Month productive Time of Manual Spreading

Weeks	Total Lays	Productive Time
1 st Week	292 lays	2.03
2 nd Week	293 lays	2.09
3 rd Week	317 lays	2.24
4 th Week	297 lays	2.04

So, we have seen that between 5 hour observed time the average productive time and lays will be:

Here,

Average Productive Time	=2.03+2.09+2.24+2.04 = 8.4 / 4
	= 2.1 Hours

Average Lays in Productive Time =292+293+317+297 = 1199/ 4

Comparative Study Between Automated Spreading and Manual Spreading in Cutting Section

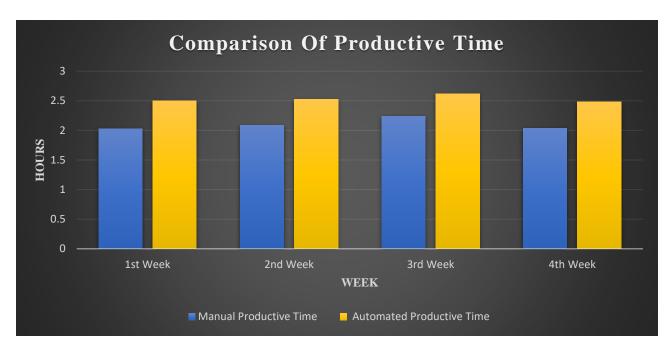
$$= 299.75 = 300$$
 Lays

So, we can say that between 5 Hours 300 lays can be done in 2.1 hours.

Manpower for Automated Spreading: 03

Table 16 One Month productive Time of Automated Spreading

Weeks	Total Lays	Productive Time
1 st Week	202 lays	2.50
2 nd Week	201 lays	2.53
3 rd Week	212 lays	2.62
4 th Week	200 lays	2.48


So, we have seen that between 5 hour observed time the average productive time and lays will be:

Here,

Average Productive Time =2.50+2.53+2.62+2.48 = 10.13 / 4= 2.53 Hours Average Lays in Productive Time =202+201+212+200 = 815 / 4= 204 Lays

So, we can say that between 5 Hours 204 lays can be done in 2.53 hours.

Here We showed the Graph of Productive time between Automated and Manual Spreading

Comparative Study Between Automated Spreading and Manual Spreading in Cutting Section

Graph 1 One Month Productive time

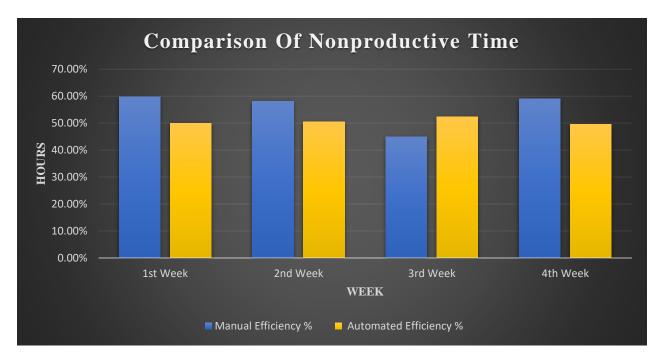
We have seen than in one month on average Automated Spreading have higher productive time compared to manual Spreading but we know gives less layers than manual spreading.

4.2 One Month Nonproductive Time Analysis for Manual Spreading and Automated Spreading

Manpower for Manual Spreading: 10

Table 17 One Month Nonproductive Time of Manual Spreading

Weeks	Total Lays	Productive Time
1 st Week	292 lays	2.99
2 nd Week	293 lays	2.91
3 rd Week	317 lays	2.25
4 th Week	297 lays	2.95


So, we can say that between 5 Hours, Nonproductive time for 300 lay is 2.9 hours.

Manpower for Automated Spreading: 03

Table 18 One Month Nonproductive Time of Automated Spreading

Weeks	Total Lays	Productive Time
1 st Week	202 lays	2.56
2 nd Week	201 lays	2.50
3 rd Week	212 lays	2.45
4 th Week	200 lays	2.48

So, we can say that between 5 Hours, Nonproductive time for 204 lay is 2.4 hours.

Comparative Study Between Automated Spreading and Manual Spreading in Cutting Section

Graph 2 One Month Nonproductive time

4.3 One Month Wastage analysis for Manual Spreading and Automated Spreading

We Have Seen that in one month the wastage of manual spreading much higher than automated spreading it is just because of the workers accuracy when cutting any ends of the layers.

