
Land Use and Land Cover Changes: A Case Study of Bandarban 

District 

 

Course Title: Project and Seminar 

Course Code: ESDM 410 

 

[A dissertation has been prepared and submitted for the partial fulfillment of the 

degree B.Sc. in ESDM] 

 

Prepared and submitted by 

Maynul Islam Suvo 

ID No: 191-30-004 

Department of Environmental Science and Disaster Management 

Daffodil International University 

 

Supervised by 

Dr. Mahfuza Parveen 

Associate Professor 

Department of Environmental Science and Disaster Management 

Daffodil International University 

 

 

 

Daffodil International University 



 

II | P a g e  

 © Daffodil International University 

 

DEDICATION 

I would like to express my heartfelt gratitude and dedication to my beloved parents who 

have been a constant source of support and encouragement throughout my academic 

journey and life. Their unwavering love and guidance have played an integral role in 

shaping me into the person I am today. 

I would also like to extend my sincere appreciation to my respected teachers, whose 

compassionate and consistent cooperation and guidance have been invaluable to me. 

Their dedication to teaching and commitment to my academic success have been 

instrumental in helping me achieve my goals. 

I am truly grateful for the unwavering support and guidance of my parents and teachers, 

and I will always cherish their contributions to my life and education.  



 

III | P a g e  

 © Daffodil International University 

DECLARATION 

The paper entitled “Land Use and Land Cover Changes: A Case Study of Bandarban 

District” has been prepared by me to submit to the Department of Environmental 

Science and Disaster Management, Daffodil International University as a requirement 

for the partial fulfillment of the degree B.Sc. in ESDM. This paper has neither been 

submitted nor been accepted elsewhere for any purposes. To my best knowledge and 

conviction, it contains no material beforehand distributed or composed by someone 

else, aside from when due references are made in the content of this paper. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Author 

 

…………………………………… 

ID No: 191-30-004 

Batch: 26 

Department of Environmental Science and Disaster Management, 

Daffodil International University 



 

IV | P a g e  

 © Daffodil International University 

CERTIFICATION 

 

This is to be certified that, ID No:191-30-004, Batch: 26 has prepared this paper entitled 

“Land Use and Land Cover Changes: A Case Study of Bandarban District” under my 

supervision. I do hereby approve the style and content of this paper. This is for the 

partial fulfilment of the degree of B.Sc. in ESDM, Daffodil International University. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

……………………………………… 

Dr. Mahfuza Parveen 

(Supervisor) 

Associate Professor 

Department of Environmental Science and Disaster Management 

Daffodil International University 

 



 

V | P a g e  

 © Daffodil International University 

ACKNOWLEDGEMENT 

 

At first, I would like to convey my deep gratitude to the Almighty Allah for giving me 

the ability to complete my research work in sound health. 

Then I express my heartiest gratitude and profound respect to my honorable supervisor 

Dr. Mahfuza Parveen, Associate Professor, Department of Environmental Science and 

Disaster Management, Daffodil International University for persistence guidance and 

productive criticism, Suggestion, and encouragement. 

I am grateful to Dr. A.B.M. Kamal Pasha, professor and Head, Md. Azharul Haque 

Chowdhury, Assistant Professor, Md. Sadril Islam Khan, Senior Lecturer, Department 

of Environmental Science and Disaster Management (ESDM), Daffodil International 

University (DIU) for their encouragement, effort, and guidance. Without their 

enormous trust, support, help, ideas and illuminating instruction this Thesis could not 

have reached its present form. 

I am thankful to Sagar Mozumder, Lecturer, Department of Environmental Science and 

Disaster Management, Daffodil International University for his kind cooperation 

support. 

Finally, I would like to express my earnest gratefulness to my parents, because all my 

academic achievements are the outcome of the sacrifices of my family, and they are 

only source of inspiration of any achievement of my life. 

 

  



 

VI | P a g e  

 © Daffodil International University 

Abbreviations and Acronyms 

LULC:         Land Use and Land Cover Change 

GIS:            Geography Information System 

RS:             Remote Sensing 

USGS:        United States Geological Survey 

TM:           Thematic Mapper 

ETM+:      Enhanced Thermic Mapper 

OLI:          Operational Land Imager 

TIRS:        Thermal Infrared Sensor 

WGS:       World geodetic System 

NASA:      National Aeronautics and Space Administration 

 

  



 

VII | P a g e  

 © Daffodil International University 

ABSTRACT 

In the Bandarban district of Bangladesh, optical satellite imagery has been analyzed for 

the purpose of determining the spatial distribution of land use and land cover (LULC) 

categories, as well as the temporal changes that have occurred, and making predictions 

about those categories. This is the primary study area work in which multi-temporal 

Landsat imagery has been utilized to generate LULC maps for the years 1992, 2002, 

2012, and 2022. The first part of the process consisted of deriving a total of six LULC 

categories through the integration of NDVI and supervise classification techniques. 

These categories also were evaluated through the use of the error matrix table and kappa 

statistics. Overall accuracy and Kappa statistic for all four years were both above 90%, 

according to the results of the accuracy assessment process. An exhaustive change 

analysis was performed with the help of the Land Change Modeler (LCM), and the 

results showed that significant shifts had occurred in the hilly forest, shrub land, and 

crop land categories between the years 1992 and 2022. From 1992 to 2022, hill forest 

decreased 74.41% to 46.66%, or 121504 hectares, while shrub land and cropland 

increased 16.48% to 43.61% and 5.26% to 7.39%, respectively. During the second stage 

of the process, Markov chain-cellular automata was utilized to model and make 

predictions regarding LULC in the study area. The Markov chain was used first to 

generate transition probability matrices between LULC categories, and then cellular 

automata was used to predict the LULC map for 2022 to validation. Afterwards, 

following the successful validation of the observed and predicted LULC maps for 2022 

(approximately similar), the combined procedure was used to simulate land use and 

land-cover for 2052. The results of the simulation for the years 2022-2052 showed a 

significant rise in the amount of shrub land, crop land, and settlement area while there 

was a dramatic decrease in the amount of hilly forest, which dropped from 46.66% to 

32.59%. All of these findings from the research could offer the opportunity for more 

skilled management and policy making in the study region regarding biodiversity, 

forests, land, and other environmental resources. 
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CHAPTER 1. INTRODUCTION 

1.1 Background 

The importance of land as a vital natural resource for human survival and prosperity, 

and for the balanced functioning of terrestrial ecosystems cannot be overstated [1]. 

