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Data integration with phenotypes such as gene expression, pathways or

function, and protein-protein interactions data has proven to be a highly

promising technique for improving human complex diseases, particularly

cancer patient outcome prediction. Hepatocellular carcinoma is one of the

most prevalent cancers, and the most common cause is chronic HBV and HCV

infection, which is linked to the majority of cases, and HBV and HCV play a role

in multistep carcinogenesis progression. We examined the list of known

hepatocellular carcinoma biomarkers with the publicly available expression

profile dataset of hepatocellular carcinoma infected with HCV from day 1 to

day 10 in this study. The study covers an overexpression pattern for the selected

biomarkers in clinical hepatocellular carcinoma patients, a combined

investigation of these biomarkers with the gathered temporal dataset,

temporal expression profiling changes, and temporal pathway enrichment

following HCV infection. Following a temporal analysis, it was discovered

that the early stages of HCV infection tend to be more harmful in terms of

expression shifting patterns, and that there is no significant change after that,

followed by a set of genes that are consistently altered. PI3K, cAMP, TGF, TNF,

Rap1, NF-kB, Apoptosis, Longevity regulating pathway, signaling pathways

regulating pluripotency of stem cells, Cytokine-cytokine receptor
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interaction, p53 signaling, Wnt signaling, Toll-like receptor signaling, and Hippo

signaling pathways are just a few of the most commonly enriched pathways.

The majority of these pathways are well-known for their roles in the immune

system, infection and inflammation, and human illnesses like cancer. We also

find that ADCY8, MYC, PTK2, CTNNB1, TP53, RB1, PRKCA, TCF7L2, PAK1, ITPR2,

CYP3A4, UGT1A6, GCK, and FGFR2/3 appear to be among the prominent genes

based on the networks of genes and pathways based on the copy number

alterations, mutations, and structural variants study.

KEYWORDS

HCV and HCC, biomarkers, gene expression/mutational profiling, co-expression,
network-level understanding

Introduction

Acquired genomic aberrations of various sorts and sizes,

ranging from single nucleotide variants to structural

abnormalities, are a common feature of cancer. Cancer

genomes have a wide range of genomic abnormalities of

various sorts and sizes. Single nucleotide variants (SNVs) to

bigger structural variants (SVs) all have an impact on genome

organization (Bruin et al., 2013; Dienstmann et al., 2014; Prandi

et al., 2014). Different types of mutations are seen in cancer cells,

and they are linked to the cell’s ability to reproduce

uncontrollably. Certain modifications to the genetic code only

affect one or a few letters (Futreal et al., 2004; Zarrei et al., 2015;

Yizhak et al., 2019). Others, referred to as copy number changes

(CNA), involve bigger segments of the genome that can be

deleted (deletions) or duplicated (duplications)

(amplifications) (Pelham et al., 2006; Grubor et al., 2009;

Agell et al., 2012; Li and Li, 2014). Various patients’ tumors

have different quantities of these deletions or amplifications,

which are collectively known as the CNAs burden. Scientists can

now scan the genomes of cancers and assess the types of

mutations present in each patient thanks to new technologies.

The outcomes can assist in determining the best course of action.

Patients with a high CNAs burden in their tumors, for example,

have a higher chance of relapse after treatment. However, it is

unclear whether these persons have shorter survival rates as well,

or whether CNAs levels might predict the prognosis of other

cancers. Over a hundred samples from prostate cancer patients

who were not treated with surgery or radiation were analyzed by

Hieronymus et al. The findings revealed that a higher CNA

burden in tumors is linked to more disease-related mortality

(Rigaill et al., 2012; Beerenwinkel et al., 2014; Li and Li, 2014;

Cooper et al., 2015). The findings in prostate cancer were also

true in other cancer types. When Hieronymus et al. looked at

genomic data from individuals with various tumors using a

different DNA sequencing assay that is authorized for clinical

use, they came to the same conclusions. This suggests that CNA

load could be a valuable clinical measure for assessing risk in

cancer patients. Structural variation, in which rearrangements

remove, increase, or reorganize genomic regions ranging in size

from kilobases (kb) to whole chromosomes, is a crucial

mutational mechanism in cancer. Somatically acquired big

structural variations (SVs) are a type of abnormality that can

cause cancer by deactivating tumor suppressor genes and

upregulating oncogenes, among other things. Detecting and

characterizing these variations could lead to better cancer

medicines and diagnostics (Lim and van Oudenaarden, 2007;

Barbosa-Morais et al., 2010; Biesecker and Spinner, 2013;

Gerstberger et al., 2014; Moncunill et al., 2014; Zarrei et al.,

2015).

