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Abstract
Recently, Convolutional Neural Networks with 3D kernels (3D CNNs) have shown great
superiority over 2D CNNs for video processing applications. In the field of Stereoscopic
Video Quality Assessment (SVQA), 3D CNNs are utilized to extract the spatio-temporal
features from the stereoscopic video. Besides, the emergence of substantial video datasets
such as Kinetics has made it possible to use pre-trained 3D CNNs in other video-related
fields. In this paper, we fine-tune 3D Residual Networks (3D ResNets) pre-trained on the
Kinetics dataset for measuring the quality of stereoscopic videos and propose a no-reference
SVQAmethod. Specifically, our aim is twofold: Firstly, we answer the question: can we use
3D CNNs as a quality-aware feature extractor from stereoscopic videos or not. Secondly,
we explore which ResNet architecture is more appropriate for SVQA. Experimental results
on two publicly available SVQA datasets of LFOVIAS3DPh2 and NAMA3DS1-COSPAD1
show the effectiveness of the proposed transfer learning-based method for SVQA that pro-
vides the RMSE of 0.332 in LFOVIAS3DPh2 dataset. Also, the results show that deeper 3D
ResNet models extract more efficient quality-aware features.

Keywords 3D convolutional neural networks · Fine-tuning ·
Objective quality assessment · Pre-training · Stereoscopic video · Transfer learning

1 Introduction

The interest in 3D video technology has shown rapid growth from businesses and indi-
viduals in recent years. The number of 3D movies is almost doubling each year [45], and
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3D televisions and cameras have become popular. On the other hand, stereoscopic image
and video experience several layers of sampling and quantization during acquisition and
post-processing, and each level decreases the end-user’s Quality of Experience (QoE). Con-
sequently, one of the emerging issues is going to be the monitoring and quality protection of
visual content for 3D images and videos. The subjective visual quality assessment is costly
and time-consuming in real scenarios, making it impractical. Therefore, the research trend
in this field is shifted to designing objective quality assessment methods.

Stereoscopic Video Quality Assessment (SVQA) aims to measure the distortions in a
stereoscopic video’s quality. Similar to the Stereoscopic Image Quality Assessment (SIQA),
SVQA can be categorized into Full Reference (FR), Reduced Reference (RR), and No-
Reference (NR) methods [58]. Both FR and RR-based methods depend on the reference
video, while accessing the reference video is challenging in real-world scenarios. However,
NR-based methods measure the video quality independently without the reference video
information. Because of the feasibility of NR methods for quality assessment, it is increas-
ingly required to develop NR-based plans. The earlier methods exploit the discriminatory
features of distorted 3D content to feed it to a machine learning regressor and assess the
quality.

Motivation Recently, deep neural networks have shown great success in extracting useful
features [41]. They can extract lots of robust features from the input data using several
learning layers. Widely used CNNs have become one of the well-known categories of deep
neural networks. However, it has some challenges to use deep learning-based techniques
for SVQA. This is because, firstly, the available SVQA datasets are imbalanced. These
datasets contain videos with imbalanced qualities, and it means that the number of videos
with different qualities is not the same. Therefore, with an imbalanced dataset, the efficient
learning of the network can be challenging. Secondly, a large dataset is required to train a
deep CNN network for SVQA. The publicly available SVQA datasets contain just hundreds
of videos (e.g., LFOVIAS3DPh2 [2] and NAMA3DS1-COSPAD1 [50] have 100 and 288
videos, respectively), which seems to be insufficient for training a deep network.

With the small number of videos in the dataset, training a deep network for SVQA from
scratch can be challenging. Although the patch-based methods can be used to augment
the dataset [62], there is a need for another technique to deal with the training of a deep
learning-based method on a small dataset. Transfer learning has shown great success in
image and video classification. We believe that one solution for measuring the quality of
a stereoscopic video with a limited number of dataset videos can be using general visual
features learned from the pre-trained models of a related area. However, a recent study in
the Image Quality Assessment (IQA) by Bianco et al. [6] showed that directly applying a
pre-trained model from other fields that developed for similar tasks such as classification is
not satisfactory for IQA. On the other hand, generic visual features learned from a related
task are shown to be beneficial for quality assessment [13]. Therefore, we believe that the
generic features extracted from the pre-trained 3D CNNs can be used as feature extractors
from the stereoscopic video. Also, we need to consider that the input is the stereoscopic
video. Therefore, after extracting the general features from the left and right videos using a
pre-trained model, we need to combine these stereo views and design the other parts of the
model to make the whole model suitable for the SVQA.

Contributions In this paper, we aim to build a NR SVQA model using the concept of
transfer learning. We develop our model using the general features from the pre-trained
3D CNN models and fine-tuning them for SVQA. Specifically, motivated by the concept
of transfer learning, we transform the features learned using 3D ResNet models [15] into
the perceptual quality representations so that they could become suitable for NR SVQA.
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These 3D CNNs are pre-trained on Kinetics-700 dataset [27] which is a large dataset for
recognizing human actions. We firstly apply the left and right video patches to the two
similar pre-trained 3D ResNet models to extract the spatial and temporal features. The top
layers of the 3D ResNet models are excluded to make them suitable for feature extraction.
Then, the extracted features are fused and used as input to the trainable layers, including 3D
ConvNets and fully connected layers. Our main contributions are as follows.

– We proposed a novel transfer learning-based method for measuring the stereoscopic
video quality. To our best knowledge, it is the first attempt to use transfer learning
for SVQA. The overall network architecture uses 3D ResNet models as the feature
extractor, and the other parts of the model consist of feature fusion, 3D ConvNets, and
fully connected layers.