Changes in land cover are easily observable and serve as significant indicators of 

alterations to the Earth's surface [1]. In modern times, information on land cover is vital 

across various aspects of life, including the scientific, economic, and political realms 

[1]. Detecting changes in land use and land cover is crucial in determining the impact 

of human activities on the planet [2]. Anthropogenic influences, especially changes in 

land cover, are widely regarded as one of the primary factors contributing to 

environmental degradation [3]. Therefore, estimating temporal changes in land cover 

enables the evaluation of the rate at which changes advance, links them with issues or 

impacts, and improves predictions of future trends and impacts in environmentally 

degraded areas [4]. The causes of land cover changes are multifaceted, including factors 

such as tropical deforestation, conversion of forested land to agricultural land, 

urbanization, encroachment, and other human interventions [5, 6]. Land cover changes 

are also influenced by socioeconomic and biophysical factors [7]. 

The degradation of soil caused by LULCC is a silent disaster for terrestrial ecosystems. 

The erosion of the most nutrient-rich topsoil, breaking of the food chain, and damage 

to wildlife habitats leads to a loss of biodiversity and ecosystem services [46, 47, 48, 

49, 51]. Additionally, LULCC contributes to pollution in the atmosphere, hydrosphere, 

and biosphere from various point and non-point sources [52], increased concentration 

of CO2 and other greenhouse gases in the atmosphere [50], and disrupted hydrological 

cycles. 

LULCC is a dynamic process that is occurring globally [4]. Bangladesh, being 

primarily an agricultural nation with a greater proportion of rural than urban areas, has 

experienced significant levels of LULCC due to heavy population pressure and the 

urbanization process [8]. Only 10.96% of Bangladesh was covered by vegetation in 

2016, and the majority of that land was covered by evergreen and semi-evergreen 

tropical rain forests, most of which are located in the Chittagong hill tracts region [10]. 

Bandarban, one of the three hill districts of Bangladesh and a part of the Chittagong 

Hill Tracts, is an area with pristine natural resources and rich flora and fauna diversity 
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[11]. However, the natural resources in the Bandarban region have been deteriorating 

due to shifting land use and land cover patterns. Therefore, proper environmental 

conservation and ecological engineering design are essential to protect forest quality 

and the entire ecosystem in the region [8]. 

LULCC is a significant issue with global implications. The causes and consequences 

of LULCC are multifaceted, affecting environmental, economic, and social aspects of 

life. Estimating temporal changes in land cover is essential for evaluating the rate at 

which changes advance, linking them with issues or impacts, and improving predictions 

of future trends and impacts in environmentally degraded areas. In Bangladesh, LULCC 

is primarily driven by population pressure and the urbanization process, leading to the 

deterioration of natural resources in areas such as Bandarban. Therefore, proper 

environmental conservation and ecological engineering design are critical to protect 

forest quality and the entire ecosystem in the region. 

1.2 Justification 

Geographic Information System (GIS) and Remote Sensing (RS) are powerful tools for 

analyzing and modeling Land Use and Land Cover (LULC) changes. These techniques 

have been used extensively for monitoring natural resources through sustainable 

resource management [8]. Traditional ground-based methods of monitoring vegetation 

cover are labor-intensive, time-consuming, and produce maps that quickly become 

obsolete, particularly in rapidly changing environments [12]. Remote sensing data have 

become the primary data source for change detection applications due to their higher 

temporal resolution, wider synoptic perspective, and digital format. Satellite data 

sources provide more precise estimates than traditional inventory techniques, and their 

low cost or free availability makes them a useful tool for forest managers and scientists 

in developing countries like Bangladesh. 

Geographic Information System and Remote Sensing allow for critical analysis and 

decision support for changes in the Earth's surface in an appropriate time frame. Remote 

sensing data from multi-temporal and multispectral satellite images with multiple 

spatial resolutions provide great potential for LULC monitoring [38], including 

historical patterns and future simulations, which are required for sustainable land use, 

planning, and policy development at the governmental and non-governmental levels. 

GIS is used to model and simulate LULC using information obtained from remotely 
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sensed data [39, 40]. There are two main categories of LULC models: spatial and 

aspatial. Spatial models are used to predict LULC in a particular region and associated 

factors [44]. Empirical-statistical models and rule-based models are included in the 

spatial category and are primarily used to analyze the changing pattern and spatial 

location of existing and potential future LULC changes. The Markov chain model 

integrated with Cellular Automata is a popular spatial model used for spatio-temporal 

modeling of LULC. 

Although Bangladesh has started to use satellite images and GIS applications, currently 

there has no land cover change detection studies in the Bandarban district. This region 

has a significant tourism industry, but it is facing environmental challenges due to the 

depletion of its forest cover and natural resources [14]. Therefore, this study aims to 

analyze the land use and land cover changes of the Bandarban district using Landsat 

time-series imagery from 1992 to 2022 (30-year time range) and simulate future 

scenarios using spatial simulation (Markov chain and Cellular Automata) if the current 

trend of conversion continues. This district has been selected because to its significant 

tourism concentration and flourishment of settlement. 

1.3 Objectives of the Study 

 

• To develop and monitor the land use and land cover maps of Bandarban using 

ArcGIS for the year 1992 to 2022 (time range of 30 years) with 10 years interval. 

 

• To simulate the future scenario, if the current trend of conversion is continued by 

using spatial modeling (Markov chain and cellular automata). 

 

• To analysis how the land cover of the study area is changing over the period of time. 
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CHAPTER 2. LITERATURE REVIEW 

2.1  Land Use and Land Cover Change 

Land cover refers to the biophysical features, such as the physical, chemical, or 

biological categorization of the Earth's surface, such as grassland, forest, or concrete, 

while land use refers to the human purpose or intent applied to these attributes, such as 

cattle, recreation, or urban living [14]. Land use and land cover changes are related, but 

they are not the same. Land cover change can occur as a result of land conversion, land 

modification, or various land management practices. Land use change is also referred 

to as the modification or alternation of land use types and the conversion of one type of 

land use to another. Land cover may change as a consequence of biophysical factors, 

although this is typically the result of human-induced land use change [15]. 