Cancer is caused by beginning cells that undergo a lot of

evolutionary selection as the disease progresses and can change

dramatically throughout treatment. Tumor cell evolution may

result in subclonal divergence, leading in genetic and molecular

heterogeneity. Computational approaches for creating maps of

cancer evolution could help clinical risk classification and

therapy techniques. There is still a gap in the study of slightly

aberrant or extremely varied malignancies, despite the

development of tools for assessing tumor DNA purity and

cancer cell ploidy (Bardwell et al., 2001; Thomas et al., 2004;

Cui et al., 2007; Carja and Feldman, 2012; Klinke, 2013;

Murugaesu et al., 2013; Paguirigan et al., 2015).

Themost common type of cancer in the world, hepatocellular

carcinoma (HCC), is the leading cause of cancer-related fatalities

(Ieta et al., 2007; Consortium et al., 2010; El-Serag, 2011; Repana

and Ross, 2015; HASS et al., 2016). A high number of HCC

patients show signs of vascular invasion with intrahepatic

metastases, which tend to invade portal vein branches and

create portal vein tumor thrombus (PVTT), which can

obstruct the portal vein and cause portal hypertension

(ROBINSON, 1994; Jhunjhunwala et al., 2014; Llovet et al.,

2015). HCC advancement can be linked to a variety of causes,

the most common of which being HBV and HCV. Aflatoxin B1,

alcohol consumption, cigarette smoking, hepatotoxic chemical

agents, and host co-factors such as elevated serum androgen

levels, genetic polymorphisms, and DNA repair enzymes may all

be linked to the progressive accumulation of a number of

genomic aberrations within the hepatocytes, with TP53 and

CTNNB1 being two well-known cancer drivers (Fujikawa

et al., 2001; Ichikawa et al., 2008; Attari et al., 2019).
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HCV is a single-stranded RNA virus with four structural

proteins: capsid protein C, envelope glycoproteins E1 and E2,

and protein P7, as well as six non-structural proteins: NS2, NS3,

NS4A, NS4B, NS5A, and NS5B. Chronic inflammation, immune-

mediated hepatocyte death and disorder, fibrosis, and multilayer

diseases (cellular pathways such as proliferation, apoptosis, and

DNA repair) are all possible outcomes of HCV infection (core

and structural proteins) (Ahmad et al., 2012; Jost and Altfeld,

FIGURE 1
Differential gene expression profiling and pathway enrichment analysis. (A)Co-occurrence network. (B) Temporal evolution of gene expression
aberrations and its functional consequences. (C) Venn diagram to represent the shared and specific genes and pathways which are potentially altered
as a result of CRC. (D) Enriched pathways followed by their respective p-values. (E) Temporal gene expression profiling of HCC in result to HCV
infection. The number of DEGs from day 1 to day 10 and number of common DEGs in different combinations (such day 1 with day 2, day 2 with
day 3, day 3 with day 4, day 4 with day 5, and so on). (F) HCC biomarkers profiling for the temporal dataset.
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2013; Roberts and Gordenin, 2014; Schwarzenbach et al., 2014;

Sacerdote and Ricceri, 2018; Lupberger et al., 2019b).

As previously noted, HCV infection appears to be a potential

cause of liver disorders such as liver cancer, steatosis, and fibrosis,

and the mechanisms behind infection, liver disease development,

and carcinogenesis are not fully or well understood. There are

also a number of factors associated with HCC. So, in order to

learn more about the leading cause of liver cancer/hepatocellular

carcinoma, we used a method in which we gathered and studied

previously identified biomarkers, a publicly available dataset for

hepatocellular carcinoma (temporal data) with and without HCV

infection, a combined study, clinical relevance, and functional

impact. We examined changes in gene expression patterns,

mutation mutations, CNAs, and SVs using publically available

information from Gene Expression Omnibus (GEO) and TCGA,

followed by cBioPortal. Furthermore, we investigated the

enriched pathways for their overall functional implications

and used network-level understanding to determine the

impact of changed genes on other genes.