– A new data augmentation and dataset refinement method for solving the problem of
insufficient training data for SVQA is proposed. For data augmentation, we first split
each stereo video into some patches. We name each patch in the left or right video as
a cube. Then, we remove some cubes selected from a video that can act as the outliers
by calculating the video cubes’ entropy which is an easy to use and computationally
inexpensive method. With this technique, training a model for SVQA can also be done
using a small dataset.

– Two popular datasets are used to evaluate the performance of our method and received
competitive results in both datasets.

The rest of this paper is organized as follows. In Section 2, we briefly discuss the related
works. Our proposed method has been discussed in detail in Section 3. Section 4 describes
the implementation details and datasets used for the experiments. We discuss the results of
our method in Section 5 and provide the concluding remarks with future work directions in
Section 6.

2 Related works

In this section, firstly, we discuss the most relevant SIQA methods, and then recently pro-
posed SVQA methods are explored. Lastly, we briefly discuss the 3D Residual Networks.

2.1 Conventional quality assessmentmethods

The early methods proposed for 3D SIQA are based on 2D IQA. Structural SIMilarity
(SSIM) [56] which is one of the oldest and well-known methods for IQA, is extended in
[7] to 3D by applying SSIM independently to the stereoscopic left and right images. Dis-
crete Cosine Transform (DCT) is used in [31] to propose methods for 2D and 3D image
quality assessment. Some other methods used depth information and fused it with 2D IQA
methods to better capture the stereo image distortions. For example, Benoit et al. in [5] used
the disparity information of the stereo image and 2D IQA methods such as SSIM. In [64],
well-known 2D IQA methods such as SSIM, MS-SSIM [55], and VIF [43] are used to com-
bine disparity and spatial information of the stereoscopic image to estimate the stereoscopic
image quality. These methods showed that the overall SIQA could be improved significantly
using the disparity as a quality affecting factor. Voo et al. [53] extended the 2D SSIM to 3D
to propose a FR SIQA method that incorporated the disparity information. Jiang et al. [22]
proposed a FR SIQAmetric utilizing the procedures of the binocular fusion and suppression.
They split the stereo image into corrupted, pseudo-binocular fusion, and pseudo-binocular
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suppression parts. Next, quality measurement metrics are used to measure the quality of
these parts, and finally, they fused their results. In another study, Chen and Zhao [8] pro-
posed a FR SIQA method based on the attributes of the local and global visual features of
the HVS. They extracted the amplitude and phase of the left and right images using a filter-
ing process. Also, the global structure changes of the left and right images are used to fuse
with local features and proposed the final quality metric.

With another information channel, the temporal dimension, SVQA has become more
complex and grabbed the researchers’ attention. Perceptual Quality Metric (PQM) [24],
which is one of the earliest methods proposed for measuring SVQ, inspired by 2D IQA
methods. This method uses each pixel block’s mean as a weighting factor to calculate each
image’s degradations in luminance and contrast. In [63], Yilmaz et al. calculated the depth
of a stereoscopic video using binocular parallax, lateral motion, and aerial perspective of
the HVS and proposed a NR SVQA method. Banitalebi-Dehkordi et al. [3] calculated the
cyclopean view from the left and right views. They also considered the depth and motion
information as other channels to assess the stereoscopic video quality. Yang et al. [60] pro-
posed another method for measuring the quality of a stereoscopic video. They proposed
a simple model to fuse different features. This method is based on saliency and sparsity
to extract and simplify features. In a similar study, Banitalebi-Dehkordi and Nasiopoulos
[4] measured the quality of a stereoscopic video using the saliency maps extracted from
the video. They utilized three-dimensional visual attention models into FR and NR qual-
ity assessment methods to measure the stereoscopic video quality. In another study, Hong
et al. [18] proposed 3-D perceptual quality index (3-D-PQI), a FR SVQA method. In this
method, spatio-temporal local video compression distortions in stereo frames are calculated
using contrast and motion information. They also fused the local spatio-temporal distor-
tions using salient region calculation. Lastly, the final quality value is obtained from texture
energy-based fusion of all distortions.

Several works proposed to evaluate the stereoscopic video quality based on the rela-
tionship between motion and disparity [1, 25, 37]. In [37], the authors extracted two types
of features: the strength of motion and information of the depth map. They proposed the
Motion Depth-Quality Assessment (MD-QA) method based on the combination of motion
quality and depth map information. The horizontal and vertical disparities and motion infor-
mation are used in [25] to develop their method. Their experiments show that rising motion
and disparity magnitudes have a terrible effect on visual comfort. Appina et al. [1] mod-
eled the mutual relations between motion and disparity with Bivariate Generalized Gaussian
Distribution (BGGD). The spatial quality is estimated using NIQE [39] method, which is
a well-known blind 2D NR IQA method. Then the spatial features are combined with the
BGGD parameters to calculate the SVQ.