2.2  Geographical Information System (GIS) 

Geographic Information System (GIS) is a computer system made up of hardware and 

software for collecting, storing, retrieving, processing, and displaying geospatial data. 

This system makes it easier to store, manipulate, analyse, model, depict, and display 

geo-referenced data in order to address resource-related complicated problems [16]. 

Some of the primary functions of GIS include data entry, management, data display, 

information sorting, and data analysis. GIS can be used in the study of hydrology, urban 

planning, engineering, environmental and natural resource management, history, 

networking, facility management, crime, etc. since it can be used to find distances, 

quantities, densities, locations, map locations, and monitor changes [17, 18]. 

2.3  Remote sensing (RS) 

Remote sensing is the study of acquiring information about particular properties of 

phenomena, objects, or materials via measurements taken at a distance from the object. 

Remote sensing can be described as a method of gathering data on the Earth's land and 

water bodies by capturing images from a high-altitude perspective, utilizing 

electromagnetic radiation within different parts of the electromagnetic spectrum, which 

are either reflected or emitted by the Earth's surface.[15]. Various objects reflect 

different types of radiation in different electromagnetic spectrum bands, depending on 

the material's characteristics, roughness, intensity, angle, and wavelength. All natural 

and man-made things reflect or emit electromagnetic radiation, which includes both 

visible light and unseen thermal infrared energy. Remote sensing is used to measure 
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and gather this energy. Active and passive devices are indeed used in the process of 

remote sensing. Active devices, such as radar, beam, and the like, intentionally produce 

energy to deliver to a certain object and collect its reflection. Passive devices 

automatically detect the object's natural emission of energy [19]. 

2.4  ArcGIS 

ArcGIS is a geographical information system (GIS) software that enables the 

management and analysis of geographic data through the visualization of geographical 

statistics on layer-building maps, such as climate data and trade flow. The system is a 

general-purpose GIS software programme developed by ESRI. It is a comprehensive 

and integrated software platform technology that is used for the development of 

operational GIS. The software system ArcGIS consists of four key components, which 

together provide a wide range of functionalities related to geographic information. 

These components include a geographic information model for simulating aspects of 

the real world, tools for storing and managing geographic information in files and 

databases, a suite of pre-built applications for creating, editing, analyzing, mapping, 

and sharing geographic information, and a set of web services that offer data and 

functions to networked software clients. 

One of the significant advantages of ArcGIS is its versatility, as it can be deployed on 

various devices, including mobile devices, laptops, desktops, and servers. By using this 

system, users can access a range of advanced capabilities, including the ability to create 

detailed maps and visualizations, analyze spatial data, and share information with others 

through various platforms and formats. 

In more detail, the geographic information model included in ArcGIS allows users to 

simulate real-world environments, providing a powerful tool for planning, analysis, and 

decision-making in many different contexts. This model can be used to represent a 

range of geographic features and phenomena, including terrain, land use, and natural 

resources. 

Meanwhile, ArcGIS also includes various tools for storing and managing geographic 

information, which can be saved in files or databases. These tools enable users to keep 

track of various types of data, including maps, imagery, and tabular data, and to 

organize and retrieve this information as needed. 
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In addition to these capabilities, ArcGIS includes a suite of pre-built applications that 

provide a wide range of functionalities for creating, editing, analyzing, mapping, and 

sharing geographic information. These applications are designed to be user-friendly and 

intuitive, making it easy for users to work with complex spatial data and perform a 

range of tasks related to geographic information. 

Finally, ArcGIS also includes a set of web services that offer data and functions to 

networked software clients, providing users with access to a wealth of additional 

resources. These services can be used to access real-time data, perform spatial analysis, 

and share information with others through web-based platforms and applications. 

Overall, ArcGIS provides a comprehensive set of tools and capabilities for working 

with geographic information, making it an essential resource for a wide range of 

professionals and organizations. Whether used for urban planning, environmental 

analysis, or emergency response, this system offers a powerful suite of features that can 

help users to visualize, understand, and manage the complex world around us. 

2.5  Landsat Satellite Image 

For several decades, the United States Geological Survey (USGS) and the National 

Aeronautics and Space Administration (NASA) have been actively involved in 

monitoring the Earth's surface through the use of remote sensing technology. In this 

study, utilized satellite imagery obtained from Landsat-5 TM, Landsat-7 ETM+, and 

Landsat-8 OLI-TIRS platforms. These highly advanced and sophisticated satellites 

capture high-resolution images of the Earth's land and water surfaces by sensing 

electromagnetic radiation across various wavelengths. By analyzing the spectral 

signatures present in the collected data, scientists can gain insights into a wide range of 

phenomena, including land use and land cover changes, vegetation health, and water 

quality. 
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Table 1: Landsat 5 TM, Details of Landsat 5 bands [20]. 

Landsat 5 Wavelenth 

(micrometers) 

Resolution 

(meters) 

Band 1 - Blue 0.45-0.52 30 

Band 2 - Green 0.52-0.60 30 

Band 3 - Red 0.63-0.69 30 

Band 4 - Near Infrared (NIR) 0.76-0.90 30 

Band 5 - Near Infrared (NIR) 1.55-1.75 30 

Band 6 - Thermal 10.40-12.50 30 

Band 7 - Shortwave Infrared (SWIR) 2.08-2.35 30 

 

Table 2: Landsat 7 ETM+, Details of Landsat 7 bands [20]. 

Landsat 7 Wavelength 

(micrometers) 

Resolution 

(meters) 

Band 1 - Blue 0.45-0.52 30 

Band 2 - Green 0.52-0.60 30 

Band 3 - Red 0.63-0.69 30 

Band 4 - Near Infrared (NIR) 0.77-0.90 30 

Band 5 - Shortwave Infrared (SWIR) 1 1.55-1.75 30 

Band 6 - Thermal 10.40-12.50 60 (30) 

Band 7 - Shortwave Infrared (SWIR) 2 2.09-2.35 30 
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Band 8 - Panchromatic .52-.90 15 

 

Table 3: Landsat 8 OLI, Details of Landsat 8 bands [20]. 