Results

As noted in the preceding section, we compiled a list of

known HCC biomarkers before working with the GEO and

TCGA datasets. The GEO dataset contains HCV-infected data

that spans 10 days. So, in the first section of the results, we

focused on data related to HCC biomarkers, followed by

temporal gene expression profiling and functional significance,

and finally, CNAs, mutations, and SVs analyses.

HCC biomarkers and its clinical
relevance

Using cBioPortal in HCC, we were able to map out the

proportion of over-expression (both individually and overall) and

co-occurrence for the selected genes (biomarkers picked from

previously published work) inside the TCGA database. We

provided the co-occurrence in Figure 1A, and for co-occurrence,

we also presented the network with the relevant connectivity in

terms of co-occurrence. CCNB2, CLK2, CDK4, CDC7, E2F3,

PCNA, MCM3, MCM4, USP1, KIF20A, MCM2, and MCM7 are

shown to be dominantly controlling a large number of genes, or to

put it another way, most of the genes are interdependent. The

majority of the genes here are involved in the cell cycle, however

there are a few that are specifically involved in infection and

inflammatory processes (E2F5, MAPK13, IGF2BP3, IGF2). We

investigated the temporal gene expression profiling for HCV

infection acquired from GEO after assessing the biomarkers

association. First, as shown in Figure 1B, we projected DEGs for

each day of infection by combining the genes into four groups

(0–2 days, 3–5 days, 6–8 days, and 9–10 days). Figure 1B shows that

increased infection duration causes significant changes in gene

expression patterns until a certain time point, after which there

are few changes in gene expression patterns and a slight decrease in

the number of DEGs between 9 and 10 days, as well as enriched

pathways or biological functions affected by changes in gene

expression patterns. Figure 1B shows an exponential growth in

the number of DEGs up to day eight, after which there is volatility,

leading to the conclusion that there is a greater level of distribution in

gene expression pattern during early HCV infection in HCC.

PI3K, cAMP, TGF, TNF, Rap1, NF--kB, Apoptosis, Longevity

regulating pathway, signaling pathways regulating pluripotency of

stem cells, Cytokine-cytokine receptor interaction, p53 signaling,

Wnt signaling, Toll-like receptor signaling, and Hippo signaling

pathways are just a few of the most commonly enriched pathways.

The majority of these pathways are well-known for their roles in

the immune system, infection and inflammation, and human

illnesses like cancer.

In addition, we conducted a comparison analysis of HCC

gene expression datasets that were not infected with HCV. We

observed that there are a large number of DEGs, so we prepared

lists of DEGs for these three different fold changes, 2.0, 5.0, and

7.0, and analyzed the enriched pathways for all three datasets,

finding that 145 DEGs and 15 enriched pathways were shared

across all the three fold changes (2.0, 5.0, and 7.0), 111 DEGs

and 19 enriched pathways shared between fold changes 2.0 and

5.0, and 1448 DEGs and 96 enriched pathways were unique to

fold change 2.0. We compared this dataset to another dataset for

the same after evaluating it at different fold changes. 180 DEGs

and 22 enriched pathways were shared between the two

datasets, and GSE63863 had its own set of DEGs and

enriched pathways. The majority of these 22 pathways are

well-known and acknowledged as the most important

pathways linked to various malignancies, including HCC

(Figures 1C,D; Supplementary Data S1). Furthermore, we

have also presented the HCV-infected HCC temporal data in

Figure 1E which contains temporal gene expression profiling of

HCC in result to HCV infection. The number of DEGs from day

1 to day 10 and number of common DEGs in different

combinations (such day 1 with day 2, day 2 with day 3, day

3 with day 4, day 4 with day 5, and so on).

Moreover, we have also performed the mapping of known

HCC biomarkers with temporal gene expression dataset and

observe that day 0 and day 2 have no HCC biomarkers as DEGs

while day 5 contains the maximum number (11) of HCC

biomarkers in the predicted DEGs list (Figure 1E).