2.2 Learning-based quality assessmentmethods

With the rise of 3D IQA datasets, SIQA methods based on deep learning are also proposed.
For example, the method proposed in [38] combines the two stereoscopic images to create
the cyclopean view and divides it into four patches to train four CNNs, independently. The
average of four quality values is then calculated to get the score for the input stereoscopic
image. Deep Edge and COlor Signal INtegrity Evaluator (DECOSINE) [61] is a deep HVS
based method that simulates the entire visual path between the eyes and brain. They used
Segmented Stacked Auto-Encoder (S-SAE) to mimic the structure of the complex human
visual perception.
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On the other hand, there are some difficulties in using deep learning for SVQA: one of
them is the number of the labeled videos in publicly available SVQA datasets, which is
very small for deep learning applications. One of the solutions for this problem proposed
recently. Yang et al. [62] used a simple data augmentation methodology and created several
low-resolution videos by splitting the videos in the dataset into small cubes selected from
a video. With this technique, the authors created a large dataset and trained a six-layer
CNN framework. For doing this, the left and right video difference is used to train a 3D
CNN network. Specifically, the difference video is split into patches of 32×32×10 size
and used for training. Their results show a good correlation with subjective scores. Ma
et al. [34] proposed another method that uses a binocular fusion network for SVQA. They
simulate the long-term procedure of the visual pathway. The training strategy is designed in
two stages that overcome the limitation of the method proposed in [62]. Local and global
regression is used as two steps for training their network. In [65], an End-to-end Dual stream
deep Neural network (EDN) is proposed, which is a two-stream deep learning-based SVQA
model. This method firstly used similar networks to extract features from the left and right
frames. Then, a spatio-temporal feature fusion method is used to combine the left and right
features. Another challenge for using deep learning-based methods for SVQA can be the
computational cost of these methods. Model pruning is an effective method to decrease the
computational cost. For example, in [9], Chen et al. proposed a structured model pruning
method and showed that VGG-16 could be pruned with a very small amount of accuracy
drop but decrease the memory usage. These techniques could be used for SVQA.

2.3 Transfer learning-basedmethods

There is a real challenge in using deep learning-based methods for image and video qual-
ity assessment: the need for a large dataset for training. One of the methods for solving this
challenge is using the transfer learning technique, which is a technique that is used for solv-
ing similar issues. Instead of designing new architecture and training it with a large dataset
from scratch, fine-tuning the pre-trained networks from a related field such as classification
can be beneficial. The fine-tuning strategy can be used to evade the training from scratch.
The features extracted from the pre-trained models are applied to quality measurement
because they contain some general attributes, such as curves, textures, and edges, favorable
to the assessment of distortions [57].

In recent years, several methods developed for IQA using the concept of transfer
learning. A transfer learning-based method is proposed in [40] for IQA. In this method,
pre-trained Xception [12] model is used for feature extraction from input images. All the
parameters of Xception were frozen and not updated in the training process. At the net-
work’s last layer, a fully connected layer with five neurons calculated the quality score.
After some training epochs, this method outperforms the methods that are using the tradi-
tional feature extraction framework. Transfer learning is also utilized in [33] for document
image quality assessment. The pre-trained AlexNet [28] model is used in this study. The
authors used a two-step strategy based on transfer learning. First, images are split into small
blocks. The label of each block is set to the label of the main image. Then, a task-specific
part is presented and trained using the transferred knowledge base. Shen et al. [29] proposed
a transfer learning framework for NR IQA of tonemapped High Dynamic Range (HDR)
images. They used the pre-trained AlexNet [21] model and used it as a feature extractor.
They used this strategy because the HDR image datasets are small.
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In [51], the authors used transfer learning for VQA. They fine-tuned Inception-v3 [48]
and Inception-ResNet-v2 [46] to propose their NR VQA method. In this method, the fea-
tures are extracted frame-by-frame with the pre-trained model for an input video sequence.
Then, these features are pooled to compute the features of the video. Varga et al. [52] used
Long Short-Term Memory (LSTM) for NR VQA. In this architecture, a video is assumed
to be consecutive features related to the successive frames extracted using the pre-trained
models. These features were used as input to an LSTM network with one fully connected
layer at the end to perform the regression. AlexNet, Inception-V3, and Inception-ResNet-
V2 were used for fine-tuning. Their results indicate that Inception-V3 performs better than
Inception-ResNet-V2. Hou et al. [19] proposed another NR VQA method and employed
VGG-Net [49] on each frame using transfer learning. This method’s architecture contains
two parts: one 2D and one 3D. The 2D part uses the VGG-Net as a feature extractor. The
second part includes three 3D CNN, average pooling, fully connected layers, followed by
a regressor. Also, Zhang et al. [66] proposed a FR VQA metric based on combining trans-
fer learning with CNNs. This method used the distorted images to pre-train a CNN network
and fine-tuned the CNN with distorted videos. Specifically, they used the transfer learn-
ing framework to transfer the distorted images as the related domain. To extract high-level
spatial and temporal features, they trained an AlexNet based six-layer CNN by fine-tuning.

Because of the lack of large datasets for stereoscopic image and video quality assessment,
few methods used transfer learning for stereoscopic image and video quality assessment.
Recently, Xu et al. [57] used a fine-tuning method to solve the need for a large dataset
for training the deep network for SIQA. The authors proved that by just fine-tuning the
last layer of the pre-trained model, the model could predict stereoscopic images’ quality.
In this method, the authors fine-tuned Caffe-net [21] and GoogLeNet [47]. The pre-trained
models are used to extract features from the left and right images. Then, the features are
consolidated, and saliency detection is used to achieve the weight per image. For solving the
insufficiency of the number of images on the available datasets, Zhang et al. [67] pre-trained
a multilayer network similar to a perceptron on 2D images to initialize its parameters and
then used the learned parameters in the stereoscopic design. To the best of our knowledge,
there is no transfer learning-based method for SVQA. In the next section, we propose a
transfer learning-based method for SVQA.

2.4 3D ResNet-based architectures

Residual networks (ResNets) [17] are famous in deep learning because they provide robust
architectures for extracting useful features from images. They introduce shortcut connec-
tions that bypass signals between layers. The connections pass through the gradient flows of
networks between layers, making the deep architectures’ training easier. Figure 1 depicts the
basic component of the ResNets, namely a residual block. ResNets include multiple resid-
ual blocks. As shown in this Figure, the connections link a signal from the block’s upper
side to the down.