Landsat 8 Wavelength 

(micrometers) 

Resolution 

(meters) 

Band 1 - Coastal aerosol 0.43-0.45 30 

Band 2 - Blue 0.45-0.51 30 

Band 3 - Green 0.53-0.59 30 

Band 4 - Red 0.64-0.67 30 

Band 5 - Near Infrared (NIR) 0.85-0.88 30 

Band 6 - Shortwave Infrared (SWIR) 1 1.57-1.65 30 

Band 7 - Shortwave Infrared (SWIR) 2 2.11-2.29 30 

Band 8 - Panchromatic 0.50-0.68 15 

Band 9 - Cirrus 1.36-1.38 30 

Band 10 - Thermal Infrared (TIRS) 1 10.6-11.19 100 

Band 11 - Thermal Infrared (TIRS) 2 11.50-12.51 100 

 

2.6  Supervised Image Classification 

Supervised classification is a quantitative technique commonly employed for analyzing 

remotely sensed image data. It operates on the principle that a user can select sample 

pixels within an image that are representative of specific classes and then utilize these 

training sites as references for the classification of all other pixels. Essentially, the 

technique involves dividing the spectral domain of the image into areas that correspond 

to different types of ground cover, and then using the known samples to classify the 
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unknown pixels. The accuracy of the classification depends on the quality and 

representativeness of the chosen training sites, and successful implementation of this 

technique requires significant knowledge and experience [21]. 

2.7 Accuracy assessment 

Accuracy assessment is an important step in the processing of remotely sensed data. It 

implies that the classified image was verified using the reference image. Accuracy 

assessment allows for the evaluation of errors that may have been carried on by the 

preprocessing phase, the imaging systems, or by both manual and automated 

interpretative methods. While evaluating the accuracy of the classified image, a 

comparison is made between the ways in which pixels are classified and the definitive 

land cover conditions obtained from their corresponding locations in the real world 

[22]. 

CHAPTER 3. METHODOLOGY 

3.1  Study Area 

Bandarban District, located in the southeastern Chittagong Division of Bangladesh, is 

known for being the country's most remote and sparsely populated district. It is situated 

within the Chittagong Hill Tracts, which comprises three districts, including Rangamati 

and Khagrachhari. With its stunning natural landscapes, Bandarban is considered to be 

one of the most alluring tourist destinations in Bangladesh. The study area, which was 

used to classify land use and land cover, covers a total land area of 437,824 hectares, 

ranging between 21°11' and 22°22' north latitudes and 92°04' and 92°41' east 

longitudes. The district shares its borders with Rangamati District to the north, Arakan 

(Myanmar) to the south, Chin Province (Myanmar) and Rangamati District to the east, 

and Chittagong and Cox's Bazar District to the west. Bandarban is a district situated in 

the southeastern Chittagong Division of Bangladesh, and is considered the most remote 

and sparsely populated area of the country. It is part of the Chittagong Hill Tracts, along 

with Rangamati District and Khagrachhari District. 
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Figure 1: Location map of Bandarban District, Bangladesh 

Among the notable hills in this district are Marmiana Tang, Bathil Tang, Kewkradang, 

Langfi Tang, Lakpang Tang, Thaingkiang Tang, Moudak Tang, Murangiang Tang, 

Rungrang Tang, Naprai Tang, Murifa Tang, Busi Tang, and Sara Tang. The population 

of the district is 298120, with 162133 males and 135987 females. The major religious 

groups are Muslims, Hindus, Buddhists, Christians, and others. Indigenous 

communities living in this upazila include Marma, Chakma, Bawm, Murong, Tripura, 

Khyang, Khumee, and Lushei. The economy of Bandarban is mainly based on 

agriculture, with 61.95% of the population engaged in agricultural activities. Non-

agricultural labor accounts for 7%, while industries contribute 0.48%, commerce 

9.92%, transport and communication 1.11%, construction 1.08%, religious service 

0.26%, service 8.12%, rent and remittances 0.37%, and others 9.71%. 

Bandarban has a tropical climate with three distinct seasons, including a dry, cool 

season from November to March, a hot, humid season from April to May, and a warm, 

cloudy, wet monsoon from June to October. The district's annual average temperature 

ranges from a high of 37°C to a low of 12.5°C, with an average temperature of 25.0 °C 

(76.9 °F), which is slightly lower than the national average. The annual precipitation is 

approximately 2085 mm | 82.1 inches. 
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Bandarban's economy is predominantly based on subsistence farming, known as Jumia, 

which makes it difficult to generate significant economic value. The major exports from 

the district include fruits such as banana, pineapple, jackfruit, and papaya, as well as 

masala like ginger and turmeric, and tribal textiles. The tourism industry is rapidly 

growing and has become an important source of revenue. However, much of the fruit 

trade and other commerce in the area has been taken over by Bengali settlers. 

3.2 Satellite Data acquisition 

The use of satellite imagery to study and analyze land use and land cover (LULC) on 

both a regional and a global scale has proven to have significant potential in recent 

years. This potential lies in the fact that satellite imagery can provide researchers with 

a comprehensive overview of the earth's surface over time, allowing them to track 

changes in land use and land cover patterns and their impacts on the environment. In 

this study, utilized Landsat data to investigate the changing patterns of land use and 

land cover in the Bandarban district of Bangladesh. To cover the entire study area, 

multiple paths and rows of Landsat image tiles were utilized, including path 135, 136, 

and row 45. 

In order to ensure the accuracy of their findings, the researchers acquired two satellite 

scenes from each year for the dry season (December-February) from the Earth 

Resources Observation and Science (EROS) Center through the USGS Global 

Visualization Viewer. This acquisition of eight images included two Landsat5 TM 

images for 1992, two Landsat7 ETM+ images for 2002, two Landsat7 ETM+ images 

for 2012, and two Landsat8 OLI-TIRS images for 2022. By acquiring satellite images 

from the dry season, the researchers aimed to minimize seasonal influences that could 

potentially skew their results. 

Furthermore, the imagery acquired for 1992, 2002, 2012, and 2022 from Google Earth 

Pro Map were utilized for the accuracy assessment of the classification. In this study, 

conducted this accuracy assessment to verify the validity of their results and ensure that 

their classification accurately reflects the LULC patterns of the Bandarban district. 

Overall, the use of satellite imagery and Landsat data in this study provides a valuable 

insight into the changing patterns of land use and land cover in Bandarban, which can 

inform future land management decisions and aid in the conservation of the region's 

natural resources. 
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Table 4: Detailed information of Landsat Images used in this study. 