Analysis of CNAs, mutations, and SVs
from TCGA database

After examining gene expression profiling from the GEO

database, we went on to look at global genomic aberrations

using TCGA and cBioPortal, as well as all of the HCC
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datasets to look at overall CNAs, mutations, and SVs in the

case of HCC. Figure 2A shows the MANTIS Score

distributions for mutation count, fraction genome altered,

diagnostic age, and microsatellite instability (MSI) (which

predicts the MSI status of tumors). For this study, all of the

HCC samples from TCGA were chosen. In terms of mutation

count, we can see that 10 samples have the most (>150),
while 40–70 samples have a similar number of mutations

(>120 and 150), and the fraction of genome altered has

similar histogram patterns. The majority of the diagnosed

patients were between the ages of 50 and 75, with an MSI

MANTIS score of 0.4 for almost 400 patients and an MSI

MANTIS score of unknown for over 1000 samples. Figure 2B

shows the top 50 genes after giving the fundamental data of

mutations, CNAs, and SVs. Most of the top 50 genes are

specific, although AGN2 (which plays a vital function in

RNA interference) was found in both CNAs and SVs lists,

and CTNNB1 (a putative component of the adherens

junction) was found in both mutations and SVs lists.

After mapping the top 50 genes, we applied a threshold

level to all three scenarios (CNAs (10.0), mutations (3.0),

and SVs (0.5)) and used a venn diagram to compare these

gene lists to the enriched pathways lists (Figure 2C). We can

see that none of these three lists have a gene in common.

There were four genes shared by CNAs and the mutations

list, thirteen genes shared by mutations and SVs, and one

gene shared by SVs and the CNAs list. In terms of gene set

comparison, one pathway (PI3K-AKT) was shared by all

three lists, three pathways (MAPK, calcium, and focal

adhesion signaling) were shared by mutations and SVs,

and two routes (Ras and Rap1 signaling) were shared by

SVs and CNAs (Figure 2C) (Table 1).

FIGURE 2
Genomic-level alterations in HCCdatasets of TCGA database. (A)Histograms to present themutation count, fraction genome altered, diagnosis
age, andMSImantis score. (B) Percentage of patients with different types of alterations (CNA,Mutations, and SV) in case of HCC. (C)Venn diagrams to
display the shared and specific significant genes and pathways.
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Network-level understanding
potential HCC genes

Finally, we used the FunCoup network database of CNAs,

mutations, and SVs genes list to map out the networks, which we

then processed in cytoscape using network analyzer (Figures

3A–C). The statistics, degree distribution, and topological

coefficients of the networks were shown in Figure 3. The

degree distribution, topological coefficients, and statistical

features all show that the SVs network is densely connected,

followed by the CNAs network and mutations network (thinly

connected). PRPF3, EEF1D, EXOSC4, EIF3E, SF3B4, BOP1,

RAD21, MYC, RPL8, HSF1, HIF3E, FLAD1, PPP1R16A,

TOP1MT, MAF1, KRTCAP2, CYC1, and GRINA were shown

to be substantially related in the CNAs genes network. MYH15,

MYCBP2, HSPG2, USH2A, FN1, FBN1, CTNNB1, ARID1A, and

TABLE 1 Temporal enriched pathways.

Enriched pathways (CNA genes)

KEGG_04151_PI3K-Akt_signaling_pathway_-_Homo_sapiens_(human) 1.984127e-04

KEGG_04015_Rap1_signaling_pathway_-_Homo_sapiens_(human) 8.333333e-03

KEGG_04014_Ras_signaling_pathway_-_Homo_sapiens_(human) 4.166667e-02

KEGG_04360_Axon_guidance 4.166667e-02

Enriched pathways (Mutated genes)

KEGG_04151_PI3K-Akt_signaling_pathway_-_Homo_sapiens_(human) 2.480159e-05

KEGG_04510_Focal_adhesion 1.984127e-04

KEGG_04512_ECM-receptor_interaction 1.984127e-04

KEGG_04020_Calcium_signaling_pathway 8.333333e-03

KEGG_04010_MAPK_signaling_pathway 4.166667e-02

KEGG_04110_Cell_cycle 4.166667e-02

KEGG_04120_Ubiquitin_mediated_proteolysis 4.166667e-02

KEGG_04918_Thyroid_hormone_synthesis 4.166667e-02

Enriched pathways (SV genes)