Although 2D ResNets have acceptable image classification performance, videos are nat-
urally 3D, and using 2D ConvNets for extracting features from them loses the video’s
temporal information. Recently, research in some areas, such as video classification, showed
the superiority of 3D CNNs over 2D CNNs [26]. The authors in [15] extended the 2D
ResNets to 3D to make them suitable feature extractors from videos. The general archi-
tecture of the 3D ResNets is shown in Fig. 2. These 3D ResNets conduct 3D convolution
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Fig. 1 Residual block [15]. Shortcut connections used to bypass the signal from up to down

and pooling. After convolutional layers with the size of 3×3×3, the batch normalization
and ReLU layers are added. The temporal stride of conv1 is equal to 1. The network input
is 16 frames in the temporal dimension. The size of the inputs is 3×16 × 112×112. They
also proved that the Kinetics-700 dataset [27] could favorably train 3D CNNs. In this archi-
tecture, downsampling is conducted by conv3–1, conv4–1, conv5–1 with a stride equal to
2. With increasing the number of features, the identity shortcuts are adopted with zero
paddings to avoid increasing the number of parameters and avoid overfitting.

Hara et al. [15] trained the variants of 3D ResNets on the Kinetics-400 dataset. The
Kinetics-400 includes 400 classes and has more than 400 videos per class. The length of the
videos varies, but on average, they are about 10 seconds long. The dataset contains more
than 300,000 videos. In our method, the pre-trained ResNet 101, 152, and 200 on Kinetics-
700 dataset from [44] are used, which are trained on more classes with more videos.

Fig. 2 The general architecture of the 3D ResNets. After each 3D CNN, there is one batch normalization and
ReLU layers. The output dimension of the last fully connected layer is based on the number of the classes of
the Kinetics-700 dataset [27]
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3 Proposedmethod

The flow of our method is shown in Fig. 3. Firstly, the patches of the stereoscopic left and
right videos are fed into a pre-trained model to extract their features. Three 3D ResNet-101,
152, and 200 architectures from [15] are used as the backbone feature extractors. The 3D
ResNet models are pre-trained on the Kinetics [27] dataset. The pre-trained model param-
eters are frozen, and they are not being updated during the training. Since 3D ResNet-101,
152, and 200 models have been trained on very large datasets of Kinetics and ImageNet,
they can extract generic visual features from the videos. In fact, pre-trained 3D ResNets
are used as the generic features from the stereoscopic video. 3D ResNet-101, 152, and 200
models contain a lot of trainable parameters. Therefore, we freeze their parameters and use
them as the feature extractors to avoid overfitting on our comparatively small datasets. On
the other hand, we have included some trainable layers and these layers are trained to learn
quality-related features. Two 3D ConvNets and fully connected layers construct the train-
able layers. In the following subsection, we will discuss the architecture of the proposed
network and the creation of the inputs of the network.

3.1 Network architecture

As shown in Fig. 3, selected patches from the stereoscopic video are used as the inputs to the
3D ResNet models. The ResNet models pre-trained on Kinetics-700, extract features from
the input video patches, and create two feature maps. We then linearly concatenate the left
and right feature maps along the last dimension, reshape them to the size of 32×16×8×8 to
pass to the trainable layers. Two convolutional layers are used in trainable layers. The first
3D ConvNet with 128 output filters is followed by a ReLU activation function and Batch
Normalization (BN). The second 3D ConvNet with 256 filters is similar to the first one,
but a 3D max pooling with 2×2×2 kernel size is added. One way to avoid overfitting is to

Fig. 3 The architecture of the proposed transfer learning-based NR SVQA method. Left and right videos of
a stereoscopic video are fed into two pre-trained models. Their extracted features are concatenated and used
as input to the trainable layers
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decrease the complexities of the model. Max pooling in the second 3D convolution layer
reduces the complexity by downsampling. The first and second 3D ConvNet size is 3×3×3
and both with the stride of 1.

We use a Flattening layer in the middle of the 3D convolutions and the Fully Connected
(FC) layers. Flattening converts the high-dimensional cube of the extracted features into a
vector. The first FC layer (FC1) has 128 filters, followed by a ReLU activation function
and BN. Next, we use a dropout layer with a rate=0.5. Using a dropout layer is one way to
avoid overfitting. This layer forces the activation values of random neurons to zero. The FC2
comes next and has 32 filters. A ReLU also follows FC2. The final FC layer, namely FC3,
uses the linear activation function to calculate the input video cube’s quality score. Since we
predict numerical values directly without transformation, we use a linear activation function
to convert the network to just one output. Therefore, we form a regression model with one
linear activation function at the last layer, whose output is a floating-point value.

For calculating the overall quality of a stereoscopic video, we first calculate the entropy
of each cube. We do not use cubes with low entropy. Then, to obtain a video-level quality
score, the quality scores’ average is calculated as the final quality score.

3.2 Pre-processing and inputs

Since the SVQA datasets are designed to estimate the stereoscopic video quality containing
a minimal number of videos, we are not using them directly for deep learning-based SVQA.
The reason is the sensitivity of the trained model to overfitting. Therefore, in addition to
using transfer learning and fine-tuning, we augment SVQA datasets to avoid overfitting. We
are not using commonly used image data augmentation methods such as transformations,
flipping, and random cropping, which are unsuitable for quality assessment tasks. These
methods can change the content of the stereoscopic video that affects the overall visual
quality. Instead of using these data augmentation methods, we break each left and right
video in three dimensions into small video cubes, then use them as input to the pre-trained
3D ResNet models. In this paper, for creating small cubes, first, we select 16 consecutive
frames from the left and right videos. Next, we select 3×64×64 spatial blocks from stereo
videos based on the experiments in [62], which received the best performance. Therefore,
RGB cubes with 3×64 × 64×16 sizes are chosen from the left and right videos to use as
input to the two ResNet models. Figure 4 shows how we split one video into several cubes.