Year Date of 

acquisition 

WRS 

Path 

WRS 

Row 

Cloud 

Cover 

Image 

quality 

Sensor Spatial 

Resolution 

 

31st January 

 

07th December 

 

135 

 

136 

45 

 

45 

2.00 

 

3.00 

7 

 

7 

Landsat5 TM 

 

Landsat5 TM 

30 

 

30 

 
 

7th March 

 

26th February 

135 

 

136 

45 

 

45 

0.00 

 

0.00 

9 

 

9 

Landsat7 

ETM+ 

Landsat7 

ETM+ 

 

 

30 

 

30 

 

30th January 

 

06th February 

135 

 

136 

 

45 

 

45 

 

0.00 

 

0.00 

9 

 

9 

 

Landsat7 

ETM+ 

 

Landsat7 

ETM+ 

30 

 

30 

 

9th February 

 

 

18th February 

136 

 

 

135 

45 

 

 

45 

0.00 

 

 

0.00 

9 

 

 

9 

 

Landsat8 OLI-

TIRS 

 

Landsat8 OLI-

TIRS 

30 

 

 

30 

    

 

3.3 Geometric Correction 

Geometric distortion is a common issue that arises in remotely sensed images, making 

it difficult to use them directly in a GIS with base map products. Geometric correction 

is a process that involves rectifying errors that are inherent in remotely sensed data, 

such as those caused by satellites or aircraft that do not maintain a consistent altitude 

or sensors that deviate from the primary focus plane. The goal of this process is to 

determine the exact locations and correct pixel values of the images by comparing them 

to ground control points on accurate base maps and resampling them. The satellite 

imagery obtained from the EROS data center was already geometrically corrected and 

projected onto the global geographic coordinate system (WGS 1984). The BTM 

projection system, which was developed specifically for Bangladesh by the WRPO 

(Bangladesh Water Resource and Planning Organization), was utilized for the 

projection system. 
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3.4 Image Processing 

The images used in this study were collected from different months of the year to ensure 

that they were free from clouds. However, the images may have been affected by 

changes in seasonal weather patterns and atmospheric factors such as aerosols, dust 

particles, and sun angles, among others. Moreover, the data may contain noise due to 

the limitations of the sensor, signal digitization, and data recording process, making the 

radiometric information in the image less useful [36]. 

To mitigate the impact of clouds, the atmosphere, and the angle of the sun, rigorous 

atmospheric and radiometric correction was carried out on the images. Various 

atmospheric correction techniques, including the Empirical Dark Object Subtraction 

(DOS) technique [27], the Modified DOS method [32], the Cosine Estimation of 

Atmospheric Transmittance (COST) [26], the Moderate Resolution Atmospheric 

Transmission (MODTRAN) model developed by the United States Air Force, the 

Spectral Science, Atmospheric Correction (ATCOR) developed by German Aerospace 

Center (DLR), and the Fast Line-of-sight Atmospheric Analysis of Spectral 

Hypercubes (FLAASH) incorporated in ENVI software, have been developed. 

In this study, the Semi-Automatic Classification Plugin in QGIS was used, and the dark 

object subtraction (DOS) technique was applied. Once the images were atmospherically 

corrected, each image set, which contained two images for each year, was mosaicked 

using the mosaic to new raster method to prepare a single scene of each study year. As 

a result, four single scenes were produced, which were subsequently clipped to the 

boundary of the study area derived from the vector file (ESRI shapefile) of the study 

area in ArcGIS. 

3.5 Image Classification 

To achieve the desired land use and land cover (LULC) categories from satellite 

imagery, this study used the Modified Anderson Level I classification scheme [23], 

which is a widely accepted and commonly used scheme worldwide. This classification 

scheme identified five major classes, namely vegetation, crop land, settlement area, 

bare land, and water body. To conduct a more detailed analysis, the vegetation class 

was further subdivided into hilly forest and shrub land, as shown in Table 5. 
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Table 5: Classification scheme of LULC used in this study. 

LULC Category Description 

Hill forest The areas of land covered by evergreen and semi-evergreen 

forests, as well as commercially planted forests that have 

extensive canopy coverage. 

Shrub land The shrublands are comprised of vegetation consisting of 

shrubs or short trees. This type of vegetation is often referred 

to as bushes, scrub, or other similar terms. 

Crop land Agricultural fields refer to land that is used for growing crops 

or raising livestock, while hill slope cultivated lands are 

agricultural lands that are cultivated on sloping terrain. 

Bare Land The study area includes open fields, exposed lands, and sand 

fill areas. 

Settlement area The land use and land cover (LULC) in the study area 

includes urban settlements, rural settlements, transportation 

networks, and areas used for commercial and industrial 

purposes. 

Water BODY The types of water bodies present in an area can include 

flowing water confined within a channel, as well as perennial 

bodies of water such as lakes, ponds, and other water 

reservoirs. 

 

In order to obtain the desired categories and make decisions based on Landsat images, 

various methods were utilized such as NDVI and different band compositions. NDVI, 

which is a common and widely used method for retrieving vegetation information, uses 

the red and infrared bands of satellite imagery [42]. Ultimately, the Maximum 

Likelihood Supervised classification method was employed to generate the desired 

categories and facilitate decision making. 
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Figure 2: Work Flow Chart of the research. 
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Figure 3: LULC categories obtained from image classification. 1992, 2002, 2012, 

2022. 

The selection of the most appropriate band composite image was done to ensure the 

compilation of training sites for classification in an efficient manner while minimizing 

the correlation among spectral bands. The selected bands were then used to generate 

natural color, color infrared, and false color composite images for each study year. The 

process involved randomly extracting 200 signatures for each LULC class, covering 

the entire study area through the use of ArcGIS software. A maximum likelihood 

supervised classification technique was then used, based on the extracted signatures, to 
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classify the image into the desired classes such as hill forest, shrub land, crop land, bare 

land, settlement, and water body. 

3.6 Accuracy Assessment of LULC 

During the classification process, there were some misclassified or poorly classified 

pixels in each image, known as the salt and pepper effect [36], which occurred mainly 

due to the similarities in spectral characteristics between pixels in different categories. 

The most common mistakes were made between crop land and shrub land, as well as 

in rural settlements, which are mostly under a tree canopy. 