KEGG_04010_MAPK_signaling_pathway 2.755732e-06

KEGG_04610_Complement_and_coagulation_cascades 2.480159e-05

KEGG_04151_PI3K-Akt_signaling_pathway_-_Homo_sapiens_(human) 1.984127e-04

KEGG_04310_Wnt_signaling_pathway 1.984127e-04

KEGG_04510_Focal_adhesion 1.984127e-04

KEGG_00980_Metabolism_of_xenobiotics_by_cytochrome_P450 1.388889e-03

KEGG_04014_Ras_signaling_pathway_-_Homo_sapiens_(human) 1.388889e-03

KEGG_04611_Platelet_activation 1.388889e-03

KEGG_04810_Regulation_of_actin_cytoskeleton 1.388889e-03

KEGG_04919_Thyroid_hormone_signaling_pathway 1.388889e-03

KEGG_00830_Retinol_metabolism 8.333333e-03

KEGG_00982_Drug_metabolism_-_cytochrome_P450 8.333333e-03

KEGG_04020_Calcium_signaling_pathway 8.333333e-03

KEGG_04371_Apelin_signaling_pathway_-_Homo_sapiens_(human) 8.333333e-03

KEGG_04921_Oxytocin_signaling_pathway 8.333333e-03

KEGG_00020_Citrate_cycle_(TCA_cycle) 4.166667e-02

KEGG_04015_Rap1_signaling_pathway_-_Homo_sapiens_(human) 4.166667e-02

KEGG_04022_cGMP-PKG_signaling_pathway_-_Homo_sapiens_(human) 4.166667e-02

KEGG_04141_Protein_processing_in_endoplasmic_reticulum 4.166667e-02

KEGG_04144_Endocytosis 4.166667e-02

KEGG_04261_Adrenergic_signaling_in_cardiomyocytes 4.166667e-02

KEGG_04392_Hippo_Signaling_Pathway 4.166667e-02

KEGG_04550_Signaling_pathways_regulating_pluripotency_of_stem_cells 4.166667e-02

KEGG_04723_Retrograde_endocannabinoid_signaling 4.166667e-02

KEGG_04916_Melanogenesis 4.166667e-02
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TTN were shown to be substantially related in the mutant genes

network. The strongly related genes in the SVs genes network were

ALDOB, SERPINC1, UGT1A6, NPLOC4, FGA, KRCC5, FGB,

PLRG1, CCNA2, CYP2C18, CALR, PPP2R5E, SFPQ, PRKACA,

PBRM1, PRKCA, EIF3L, RAB6A, and STK38. Based on the

general network notion, it might be concluded that genes that

appear to be heavily connected within the network are more

significant than genes that appear to be less connected.

Similarly, the more coupled genes have the potential to change

more genes, and as a result, more biological activities.

Furthermore, we plotted the gene networks and associated

pathways for CNAs genes, mutant genes, and SVs genes

(Figures 4A–C), where ADCY8, MYC, and PTK2 appear to be

part of a large number of essential signaling pathways in the case of

the CNAs genes network. CTNNB1, TP53, and RB1 have all been

linked to cancer or cancer-related signaling pathways, primarily in

HCC. PRKCA, TP53, TCF7L2, PAK1, ITPR2, CYP3A4, UGT1A6,

CTNNB1, GCK, and FGFR2/3 are among the genes in the SVs

genes network that connect a vast number of signaling pathways.

We conclude that the top-ranked CNAs, mutant, and SVs genes

have the ability to change at a higher-scale at the functional level

based on these three genes and pathways association networks.

Discussion

Using GEO and TCGA datasets, we adopted an

interdisciplinary strategy to investigate gene expression profiles,

somatic mutations, CNAs, and SVs analyses. The gene

expression datasets were divided into two categories: temporal

datasets infected with HCV and non-temporal datasets clear of

HCV infection. This study took into account all of the HCC datasets

in the TCGA database. Furthermore, we used a network biology

technique (Barabasi and Oltvai, 2004; Emmert-Streib and Glazko,

FIGURE 3
Network-level understanding top-ranked genes. (A) CNA genes network, (B) Mutated genes, and (C) SV genes network followed by their
respective analysis (degree distribution and topological coefficients).
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2010; Hu et al., 2016) to better understand the relationship between

top-ranked genes in terms of linkage while they were altered. The

SVs genes network appears to be the most densely connected,

followed by the CNAs and mutant gene networks. Moreover, we

have also used those data where the infection is associated withHBV

to evaluate the broad spectrum of the impact of infection in addition

to HCC at gene expression and functional levels.