Despite the assumption in [62], we believe that different spatial parts of a video expe-
rience different quality degradation degrees. Every stereo video has a quality label based
on its real quality, confirmed by subjective tests. For training our model, we need to assign
a quality label to each of the stereoscopic cubes. Every stereo cube selected from a video
will get the quality label of the main video. However, some video cubes have no or mini-
mal information about the overall video’s quality, particularly cubes with a homogeneous
background. By calculating the entropy of each cube, we remove some of the cubes from
our training dataset. Entropy is defined as measuring the amount of information based on
the average uncertainty of the image. For calculating the entropy of a cube, we calculate the
entropy of a video cube. The average of the entropy values along 16 frames is defined as
the entropy of that cube. We calculate the entropy of an image as follows:

Framee = −
N∑

i=1

pilog2(pi) (1)
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Fig. 4 Splitting one channel of a video into several video cubes. The shown video cube is of size 64×64×16

where pi is the occurrence probability of the pixel values, and N is the number of intensities
of an image. We use the histogram of the intensities at every frame of each cube as their
occurrence probabilities. To calculate the entropy of a cube, we compute the mean entropies
of all the frames in each cube. The entropy for one left or right cube is calculated as follows:

V Ce =
∑M

j=1 Framee(j)

M
(2)

we removed the cubes that receive lower entropy scores than a threshold, T, from the training
and testing sets. We calculate the entropy of a stereo cube as the average value of the left
and right entropy values:

SV Ce = LV Ce + RV Ce

2
(3)

where LV Ce and RV Ce are the entropy of the left and right cubes, respectively.
We calculated the value of SV Ce for all training and testing videos and refined our

datasets to eliminate the outliers. We removed the cubes that receive lower entropy scores
than a threshold, T, from the training and testing sets. After doing some subjective exper-
iments on the videos of our datasets, we decided to set T=5.1. Based on our subjective
experiments, the SV Ce value for patches with no or less texture is lower than this threshold,
and for patches with rich textures, the SV Ce value is much higher than the defined thresh-
old. Figure 5 shows one frame of patches with comparatively low and high textures and the
value of the SV Ce. This Figure shows that setting the threshold to T=5.1 is reasonable.

4 Dataset and experiments

To evaluate the efficiency of the proposed NR SVQA method, we conduct a set of
experiments with two publicly available datasets, namely LFOVIAS3DPh2 [2], and
NAMA3DS1-COSPAD1 [50].
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Fig. 5 Patches selected from 8 different videos in the LFOVIAS3DPh2 [2] dataset. The values of the SV Ce

are calculated and written below each left frame selected from the patch. It can be seen that the value of the
threshold T=5.1 can be reasonable. Four columns from left to right: two Blur, Frame Freeze, H264, H265
patches, respectively

4.1 Datasets

The LFOVIAS3DPh2 [2] dataset has 12 references and 288 stereoscopic test videos. These
stereoscopic videos are distorted with H.264 and H.265 compression, Blur, and Frame
freeze. The videos are chosen from the RMIT3DV [11] video dataset that includes sym-
metrically and asymmetrically distorted videos. All the videos in RMIT3DV dataset are
captured using a Panasonic AG-3DA1 camera with full HD 1920×1080 resolution. Videos
with quality between very bad and excellent have scores between 0 and 5, respectively. The
time duration of all videos in the dataset is constant, and it is 10 seconds. Figure 6 depicts
100th right frame of each reference video in the dataset.

Fig. 6 A sample of the two used datasets for evaluation of the proposed SVQA method. Top two rows:
stereoscopic 100-th right frame of the twelve original videos in the LFOVIAS3DPh2 [2] dataset, and bottom
two rows: stereoscopic 100-th right frame of the ten original videos in the NAMA3DS1-COSPAD1 [50]
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The NAMA3DS1-COSPAD1 [50] dataset includes 10 reference stereo videos and 100
test videos. Test videos are picked from NAMA3DS1 [50] dataset. Distortions are added
symmetrically, including coding and spatial distortions. Coding distortions include H.264-
/AVC, JPEG 2000, and spatial losses, including reducing the resolution, image sharpening,
and down-sampling. All videos are in full HD resolution. The scores change from 1 (lower
quality) to 5 (highest quality). Figure 6 depicts 100th right frame of each reference video in
the dataset.

4.2 Experiments

All our experiments are done on a computing system with the following specifications:
i9-10850K CPU 3.60 GHz, 64GB memory, NVIDIA GeForce RTX 2080 ti. We split the
stereoscopic videos in each dataset to train, validate, and test sets before experimenting.
We follow a general rule in dividing the datasets into 60% training, 20% validation, and
20% test sets. We randomly generated train, validation, and test samples from all videos in
the datasets. The Stochastic Gradient Descent (SGD) with momentum with a batch size of
128 is used to train the proposed model on the two datasets. Also, all the implementations
and train-test scripts are in PyTorch 1.7.1. The Nesterov momentum is set to 0.9. Also, the
learning rate is constant and equal to 0.001.

Because both our datasets are imbalanced, and the generated datasets contain outliers
due to the variation of the quality over a video, we use Huber [20] loss as our regression loss
function. It is used in robust regression. This loss function is less sensitive to the outliers in
data than the mean squared error loss. This loss function defines a metric that if the absolute
element-wise error is higher than a threshold named beta, acts like the L1 loss. Otherwise,
it is a squared term. This loss function is defined as follows [14]:

Loss(x, y) = 1/n
∑

lossi (4)

where lossi is defined as:

lossi =
{
0.5(xi − yi)

2/beta if |xi − yi | < beta

|xi − yi | − 0.5 ∗ beta else
(5)

where xi and yi are the Mean Opinion Score (MOS) and predicted scores, respectively,
and their sizes are equal to the batch size. We use the default value for the beta, which is
equivalent to 1.