To report the accuracy of classification from remotely sensed data, the error matrix 

(also called confusion matrix or contingency table) is the most appropriate way [29]. It 

provides an estimate of the accuracy of each classified category, including user 

accuracy, producer accuracy, errors of inclusion (commission error), errors of exclusion 

(omission error), and overall accuracy of the classification [30, 31]. Another way to 

measure accuracy is the Kappa statistics, which is a non-parametric multivariate 

technique developed by Cohen [28] to measure the overall agreement of a matrix. 

In this study, accuracy was evaluated using the Kappa coefficient, producer accuracy, 

user accuracy, and overall accuracy. The overall accuracy refers to how well each pixel 

is categorized compared to the actual land cover condition present in the corresponding 

ground truth data. Producer accuracy measures how accurately different types of land 

cover in the real world can be classified, while user accuracy is measured by 

commission error, which represents the probability of a classified pixel matching the 

land cover types of its corresponding real-world location. 

To evaluate accuracy, a total of 240 sample pixels (40 per category) for each year were 

randomly generated using a random sampling method over the study area for all four 

periods of LULC maps. The error matrix was used to calculate the kappa coefficient, 

which is commonly used to evaluate the accuracy of image classification [28]. The 

column in the error matrix represents reference data, while the row represents 

classification-generated remotely sensed data [29]. The rigorous Kappa statistic for the 

stratified random sampling method was calculated using the following equation [24]. 
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In a matrix with r number of rows, 𝑋𝑖𝑖 refers to the observations in the diagonal element 

of row-i and column-i. The values 𝑥+𝑖 and 𝑥𝑖+ represent the marginal totals of row-r 

and column-i, respectively. N refers to the total number of observations in the matrix. 

Table 6: Classification accuracy and Kappa statistics. 

Year  LULC 

category  

Producer 

accuracy 

(%)  

User 

accuracy 

(%)  

Overall 

accuracy 

(%)  

Khat 

(%)  

 

 

 

1992  

Hill forest  89.34  94.20  

 

 

93.72  

 

 

 

92.49  

Shrub land  92.23 93.13 

Crop land  94.89  90.81 

Bare land  95.29  95.00 

Settlement 96.01  94.14 

Water body  95.14  93.77 

 

 

 

2002 

Hill forest 94.59 79.54  

 

 

91.04 

 

 

90.00 

 

Shrub land  97.67 93.33 

Crop land 100 91.11 

Bare land 100 88.88 

Settlement 79.62 95.55 

Water body 81.13 97.72 

 

 

 

2012 

Hill forest 95.66  80 .00  

 

 

93.98  

 

 

 

92.12  

Shrub land  87.81  94.74  

Crop land  99.61 100 

Bare land 97.38 92.38 

Settlement 99.32 99.36  

Water body 85.90 96.76 

 

 

Hill forest  93.75  91.67   

 

 

 Shrub land  90.00  94.74 
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2022 

Crop land          90.48  95.00  

93.36  

 

91.84 
Bare land 93.19  91.12 

Settlement 96.16  94.34 

Water body          92.69  92.69 

 

The overall accuracy for 1992, 2002, 2012 and 2022 maps was 93.72%, 91.04%, 

93.98% and 93.36%, respectively, whilst the Kappa statistics was 92.49%, 90.00%, 

92.12% and 91.84% respectively (Table 3). The Kappa statistics (>80) for the 4 maps 

of four different time frames indicate a high degree of accuracy [34, 37] with minimal 

error propagation in classification method. 

3.7 Markov Chain (MC) and CA- Markov for LULC Modeling and Prediction 

Markov chain (MC) analysis has been widely used for ecological modelling [41, 25], 

which is a stochastic process that take into account the previous state to forecast the 

future changing of variables through time. Because of its enormous capacity to quantify 

the rates and states of conversion among and between categories, respectively, it has 

been equally used in the LULC change modeling.  In this study, a combination of MC 

and a hybrid cellular-automata (CA-Markov) technique was used in order to predict 

LULC for the years 2022 and 2052 by taking use of the IDRISI Selva software. It is 

required to use two different LULC data sets of various time frames in order to obtain 

the probability of transition between periods. When simulating changes to LULC, the 

MC model often applies the following formula: 

 

 

Where, 𝐴(𝑡+1) and 𝐴𝑡 are LULC at t+1 and t period, 𝐵𝑖𝑗 is the transitional probability 

matrix.  

The MCA generates various outputs such as a transitional probability matrix, a 

transitional area matrix, and a set of conditional probability images (suitability images). 

The transitional probability matrix provides the probability of each LULC category 
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converting to every other category, while the transitional area matrix gives an estimate 

of the number of pixels that will likely convert from one LULC category to another 

during a specific time period. In contrast, the conditional probability images represent 

the likelihood of each LULC class being present in each pixel over time. 

In this study, a hybrid approach combining MC and a cellular-automata (CA-Markov) 

technique was utilized to predict LULC maps for 2022 and 2052. To generate the 

predictive LULC map for 2022, the MC model was operated using 1992, 2012, and 

2022 LULC class maps derived from image classification. The MC generated two 

transition matrices by cross-tabulating two LULC maps (1992 and 2012) and a set of 

suitability maps. Suitability maps provide information about the appropriateness of an 

existing LULC class that is most likely to change to another class, and the highest 

suitability value indicates the maximum likelihood of change. During this process, the 

LULC maps for 1992 and 2022 were harmonized to have the same number of classes, 

allowing for more accurate predictions of LULC changes over time. 

Figure 4: Area (%) of LULC category in observed and predicted maps. 

To overcome the limitation of the MC model, which does not provide information about 

the spatial location of future LULC predictions, a hybrid CA-Markov model was 

employed. This model combines various techniques such as Cellular-automata, Markov 

chain, multi-criteria, and multi-objective land allocation to predict LULC changes [43]. 
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The projections are based on the transition area matrix and suitability maps obtained 

from the MC process. 

To predict the 2022 LULC map, the 2012 LULC map was used as the base land cover 

data, and the CA-Markov module of IDRISI Selva was employed. The number of 

cellular automata iterations was set to 10 to account for the ten-year gap between 2012 

and 2022. The simulated result was then compared to the actual LULC data of 2022 to 

assess the accuracy of the model (Figure 4). 