Weeks	Total Yds	Total Wastage
1 st Week	5997.789 yds	11.785 yds
2 nd Week	6220.430 yds	12.201 yds
3 rd Week	6223.762 yds	12.534 yds
4 th Week	6112.574 yds	12.044 yds

Table 19 One	Month Wa	astage of N	fanual Si	preading
I dole I/ Olle			Innan D	or causing

We wastage percentage formula =Total wastage/Total yds*100

So, we can say that 1^{st} week wastage % is= 0.19%

 2^{nd} week wastage % is= 0.19%

 3^{rd} week wastage % is= 0.20%

 4^{th} week wastage % is= 0.19%

Total Wastage % = 0.20 %

Table 20 One Month Wastage of Automated Spreading

Weeks	Total Yds	Total Wastage
1 st Week	5414.828 yds	2.828 yds
2 nd Week	4123.314 yds	2.814 yds
3 rd Week	4348.968 yds	2.968 yds
4 th Week	4102.8 yds	2.8 yds

We wastage percentage formula = Total wastage/Total yds*100

So, we can say that 1^{st} week wastage % is= 0.05%

 2^{nd} week wastage % is= 0.06 %

 3^{rd} week wastage % is= 0.06 %

 4^{th} week wastage % is= 0.06 %

Total Wastage % = 0.06%

Graph 3 One Month Wastage %

4.4 One Month Analysis of Efficiency between Manual and Automated Spreading

In this segment we have calculate the efficiency % based on their productive time in 5 hours as how it can utilize the productive time during production. More production gives more efficiency as well as note that manual spreading have 10 manpower despite having 3 manpower automated spreading also gives good efficiency which is close to manual spreading . Here we have shown the Graph below

Graph 4 One Month Efficiency %

From the Above Analysis We have made a final conclusion of comparison between manual Spreading and Automated spreading and the table is given below

Table 21 Final Comparison of Manual Spreading and Automated Spreading

Manual Spreading	Automated Spreading
1. Manual Spreading takes less productive	1. Automated Spreading takes more
time	productive time
2. Manual spreading dependent on manpower	2. Automated Spreading dependent on the
	machine
3. manual Spreading Gives More Layers in	3. Automated Spreading Gives less Layers in
Productive Time	productive time
4. Manual Spreading takes More	4. Automated Spreading takes less
nonproductive time	nonproductive time
5. Manual Spreading gives more efficiency	5. Automated Spreading gives Less
	Efficiency
6. Manual Spreading Gives less Accuracy	6. Automated Spreading gives more Accuracy
7. Manual spreading have more wastage %	7. Automated Spreading Have less Wastage
	%

CHAPTER 5

PROFESSIONAL RESPONSIBILITIES, HEALTH, SAFETY, SOCIO- CULTURAL, AND ENVIRONMENTAL CONSIDERATION

In this section we will discuss whether the work done in our industries will not have any bad impact on the environment. And which aspects are better if we maintain such Health, Safety, and social responsibilities.

5.1 Codes and standards used

Ha-Meem Group is one of the reputed garment industries of Bangladesh. Most buyers of this industries are world-famous and conscious about the environment. Therefore, the precautions of their order is that all international codes of conduct must be maintained. BSCI & CSR rules and regulations must be followed. Zero tolerance for child labor, so that unusual problems can be avoided. Also, maintain ISO 9001 which defines the international standard for quality management. Must maintain the ETP process. So that, starting from sample production to bulk production, the amount of water required cannot have a bad effect on the environment.

5.2 Ethical principles and professional commitment

Main principle & commitment is to work ourselves in the right way keeping the environment healthy for the next generation. Try to produce sustainable products. There is a practice of using organic cotton yarn to make garments. Using good quality dye chemicals which do not harm the environment or the body. Avoid abuse & harassment during the working period. After the main duty and not forced to do part-time for a long time. Gender discrimination must be stopped. Fire drill at least once every month and to ensure that all the workers leave the factory within 6 minutes.