5 Results and discussions

The performance of the proposed method on two popular SVQA datasets of
LFOVIAS3DPh2 and NAMA3DS1-COSPAD1 is proposed in this section. We also discuss
the results and efficiency of the proposed method.

Quantitative evaluation of the proposed method is considered using three measures,
namely the Linear Correlation Coefficient (LCC), Spearman Rank Order Correlation Coef-
ficient (SROCC), and Root Mean Square Error (RMSE). The LCC is also known as the
Pearson linear correlation coefficient. It is a statistical method that calculates the linear cor-
relation among quantities. The SROCC measures the monotonic correspondence between
two inputs. The higher LCC and SROCC and lower RMSE values specify a good correlation
between the predicted and MOS scores.
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For experiments in this paper, we used three 3D ResNet models as our base feature
extractors. These models are 3D ResNet-101, 152, and 200. Figure 7 shows the variation of
the RMSE, LCC, and SROCC for the different number of backbone layers in both datasets.
It is evident from this Figure that with increasing the layer number of the pre-trained 3D
ResNets, the performance of the proposed method increases: RMSE value decreases, and
LCC and SROCC values increase. Therefore, we can conclude that deeper pre-trained 3D
ResNets can extract better quality-aware features. Although Hara et al. in [16] reported that
3D ResNet-152 and ResNet-200 have approximately the same accuracy results for video
recognition tasks on Kinetics-400 dataset, Kataoka et al. [26] showed that Kinetics-700
can train 3D ResNet-200 successfully. From the experiments in these two papers, it could
be understood that both 3D ResNet-50 and ResNet-101 underfit on Kinetics-700 [26]. In
addition, the performance of the 3D ResNet-152 is lower than 3D ResNet-200 for video
recognition on Kinetics-700. From these results, it can be concluded that the pre-trained 3D
ResNet-200 better transfers the learned features of objects, and we use them as the input to
our method’s trainable layers. Therefore, the feature extraction part of our model when we
use higher 3D ResNets layers creates better features.

Tables 1, 2, and 3 illustrate the performance of the proposed model compared with other
existing methods on LFOVIAS3DPh2 dataset. They indicate that the proposed method is
superior in each criterion. From All column of these tables, which shows the overall results
of the algorithms, the values of the LCC, SROCC, and RMSE show the state-of-the-art per-
formance for the proposed method with 0.956, 0.964, and 0.332, respectively. For example,
the RMSE value for second best method VQUEMODES [1] is 0.444, which is up to 34%
performance improvement received with our method in terms of RMSE. For Frame Freeze
distortion, our method performs as the second-best method. It can be related to the distor-
tion type, which is different from other distortions. Comparing the overall performance with
the other algorithms with all criteria indicate that after our method, VQUEMODES [1] and
VQM [54] are the best performing methods on the LFOVIAS3DPh2 dataset, respectively.

Figure 8 compares the average value and the standard deviation of the differ-
ences between the MOS values and the values predicted by our method. This Figure
reports the mean and the standard deviation for both NAMA3DS1-COSPAD1 [50] and
LFOVIAS3DPh2 [2] datasets. This comparison is based on the depth of the 3D ResNet

Fig. 7 Performance of the proposed SVQA method with increasing the number of the layers of the backbone
network, on LFOVIAS3DPh2 [2] and NAMA3DS1-COSPAD1 [50] datasets. Three pre-trained 3D ResNets
with 101, 152, and 200 layers are used. The accuracy of the method rises by adding layers to the 3D ResNets
model. With increasing the number of layers of the backbone model, the RMSE is decreasing, and LCC and
SROCC are increasing
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Table 1 Performance of the proposed SVQA model compared with objective results considering LCC
criteria on the LFOVIAS3DPh2 [2] dataset

Algorithms H.264 H.265 Blur F. Freeze Symm Asymm All

SSIM [56] 0.816 0.812 0.651 0.801 0.803 0.660 0.735

MS-SSIM [55] 0.901 0.873 0.802 0.897 0.885 0.716 0.819

VIF [43] 0.874 0.822 0.813 0.820 0.879 0.701 0.816

NIQE [39] 0.646 0.540 0.351 0.648 0.641 0.501 0.578

VQM [54] 0.887 0.907 0.785 0.815 0.868 0.799 0.837

STRIQE [36] 0.861 0.850 0.804 0.774 0.746 0.586 0.677

FI-PSNR [30] 0.722 0.677 0.464 0.717 0.688 0.648 0.660

VQUEMODES [1] 0.886 0.866 0.706 0.827 0.887 0.856 0.878

MoDi3D [2] 0.720 0.761 0.432 0.839 0.740 0.669 0.699

Our’s(ResNet 200) 0.995 0.948 0.958 0.863 0.951 0.978 0.956

The results of our method are related to the 3D ResNet with 200 layers. The best results are in bold and the
second-best results are in italics. Symm and Asymm represent the results for symmetric and Asymmetric
distortions, respectively

models. As we can see in the bar chart, in both datasets, the deeper the ResNet model is,
the better results are produced. Also, it declares that the loss on LFOVIAS3DPh2 dataset
is generally less than the NAMA3DS1-COSPAD1 dataset. We also included some qualita-
tive results in Fig. 9. One stereoscopic test video from each of the four distortion types in
the LFOVIAS3DPh2 [2] dataset is included in this test, and they are chosen randomly. The
best-performing ResNet-200 is used in these experiments. As we can see, Symmetric and
Asymmetric distortions are included. MOS and predicted values are also reported for each
video. It is clear from these results that our proposed method is consistent with MOS scores
for these randomly chosen test videos. The stimuli strength, which shows the strength of
the distortion, is constant and equal to 50 for H265 compressed video in the first row of this