After validating the simulated data against the actual data, the model was used to predict 

the LULC maps for 2052. The 2022 LULC map was used as the base data, and a 

transitional probability area matrix, transitional suitability maps, a 5*5 kernel size 

contiguity filter, and 30 cellular automata iterations were used to simulate the 2052 

LULC map. This approach provided information about the spatial location of future 

LULC predictions and allowed for an assessment of potential land use changes over 

time. 

CHAPTER 4. RESULT AND DISCUSSION 

4.1 Existing Land Use and Land Cover (LULC) scenario 

Figure 6 presents the area distribution of existing LULC classes for the years 1992, 

2002, 2012, and 2022. A comparative analysis of the LULC changing patterns indicates 

a significant divergence in the internal LULC categories, leading to substantial changes 

through the conversion of one LULC category to another. To facilitate better 

understanding, the study assessed the gain, loss, and net change for the four temporal 

periods: 1992-2002, 2002-2012, 2012-2022, and overall 1992-2022 for each LULC 

category. 

To evaluate the results of land use and land cover conversion, the study generated a 

change area matrix for the above time spans, showing the relational changing area of 

one LULC category to others over the delimited periods. Hill forest and shrub land 

dominate the entire study area, with hill forest covering the maximum extent in all four 

study periods. The analysis reveals major changes in hill forest, shrub land, and crop 

land. A continuous decline has been observed in hill forest, while both shrub land and 

crop land categories show a steady increase. 
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Of concern is the gradual decline of inland water bodies, which are the primary sources 

of drinking water for the local indigenous community and act as sources of irrigation 

water during the dry seasons. This declining trend highlights the need for effective 

conservation strategies to preserve these vital resources. 

 

Figure 5: Existing LULC category. 1992, 2002 2012, 2022 (Area in hectare). 

 

 Table 7: Existing LULC category from 1992 to 2022 (Area in hectare and %). 

Land 

Cover 

Type 

1992  2002 2012 2022 

    Area           % Area                 %  Area           %      Area           %                

Hill 

Forest 

32580

0 

74.41% 29820

0 

68.11% 22410

0 

51.18% 20429

6 

46.66% 

Shrub 

Land 

72157 16.48% 91511 20.90% 17031

3 

38.90% 19094

0 

43.61% 

Crop 

Land 

23048 5.26% 32036 7.32% 31650 7.23% 32349 7.39% 

Bare 

Land 

1044 0.24% 120 0.03% 167 0.04% 156 0.04% 

Settleme

nt  

1434 0.33% 1907 0.44% 2997 0.68% 3154 0.72% 

Water 

Body 

14341 3.28% 14050 3.21% 8597 1.96% 6929 1.58% 

Total 43782

4 

100.00

% 

43782

4 

100.00

% 

43782
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43782
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4.1.1 Hill Forest 

Hill forests are the most dynamic LULC class in the study area. According to Table 7, 

in 1992, they were the most extensive land cover in the study area, occupying 74.44% 

of the entire area. However, the area of hill forests underwent several significant 

changes over time. In the following years, a substantial decline was observed, with the 

coverage decreasing to 46.66% in 2022. This trend highlights the impact of human 

activities, such as deforestation and urbanization, on the environment and underscores 

the need for sustainable land use practices to preserve natural resources. 

4.1.2 Shrub Land 

Shrub lands are the second dominant LULC class in the study area, covering almost 

one-third of the total area in 2022. The coverage of shrub lands increased significantly 

from 72,157 hectares in 1992 to 170,313 hectares in 2012, and this upward trend 

continued to 190,940 hectares in 2022, representing 43.61% of the total area. At a 

glance, the area covered by shrub lands increased by 264.62% between 1992 and 2022, 

with a net increase of 118,783 hectares. This remarkable increase in the shrub land area 

can be attributed to various factors, including changing land use practices, climate 

change, and natural forest regeneration. However, it is important to note that this 

increase in shrub land comes at the expense of other land uses, particularly hill forests, 

which have declined substantially over the same period. 

4.1.3 Crop Land 

The category occupying the third areal position in the study area is crop lands, which 

increased by 8,602 hectares from 1992 to 2012, with a slight increase of 699 hectares 

from 2012 to 2022. Over the last 30 years, crop lands have gained 30,041 hectares from 

other land cover categories (as shown in Table 7). During this period, the net change in 

crop lands increased from 5.26% to 7.39% of the total area. This increase in crop lands 

can be attributed to population growth, changing food habits, and the adoption of 

modern agricultural practices. However, it is important to note that this increase in crop 

lands comes at the expense of other land uses, particularly hill forests and inland water 

bodies, which have been declining steadily over the same period. 
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4.1.4 Bare Land and Settlement Area 

In the study area, settlement areas occupy a relatively small proportion of the total land 

cover, but their extent has been increasing over time. From 1992 to 2012, settlement 

areas increased slightly by 1563 hectares, and this trend continued with a more 

substantial increase to 3154 hectares in 2022. However, during the same time span of 

1992 to 2022, bare land experienced a net decrease of 888 hectares, with a dramatic 

decrease from 1044 hectares to 120 hectares during the period of 1992-2002. This trend 

continued with a negligible increase to 167 hectares from 2002 to 2012 and a decrease 

to 156 hectares in 2022. Overall, the net increase in settlement areas was 1720 hectares, 

and the net decrease in bare land was observed during the entire study period.  

4.1.5 Water Body 

The water body is a crucial LULC class in any ecosystem, and its declining trend is 

alarming. The study area has witnessed a significant decline in water body areas over 

the past 30 years. Between 1992 and 2012, water body areas decreased from 3.28% to 

1.96%, and from 2012 to 2022, it further slightly decreased to 1.58%. The net change 

of water body areas over the 30 years has shown a disturbing scenario with a dramatic 

decrease of 7412 hectares. This is a significant concern as water bodies are the primary 

sources of drinking and irrigation water for the local community. Therefore, this decline 

could have severe consequences on both human and wildlife populations in the study 

area. 

4.2 Change Analysis 

Total land use and land cover (LULC) transitions in the study area between 1992 and 

2022 have been highly dynamic. One of the most significant findings was the decline 

of hill forests, which decreased by 121504 hectares over the past 30 years, at a rate of 

4050.13 hectares per year. This was a concerning trend. The study revealed that hilly 

forests have contributed significantly to the increase in shrub land and crop land 

between 1992 and 2012, and then again between 2012 and 2022. However, the hilly 

forests have also undergone significant transitions from shrub land and crop land during 

the entire period between 1992 and 2022. 
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The results also indicated a significant increase in crop land, mainly due to the 

conversion of shrub land to crop land during 1992-2002, 2003-2012, and 2012-2022. 