The assessment of the clonality of each somatic aberration

enables the deconvolution of the sequence of oncogenic events that

occur during tumor initiation or progression. Assuming that clonal

alterations originated prior to subclonal alterations within the

same tumor, we examined pairs of genes that are aberrant in

the same sample and across multiple tumors to determine the

directionality of the clonal-subclonal hierarchy (Cibulskis et al.,

2012; Klijn et al., 2013; Li and Li, 2014; Swanton, 2014). HCC

subtypes are classified by gene clustering of tumor specific genes

which resolve the HCC pathogenesis according to their etiological

factor, clinical stage, recurrence rate, and prognosis. The

expression in genes regulating cell proliferation and anti-

apoptotic pathways such as PNCA and cell cycle regulators

CDK4, CCNB1, CCNA2, and CKS2 and ubiquitination

mechanisms were studied previously. In addition to that several

molecular markers of tumor progression like HSP70, CAP2,

GPC3, and GS were also expressed in expression profiling. The

expression profiling by time course analysis has identified several

genes as a progression marker in HCC such as GPC3, CXCL12,

SPINK1, GLUL, UBD, TM4SF5, DPT, SCD, MAL2, TRIM55, and

COL4A2. Meanwhile the specific alteration of HCC signals

transduction pathways and protein expression have given the

opportunities for new therapies targeting new molecular factors.

High-throughput data (genomic and proteomic) are frequently

generated with the goal to understand the genotype-phenotype

relationship in the complex diseases (Emilsson et al., 2008;

Gonzalez-Perez et al., 2013; van’t Veer et al., 2002).

Among the most common enriched pathways are PI3K, cAMP,

TGF, TNF, Rap1, NF-kB, Apoptosis, Longevity regulating pathway,

FIGURE 4
Network-level understanding top-ranked genes and the associated pathways. (A)CNAgenes network, (B)Mutated genes, (C) SV genes network
followed by their respective analysis, and (D) mRNA and protein expression in liver and gallbladder tissues (source protein atlas).
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signaling pathways regulating pluripotency of stem cells, Cytokine-

cytokine receptor interaction, p53 signaling, Wnt signaling, Toll-like

receptor signaling, and Hippo signaling pathways. Majority of these

pathways well characterized for immune controlling system, infection

and inflammation, and human diseases such as cancer. PRPF3,

EEF1D, EXOSC4, EIF3E, SF3B4, BOP1, RAD21, MYC, RPL8,

HSF1, HIF3E, FLAD1, PPP1R16A, TOP1MT, MAF1, KRTCAP2,

CYC1, and GRINA were highly connected in case of CNAs network,

inmutated genes network,MYH15,MYCBP2,HSPG2,USH2A, FN1,

FBN1, CTNNB1, ARID1A, and TTN were highly connected, and

ALDOB, SERPINC1, UGT1A6, NPLOC4, FGA, KRCC5, FGB,

PLRG1, CCNA2, CYP2C18, CALR, PPP2R5E, SFPQ, PRKACA,

PBRM1, PRKCA, EIF3L, RAB6A, and STK38 were among the

highly connected genes in SVs genes network. CTNNB1, TP53,

RB1, ADCY8, MYC, PTK2, PRKCA, TP53, TCF7L2, PAK1,

ITPR2, CYP3A4, UGT1A6, CTNNB1, GCK, and FGFR2/3 were

among the genes whose alterations could possibly alter a large number

of critical biological functions including those which directly infer the

cancer mainly the HCC pathways. Moreover, we have also presented

the expression (mRNA and protein) (Figure 4D) of some of the

potential genes in case of human liver and gallbladder tissues by using

the Protein Atlas database (Uhlén et al., 2005, 2017, 2019; Cancer

Genome Atlas Research Network, 2008). This study could be an

example to apply the integrative approach for a number of complex

diseases such cancers, type-2 diabetes, cardiovascular diseases, and

neurological disorders (Varambally et al., 2005; Taylor et al., 2010;Van

Herle et al., 2012; Zhang et al., 2015; Huwait and Mobashir, 2022).