Table 2 Performance of the proposed SVQA model compared with objective results considering SROCC
criteria on the LFOVIAS3DPh2 [2] dataset

Algorithms H.264 H.265 Blur F. Freeze Symm Asymm All

SSIM [56] 0.795 0.798 0.480 0.807 0.744 0.585 0.682

MS-SSIM [55] 0.895 0.857 0.706 0.898 0.864 0.638 0.778

VIF [43] 0.875 0.810 0.781 0.807 0.862 0.652 0.784

NIQE [39] 0.667 0.388 0.349 0.445 0.559 0.443 0.501

VQM [54] 0.896 0.801 0.815 0.821 0.841 0.780 0.803

STRIQE [36] 0.851 0.836 0.663 0.632 0.705 0.532 0.652

FI-PSNR [30] 0.723 0.622 0.398 0.768 0.655 0.603 0.611

VQUEMODES [1] 0.864 0.825 0.606 0.772 0.857 0.835 0.839

MoDi3D [2] 0.687 0.671 0.396 0.627 0.682 0.593 0.661

Our’s(ResNet 200) 0.986 0.962 0.972 0.822 0.948 0.987 0.964

The results of our method are related to the 3D ResNet with layers. The best results are in bold and the
second-best results are in italics. Symm and Asymm represent the results for symmetric and Asymmetric
distortions, respectively
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Table 3 Performance of the proposed SVQA model compared with objective results considering RMSE
criteria on the LFOVIAS3DPh2 [2] dataset

Algorithms H.264 H.265 Blur F. Freeze Symm Asymm All

SSIM [56] 0.528 0.521 0.546 0.393 0.596 0.557 0.596

MS-SSIM [55] 0.396 0.436 0.491 0.290 0.464 0.517 0.505

VIF [43] 0.444 0.510 0.444 0.375 0.476 0.529 0.508

NIQE [39] 0.698 0.753 0.627 0.500 0.768 0.642 0.718

VQM [54] 0.422 0.376 0.411 0.381 0.496 0.446 0.480

STRIQE [36] 0.464 0.471 0.533 0.416 0.665 0.601 0.647

FI-PSNR [30] 0.514 0.659 0.638 0.522 0.551 0.574 0.545

VQUEMODES [1] 0.355 0.395 0.461 0.350 0.442 0.379 0.444

MoDi3D [2] 0.672 0.642 0.566 0.393 0.677 0.587 0.657

Our’s(ResNet 200) 0.164 0.381 0.266 0.406 0.185 0.390 0.332

The results of our method are related to the 3D ResNet with layers. The best results are in bold and the
second-best results are in italics. Symm and Asymm represent the results for symmetric and Asymmetric
distortions, respectively

Figure. Being stimuli strength equal for left and right videos shows that there is a Symmet-
ric distortion. In all other three videos that the stimuli strengths are different for left and
right videos, there is Asymmetric distortion. The results show that the performance of our
method both for Symmetric and Asymmetric distortions are acceptable.

Table 4 also compares the proposed method with the state-of-the-art methods on
NAMA3DS1-COSPAD1 dataset. Our method performs as the second-best method in all
criteria. The value of 0.9537 for LCC, which is 0.006 lower than the best method, indi-
cates that our proposed method is highly compatible with the HVS. One reason for not
getting the state-of-the-art results in NAMA3DS1-COSPAD1 dataset is that it has fewer
videos compared with the LFOVIAS3DPh2 dataset. Therefore, our method has less train-
ing data to learn quality-related features. Compared to 3D CNN SVR and 3D CNN [62],
this table shows that our method is more accurate. Feeding the left and right frames them-
selves instead of the difference of them to the deep network can be the more reason why
our method performs better than 3D CNN SVR and 3D CNN [62]. Besides, our proposed
method benefits from the pre-train on large datasets and using the generic visual features

Fig. 8 Comparison of the mean and standard deviation of the difference between predicted values of our
method and MOS values in both datasets of NAMA3DS1-COSPAD1 [50] and LFOVIAS3DPh2 [2]. Three
3D ResNets with 101, 152, and 200 layers are used as a backbone network
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Fig. 9 Qualitative results of the proposed SVQA method for randomly selected videos from the
LFOVIAS3DPh2 [2] dataset. For these experiments, 3D ResNet-200 is used. From each distortion type,
one video is selected for qualitative comparison. MOS and the predicted values refer to the whole video.
Video name format is as follows: [distortion type] [video sequence between 1 and 12] [l:left, r:right] [stimuli
strength]

from pre-trained models of a related area. Therefore, with the same dataset, our method per-
forms better than this method. On the other hand, Ma et al. used a training method which
is a two-step training method: local and global regression. Besides, they extract the salient
regions of the left and right frames independently. Therefore, there are a lot of computational
steps in this method, but the authors did not publish their computational costs. This can be
one reason why the method proposed by Ma et al. [34] outperforms our method. Although
this method’s results are better than our method, the difference between the two methods
in terms of LCC (0.9597 and 0.9537) is ignorable. These results confirm that our proposed
model demonstrates an acceptable overall performance compared with the state-of-the-art
methods both on NAMA3DS1-COSPAD1 and LFOVIAS3DPh2 SVQA datasets.