The water reservoir (water body) and bare land also contributed to the increase in crop 

land. On the other hand, crop land has lost areas to hilly forest in 1992-2002, 2002-

2012, and 2012-2022, respectively. Overall, the crop land increased by 9301 hectares 

in the last 30 years. 

The study also found that the total loss of bare land was 888 hectares between 1992 and 

2022, at a declining rate of 29.6 hectares per year. This bare land was mostly converted 

to crop land and to a lesser extent to shrub land. Meanwhile, the settlement category 

showed steady growth, with its area expanding more than double from 0.33% (1434 

hectares) to 0.72% (3154 hectares) during 1992-2022, mostly at the expense of crop 

land. On the other hand, the water body decreased from 14341 hectares to 6929 

hectares, with a net loss of 7412 hectares over the entire period. 

Figure 6: LULC changes in different time spans. 1992-2012, 2012-2022, 1992-2022. 

 

4.3 Predicted Result 

In order to predict future changes in LULC, a combined Markov and Cellular Automata 

model was employed and the results indicate a significant loss in hilly forests by the 

year 2052. The predicted data shows that hilly forests will decline by 61613 hectares 

from 2022 to 2052. On the other hand, the model predicts a significant increase in the 

aerial extension of shrub land and crop land categories. These two categories are 

projected to undergo dramatic step-ups in their areas by the year 2052. The combined 

Markov and Cellular Automata model provides important insights into the future 
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changes in LULC, which can be useful in planning and decision-making for sustainable 

land use practices. Figure 7 presents the graphical representation of the predicted LULC 

changes, while Table 8 provides detailed numerical data on the projected changes in 

each category. 

  

Table 8: Markov predicted results and changes analysis. 

LULC Category 2052 (hectare) 

(Simulated) 

2052 (are%) Change (hectare) 

(2022-2052) 

Hill forest 142683 32.59% -61613 

Shrub land 252373 57.64% 61433 

Crop land 35840 8.19% 3491 

Bare land 146 0.03% -10 

Settlement area 5162 1.18% 2008 

Water body 1620 0.37% -5309 

Total 437824 100.00%  

 

The study utilized a combination of Markov and Cellular Automata modeling to predict 

the future changes in land use and land cover (LULC) for the year 2052. The results 

showed a significant loss of hilly forests, with a decrease of 61613 hectares from 2022 

to 2052. In contrast, the shrub land and crop land categories showed substantial growth 

in their aerial extension, increasing by 61433 hectares and 3491 hectares respectively. 

The settlement area increased slightly, which is attributed to the gradual increase in the 

population in the area. However, bare land and water body categories showed negative 

figures, decreasing by 10 hectares and 5309 hectares, respectively, over the predicted 

period. The change in forest cover and shrub land denotes the exchange of area between 

these two categories. 

The study also revealed that hilly forests have been contributing to the expansion of 

shrub land, while crop land has continuously been taking the place of inland water 

bodies, which may be happening due to the lowering of water levels. However, the 

accuracy of the simulation process depends on various socioeconomic, physical, and 

policy factors, which were not considered in this study due to a lack of data. Thus, it is 

highly recommended to involve relevant factors to achieve higher accuracy in the 
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simulation process. Additionally, further research involving meteorological and land 

surface temperature data is needed to observe and analyze how LULC changes are 

shaping or altering the climate of the hilly environment. 

 

 

 

Figure 7: Simulated (Predicted LULC) maps. 2022, 2052. 

4.4 Limitation of The Research 

In the study area, the presence of high hills and dense forests at the extreme border 

made it challenging to collect accurate ground data for the research. As a result, some 

crucial parameters like socioeconomic, physical, and existing policy were excluded 

from the integrated Markov Chain and CA-Markov simulation process due to the lack 

of data. This limitation could potentially impact the accuracy and reliability of the 

study's findings. 

Moreover, one of the major limitations of this research was the utilization of medium 

resolution satellite imagery (Landsat) due to funding constraints. While Landsat data 

can provide a wealth of information, it may not capture the detailed and nuanced 

changes in land use and land cover that high-resolution satellite imagery can offer. 

Therefore, the limitations of the available technology used in the study should be taken 

into account when interpreting the results and drawing conclusions. 

In future studies, it is crucial to address the limitations mentioned above by collecting 

additional data and utilizing high-resolution satellite imagery to obtain more accurate 

and reliable results. By doing so, the findings will be more robust and can provide useful 
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insights into land use and land cover changes, their drivers, and their potential impacts 

on the environment and society. 

CHAPTER 5. CONCLUSION 

Geospatial technologies were utilized in this study to examine the changes in land use 

and land cover (LULC) in the Bandarban district of Bangladesh. The study employed 

multi-temporal Landsat imagery from 1992, 2002, 2012, and 2022 to derive LULC 

maps, which were then used in the CA-Markov process to simulate future changes in 

LULC. The findings indicate that the rapid population growth and so-called 

socioeconomic development have caused constant changes in LULC, which could 

negatively impact the local hilly climate and environment. 

The results of this study reveal a substantial decline in hilly forest, which has been 

replaced by an increase in shrub land. The research shows that the major conversion of 

hilly forest and shrub land has been taking place between each other, indicating that 

hilly forests have been converted into shrub lands due to commercial plantation by 

various development projects from both government and non-government agencies. 

Additionally, built-up areas have increased by 1720 hectares over the last 30 years, 

from 1992 to 2022. However, water bodies have dramatically decreased, which may 

lead to a severe water crisis for irrigation in the future. 

It is generally believed that the rapid population growth, increasing demand for 

housing, intensive pressure from land grabbers, and unplanned urban expansion are the 

primary causes of land use and land cover changes in the hilly areas of the country. 

This study may provide initial guidance and baseline information for efficient resource 

management strategies in the hilly environment through sustainable land use planning 

and policy guidelines. With the involvement of relevant factors such as socioeconomic, 

physical, existing policy, and high-resolution satellite imagery, future studies may 

achieve higher accuracy in the simulation process, which could lead to better land use 

and land cover management policies in the hilly areas of Bangladesh.  
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