Conclusions

According to our findings, only a few genes, such as CLK2,

E2F5, CDK5, E2F3, MCM3, PCNA, and CDK4, are highly

overexpressed among HCC patients, and the overall

expression of all the selected biomarkers appears in more than

60% of the patients, and in terms of co-occurrence, CCNB2,

CLK2, CDK4, CDC7, E2F3, PCNA, and MCM3 appear to be the

dominantly c Following a temporal analysis, it was discovered

that the early stages of HCV infection tend to be more harmful in

terms of expression shifting patterns, and that there is no

significant change after that, followed by a set of genes that

are consistently altered. In contrast to our expression data profile,

following 4 days of HCV infection, a group of pathways is always

affected. PI3K, cAMP, TGF, TNF, Rap1, NF-kB, Apoptosis,

Longevity regulating pathway, signaling pathways regulating

pluripotency of stem cells, Cytokine-cytokine receptor

interaction, p53 signaling, Wnt signaling, Toll-like receptor

signaling, and Hippo signaling pathways are all highly altered

pathways in HCC infected with HCV, according to our findings.

The majority of these pathways are well-known for their roles in

the immune system, infection and inflammation, and human

illnesses like cancer. PI3K, cAMP, TGF, TNF, Rap1, NF-kB,

Apoptosis, Longevity regulating pathway, signaling pathways

regulating pluripotency of stem cells, Cytokine-cytokine

receptor interaction, p53 signaling, Wnt signaling, Toll-like

receptor signaling, and Hippo signaling pathways are just a

few of the most commonly enriched pathways. Most of these

pathways are well-known for their functions in the immune

system, infection and inflammation, and human diseases such as

cancer. According to the networks of genes and pathways based

on CNAs, mutations, and SVs, ADCY8, MYC, PTK2, CTNNB1,

TP53, RB1, PRKCA, TCF7L2, PAK1, ITPR2, CYP3A4, UGT1A6,

GCK, and FGFR2/3 appear to be among the prominent genes.

Methods

We have selected genome-wide expression and mutational data

forHCCwithHCV infection andwithoutHCV infection samples. By

applying computational approach and integrating experimental data,

we have unraveled the critical genes and the pathways which appear

to be associatedwith humanHCC.Wehave selected different datasets

and the dataset details are as follows: In GSE63863 (https://www.ncbi.

nlm.nih.gov/geo/query/acc.cgi?acc=GSE63863), using theMassArray

EpiTyper, they have looked at a TERT methylation assay that

included the UTSS region in 125 matched HCC samples and then

analyzed a validation set of 12 matched HCC samples and obtained

the TERT gene’s FPKM value to determine the association between

TERT promoter methylation status and TERT expression level. In

case of GSE14520 (https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?

acc=gse14520), tumors and the associated non-tumor tissues were

analyzed independently using a single channel array technology for

gene expression profiling. On Affymetrix GeneChip HG-U133A 2.

0 arrays, tumor and paired non-tumor samples from 22 patients in

cohort 1 and the normal liver pool were analyzed according to the

manufacturer’s methodology. An Affymetrix GeneChip Scanner

3000 was used to measure fluorescence intensities, which was

controlled by GCOS Affymetrix software. The 96 HT HG-U133A

microarray platformwas used to process all samples from cohort 2 as

well as 42 tumor and non-tumor samples. An Affymetrix GeneChip

HT Array Plate Scanner was used to determine the fluorescence

intensities, which was controlled by GCOS Affymetrix software. We

have also used HCV specific dataset GSE126831 (https://www.ncbi.

nlm.nih.gov/geo/query/acc.cgi?acc=GSE126831) where integrated

genomic analysis was used to investigate time-resolved HCV

infection of hepatocyte-like cells and they discovered pathways

relevant for liver disease pathogenesis that have verified in the

livers of 216 cirrhotic patients with HCV using differential

expression, gene set enrichment analysis, and protein-protein

interaction mapping.