Table 5 shows the minimum, maximum, mean, standard deviation, and p-value of the
difference between subjective and objective scores for both NAMA3DS1-COSPAD1 and
LFOVIAS3DPh2 datasets. For example, the mean value of 0.245 in this table shows the
mean value of the predicted and MOS values for all the videos on the NAMA3DS1-
COSPAD1 dataset. We used the best-performing 3D ResNet-200 as the main backbone
model. The difference between the minimum and maximum values in the NAMA3DS1-
COSPAD1 and LFOVIAS3DPh2 datasets are approximately equal. Comparing the mean
and standard deviation of the difference between our method’s predictions and MOS results
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Table 4 Performance of the proposed SVQA method compared with objective SVQA methods on
NAMA3DS1-COSPAD1 [50] dataset

Algorithms LCC SROCC RMSE

SSIM [56] 0.7664 0.7492 0.7296

PQM [24] 0.6340 0.6006 0.8784

SFD [32] 0.5965 0.5896 0.9117

Feng et al. [42] 0.6503 0.6229 0.8629

3-D-PQI [18] 0.9009 0.8848 −
Yang et al. [59] 0.8949 0.8552 0.4929

MNSVQM [23] 0.8545 0.8394 0.4538

BSVQE [10] 0.9239 0.9086 0.3754

Yang et al. [60] 0.9016 0.8467 −
EDN [65] 0.9301 0.9334 −
3D CNN [62] 0.9316 0.9046 0.4161

3D CNN SVR [62] 0.9478 0.9231 0.3514

Ma et al. [34] 0.9597 0.9571 0.3065

Our’s(ResNet 200) 0.9537 0.9373 0.3500

The results of the proposed method with 3D ResNet 200 are shown. The best result is in bold and the
second-result is in italics. ‘-’ shows that the results are not available

on NAMA3DS1-COSPAD1 and LFOVIAS3DPh2 datasets confirms that our method has
slightly better performance in the LFOVIAS3DPh2 dataset. The reason can be the number
of videos in the LFOVIAS3DPh2 dataset, which is about three times the NAMA3DS1-
COSPAD1 dataset, and our deep learning-based method learns better. The low value of the
p-value for both datasets shows the robustness of the proposed method.

Table 6 compares the running time performance of our method with other methods on
NAMA3DS1-COSPAD1 dataset. The videos are in 25 Frames Per Second (FPS) and full
HD resolution. For inference, we use a batch size of 128 and 16 consecutive frames are
used. Therefore, each batch has a size of 128×16 × 64 × 64×3. The processing time of
each batch of video cubes takes on average 0.02792, 0.03989, and 0.05186 seconds in our
NVIDIA GeForce RTX 2080 ti GPU for ResNet-101, 152, and 200 backbones, respectively.
Therefore, for 250 frames of a 10 seconds video, it takes 1.4658, 2.094, and 2.7226 seconds
to compute the quality score of the stereo video with ResNet-101, 152, and 200 as the back-
bone feature extractors, respectively. Please note that our experiments are done on a better

Table 5 The statistical analysis between the subjective and objective scores of the proposed SVQA method
on two datasets

Dataset Min Max Mean Std. p-value

NAMA3DS1-COSPAD1 [50] 0.0026 1.06 0.245 0.255 1.3e-10

LFOVIAS3DPh2 [2] 0.002 1.059 0.214 0.254 7.7e-34

3D ResNet-200 is used as the main feature extractor
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Table 6 The computational cost analysis of our proposed method compared to other methods on the
NAMA3DS1-COSPAD1 dataset

Method Usage Test time per 10 seconds (250 frames) video (s)

Yang et al. [59] CPU (3.2 GHz) 250

Yang et al. [59] GPU (GTX 1080) 63

MNSVQM [23] CPU (3.2 GHz) 45

BSVQE [10] CPU (3.2 GHz) 18

3D CNN [62] GPU (GTX1080) 2

Ours with ResNet-101 GPU (RTX 2080 ti) 1.4658

Ours with ResNet-152 GPU (RTX 2080 ti) 2.094

Ours with

ResNet-200 GPU (RTX 2080 ti) 2.7226

GPU (RTX 2080 ti) than the other methods (GTX 1080). Therefore, directly comparing our
method’s performance with other methods cannot be completely fair. RTX 2080 ti has 4352
and GTX 1080 has 2560 CUDA cores. Also, the GPU memory of RTX 2080 ti is 12 com-
pared to 8 gigabytes for GTX 1080. Overall, our graphic card can be about two times better
than GTX 1080. Therefore, with this comparison, we cannot say that our method’s perfor-
mance is better than 3D CNN [62], but it is better than the other methods and produces
better than real-time performance.

6 Conclusions

In this paper, a new NR SVQA method is proposed using the concept of transfer learning.
We used three pre-trained 3D ResNets as the backbone of feature extraction. Our method’s
performance is state of the art in LFOVIAS3DPh2 and second-best in NAMA3DS1-
COSPAD1 datasets. Our results confirm that transfer learning is applicable for SVQA,
and pre-trained 3D ResNets can be used as the backbone of feature extraction for SVQA.
From the results, we can conclude that the deeper pre-trained 3D ResNets can extract bet-
ter quality-aware features, and as expected, the 3D ResNet with 200 layers gives the best
results.

We found that using deep learning to measure the stereoscopic videos’ quality with the
existing datasets may have some challenges. Problems such as imbalanced datasets need
to be considered when using deep learning for SVQA. An alternative method to overcome
this problem may be using other loss functions in future work. Additionally, we can use
motion and saliency as other weighting factors for improving SVQA accuracy. In the future,
a mixed dataset training from 2D VQA can be extended for the stereoscopic VQA. The
computational costs of 3D ResNets as the backbone feature extractors are high due to their
large number of trainable parameters. Although we did not train 3D ResNets in our work,
it takes a lot of GPU memory and computational cost in inference. Model pruning is a
very good method to reduce the need for computational and storage requirements of the
model inference [9]. For example, in [35], to reduce the computational costs of the backbone
feature extractors, the authors compressed the 2D ResNet-18 by 60 times. One great idea to
reduce the computational cost of our SVQA method can be the pruning of 3D ResNets and
using them as the backbone feature extractor. We will consider this idea as our future work.
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