5.3 Impact on society, health, safety, legal and cultural issues

Maintaining the code of conduct of international organizations has a positive impact on society. For example, by following the rules of BSCI, all the benefits of the workers are ensured. No workers can be added to overtime after specified duty. Paying wages on time, not taking child labor, and strictly monitoring the aspects of abuse or harassment of women workers fall under the norms of BSCI. Currently, most buyers have a must requirement to maintain BSCI principles. By doing this, workers are getting their fair benefits correctly, which is having a positive effect on society. CSR activities are another international organization's rules and regulations. Here all types of social issues are ensured. For example, ensure maternity leave and allowances for women workers. Make a mosque or school around the area where there are industries. As a result, it has a positive impact on society. As a result of maintaining ISO standards, customers are getting the right quality products. Safety issues of industries are monitored through social audits. As a result, industries are always prepared to extinguish the fire, with fire alarms installed everywhere, some emergency exits made, and some people always kept in the factory to extinguish the fire. Moreover, whether the workers have a standard washroom or not, and whether the workplace is proper or not, are observed in the social audit. Here, the safety of the workers is seen and on the other hand, and the working environment is also ensured.

5.4 Impact on Environment

Nowadays ETP is a common term in textile industries. We know that a lot of water is needed to produce garments and if these waters are released in the same condition as they are used, then it has a serious negative effect on the environment. ETP Process is introduced to get rid of this. Through this, the water is treated and discharged into the environment which does not harm the environment. This ETP process is having a good positive impact on the environment. On the other hand, the industry is trying to produce sustainable products. Dry wash is trying to make it usable. Using organic yarn. All these works are having a good impact on the environment.

CHAPTER 6 CONCLUSION

This project is actually about a very significant part in our cutting section of a textile factory. The comparison of automated spreading and manual spreading are two very vital processes in the cutting section. Both processes are equally needed. Automated process is needed for reducing the cost and managing the efficient number of lays. Manual process is needed for making more number of lays and doing it in less time. So, in this project we basically compared these two processes and evaluated all the possibilities of efficiency, waste of time, management of the sections etc. Here we have made some outcome of results from both the processes. We have also made some clear statements about the precautions to be taken. So last but not the least we can say that both the processes are very important in our textile industry. This process should be done under expert supervision and more efficiency will come after that.

REFERENCES

[1] J. Smith et al., "Placeholder Text: A Study," Citation Styles, vol. 3, Jul. 2021, doi: 10.10/X.

[2] Vilumsone-Nemes IElsevier Inc., (2018), 139-164

[3] Xu Y, Thomassey S, Zeng X International Journal of Advanced Manufacturing Technology (2020) 106(7-8) 3485-3503

- [4] Xu Y, Thomassey S, Zeng X
- [5] Alsamarah W, Younes B, Yousef MJournal of the Textile Institute (2022) 113(9) 1917-1925

Comparative Study Between Automated Spreading and Manual Spreading in Cutting Section

Plagiarism Report

Document Viewer

Turnitin Originality Report			
Processed on: 02-Mar-2023 20:55 +06 ID: 2027030228 Word Count: 15697 Submitted: 1 5546,5529,5604 By Fayad Sayem, Mahmudul Student	ons: 4%		
exclude quoted] [include bibliography] [exclude small matches] mode: [quickview (classic) report] [print] [refresh] [download]			
4% match (student papers from 25-Jun-2020) Submitted to Daffodil International University on 2020-06-25	12		
1% match (Internet from 20-Nov-2022) http://dspace.daffodilvarsity.edu.bd:8080	×		
1% match (Internet from 06-Jan-2023) http://dspace.daffodilvarsity.edu.bd:8080	X		
1% match (Internet from 21-Nov-2022) http://dspace.daffodilvarsity.edu.bd:8080	×		
1% match (I. Vilumsone-Nemes. "Fabric spreading and cutting", Elsevier BV, 2015) <u>I. Vilumsone-Nemes. "Fabric spreading and cutting", Elsevier BV, 2015</u>	×		
1% match (Internet from 31-Aug-2022) https://link.springer.com/article/10.1007/s00170-021-06833-w?code=62f0a6dc-728a-4b6e-be3b-cfa96e991fe2&error=cookies_not_supported	×		
1% match (Walaa Alsamarah, Basel Younes, Maged Yousef. "Reducing waste in garment factories by intelligent planning of optimal cutting orders", The Journal of The Textile Institute, 2021) Walaa Alsamarah, Basel Younes, Maged Yousef. "Reducing waste in garment factories by intelligent planning of optimal cutting orders", The Journal of The Textile Institute, 2023			
<1% match (student papers from 10-Apr-2018) Submitted to Daffodil International University on 2018-04-10	Textile Institute, 2021		
<1% match (student papers from 08-Apr-2018) Submitted to Defiedil International University on 2018 04 08			