In this study, from on previous study, we have collected the

genes as biomarkers in case of HCC and studied their clinical

relevance and have also studied the publicly available dataset

(GSE126831 (Lupberger et al., 2019a)) related to gene expression

profiling. In comparison from the previous work, we have applied

different approach where we have started our work by mapping the
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known association (publicly available network database) FunCoup

(Alexeyenko and Sonnhammer, 2009), investigated the clinical

significance of the overexpression of HCC biomarkers, and

finally studied DEGs and the enriched pathways from the gene

expression data (obtained from Gene Expression Omnibus).

Further, we have utilized the HCC datasets from TCGA database

and by using cBioPortal explored all possible mutations, CNAs, and

SVs (Koboldt et al., 2012; Werner et al., 2014).

Initially, we have selected the dataset (raw expression dataset)

GSE126831 (Lupberger et al., 2019a) for HCC and processed it for

normalization and log2 values of all the mapped genes.

GSE126831 comprises 63 samples ranging from day 0–10

(temporal samples infected with HCV and mocked samples),

with three mocked RNA samples for day 0 and three mocked

and three RNA infected with HCV samples for days 1–10. We

compared faked samples toHCV infected samples at the respective

day of infection for differential gene expression profiling. mRNA

profiles of sham orHCV-infectedHuh7.5.1dif cells, obtained every

day between days 0 and 10 after infection in triplicate. At 7 days

after infection, the HCV infection had reached a halt (pi).

Unspecific effects cannot be ruled out after day 7 pi.

The paired-end reads from all 63 samples were aligned to the

human hg19 UCSC reference using TopHat software for

transcriptome profiling at Illumina NextSeq 500 (Homo sapiens)

RNA sequencing (v2.0.14). The Cufflinks package’s cuffquant and

cuffnormwere used to calculate gene expression levels (FPKMvalues)

(v2.2.1). By creating analytical groups, proteins and transcripts were

mapped. Supplementary Files format and content: hg19 Genome

build: hg19 The RPKM values for each sample and the results of a

differential expression analysis ofmapped transcripts are stored in tab-

delimited text files. Now, we proceed for our major goal which is to

understand the gene expression patterns (Lapointe et al., 2004;

Subramanian et al., 2005) and its inferred functions (Subramanian

et al., 2005; Mi et al., 2016) and also the impact of HCC biomarker

genes. We used MATLAB tools (e.g., mattest) for differential gene

expression prediction and statistical analysis, and for pathway analysis,

we used theKEGGdatabase (Kanehisa et al., 2007, 2009) and in-house

code created for pathway and network research (Bajrai L. et al., 2021;

Kamal et al., 2020; Khouja et al., 2022a; Kumar et al., 2020;Warsi et al.,

2020). Furthermore, we took all of the HCC samples from the TCGA

database and used cBioPortal to look for mutations, CAN, and SV, as

well as prepare a list of genes using a threshold cutoff. The CNA

threshold was set at 10.0, the mutation threshold at 3.0, and the SV

threshold was set at 0.5. As previously stated, this collection of genes

has been processed for pathway enrichment analysis. For the GEO

datasets, GEO2R was applied for the calculation of p-values and fold

changes. GEO2R is a web-based tool that allows users to compare two

or more groups of Samples in a GEO Series to find genes that are

differentially expressed under different experimental settings. The

results are supplied as a table of genes ordered by significance, as

well as a set of graphic graphs to help visualise differentially expressed

genes and assess data set quality (Bajrai L. et al., 2021; Bajrai et al.,

2021 L. H.; Eldakhakhny et al., 2021; Khouja et al., 2022b). FunCoup

(Reynolds et al., 2010) was used to generate DEGs networks for all of

the networks in this study, and cytoscape was utilized to visualize the

networks. Protein complexes, protein-protein physical interactions,

metabolic, and signaling pathways are among the four types of

functional coupling or linkages predicted by FunCoup. MATLAB

has been used for themajority of our code and calculations. Cytoscape

(Shannon et al., 2003; Skov et al., 2012), network database (PPI),

ProgeneV2, and other fundamental tools are among the extra

applications and resources used (Krishnamoorthy et al., 2020;

Bajrai L. et al., 2021; Bajrai et al., 2021 L. H.; Eldakhakhny et al.,

2021; Ahmed et al., 2022; Anwer et al., 2022).
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