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ABSTRACT
Electron–phonon interactions play a crucial role in nano-electronic device performance. As the accurate calculation of these interactions
requires huge computational resources, reduction of this burden without losing accuracy poses an important challenge. Here, we investigate
the electron–phonon interactions of nano-devices using two first-principles-based methods in numerically efficient manners. The first method
is the Lowest Order Approximation (LOA) version of the computationally burdensome self-consistent Born approximation method. The
LOA method incorporates the effect of each phonon mode on the electronic current perturbatively. In this work, we theoretically resolve the
discrepancy between two conventional approaches of direct LOA calculation. To validate the correct approach, we compared its output with
a completely different method (second method) named Special Thermal Displacement (STD) method. The STD method uses non-interacting
transport calculation of the displaced atomic configuration of a device. We apply both methods to two thin-film nanodevices: 2D silicon
junctionless FET and n-i-n FET. Both methods justify each other by providing similar results and exhibiting important quantum phenomena,
such as phonon-assisted subthreshold swing degradation and tunneling.

© 2022 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0124158

I. INTRODUCTION

As the nano-electronic devices get shorter and narrower, elec-
tronic transport exhibits significant quantum mechanical effects,
such as quantum confinement1 and tunneling.2,3 Besides these
effects, electron–phonon interactions remain significant even in
nanoscale devices.4–6 Accurate calculation of these effects has
become a major challenge from the viewpoint of device simula-
tions. The most difficult part of the calculation comes from the huge
computational burden posed by the interactions between the elec-
trons and the phonons. While the semiclassical transport theory
failed to include quantum effects, the effective mass approximation
also does not always ensure a correct calculation of the quantum
effects. Deformation potentials (DPs) based Boltzmann transport

equation (BTE) is quite suitable to calculate electron–phonon inter-
actions for bulk materials.7–12 However, it ignores phonon-assisted
subthreshold swing degradation in nanoscale devices.13 Therefore,
the electronic properties of the nanodevices must be treated by the
atomistic14 quantum mechanical approach despite its computational
burden.

Atomistic quantum mechanical calculations use non-
equilibrium Green’s function (NEGF) formalism along with either
a semi-empirical tight-binding method or first-principles density
functional theory (DFT). The advantage of the first-principles
method is that it does not require to be fitted to a particular device.
Luisier et al. have applied the self-consistent Born approximation
(SCBA) algorithm using the NEGF formalism on a tight-binding
basis to calculate electron–phonon scattering of Si nanowire
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transistors.15–18 Although it is computed with huge supercomput-
ing resources, it failed to show phonon-assisted source-to-drain
tunneling in the OFF-current state.

The electron–phonon interactions can be rigorously calcu-
lated by perturbation theory-based SCBA method using density
functional theory (DFT). However, the computational burden lim-
its its application to molecular-scale systems.19,20 However, some
approximations to the algorithm can unlock the scope of calcu-
lating electron–phonon scattering beyond molecular systems with
modest computational resources. In this paper, we will investi-
gate the approximation method called lowest order approximation
(LOA).21–26 The main difference between SCBA and LOA methods
is that the SCBA method includes an infinite number of scattering
diagrams, whereas the LOA method considers only the conserving
diagrams.26 The LOA method reduces the computational burden as
it requires a much lesser number of iterations than SCBA to sat-
isfy the conservation law. Hence, first order LOA needs the lowest
computational cost as it requires only one iteration. Reference 23
shows that, in the weak-scattering regime, such as thin-film nan-
odevices, first order LOA is enough to show agreement with SCBA
results. The LOA method considers the effect of each phonon mode
perturbatively.

The LOA method can be implemented either by a direct
algorithm26 or by a rescaling technique.25,26 The direct algorithm
involves the Langreth theorem,24,27 whereas the rescaling technique
involves the Keldysh equation.22,27–30 However, some articles imple-
mented the LOA method with a direct algorithm using the Keldysh
equation instead of the Langreth theorem.20,31–35 In this article, we
discuss the two conflicting approaches of the direct algorithm and
theoretically resolve the issue.

A conceptually simple and efficient alternative to the perturba-
tion theory-based LOA method is the stochastic sampling of lattice
vibrations using Monte Carlo (MC)36,37 or Molecular Dynamics
(MD)12 simulations. Recently, Zacharias et al.36 found that a single
supercell configuration can replace the stochastic sampling of lattice
vibrations. Inspired by them, Gunst et al. presented a “special ther-
mal displacement” (STD) method, which includes electron–phonon
interaction by evaluating the first-principles Landauer–Büttiker
transmission of configuration under a single displacement of the
atoms.13 Thus, the computational burden drastically reduces to the
level of non-interacting calculations.

II. METHODOLOGY
In this work, we investigate the electronic transport due

to electron–phonon interactions using two first-principles-based
approaches (LOA and STD). We apply these methods to two thin-
film nanodevices: 2D silicon junctionless FET and n-i-n FET in
order to validate the theoretical conclusion.

The steady-state electronic current from lead α = L, R to the
central region including interactions in the device region can be
represented as follows:20,27,38,39

Iα = −2e⟨Ṅα⟩ =
2e
h ∫

∞

−∞

dε Tα(ε),

Tα(ε) = Tr{Σ<α(ε)G>(ε) − Σ>α(ε)G<(ε)},
(1)

where Ṅα = ∑kc†kαckα is an operator for electronic particle num-
ber, Tα(ε) is the transmission function, Σ≶α(ε) is the lesser/greater
self-energy of lead α, and G≶(ε) is the lesser/greater Green’s func-
tion, incorporating all relevant interactions of the device region.
The lesser/greater Green’s function can be calculated from retarded
Green’s function (G) and advanced Green’s function (G†) using the
steady-state Keldysh equation,27–30

G≶ = G[(∑
α

Σ≶α) + Σ≶int]G
†, (2)

where Σint and Σ≶int are the retarded and lesser/greater interaction
self-energy, respectively, accounting for any interaction in the device
region. In this paper, we will consider only electron–phonon inter-
action. Hence, interaction self-energy Σint can be represented as
electron–phonon interaction self-energy Σph. The retarded Green’s
function G including electron–phonon interaction is given by the
Dyson equation,27–30

G = g0 + g0 Σph[G] G, (3)

where g0 is the non-interacting retarded Green’s function.
If no interactions in the device region are considered, we get

Σint = Σ≶int = 0 and G = g0, which turn Eq. (2) into

G≶ = g≶0 = g0[∑
α

Σ≶α]g†
0 , (4)

where g≶0 is the non-interacting lesser/greater Green’s func-
tion. After some rewriting, Eq. (1) turns into the renowned
Landauer–Büttiker formula for the non-interacting current,

I0 =
2e
h ∫

∞

−∞

dε T0(ε)[fL(ε) − fR(ε)],

T0(ε) = Tr{ΓL g0 ΓR g†
0}.

(5)

To calculate current due to electron–phonon interaction, the
electron–phonon interaction self-energy Σph should be calculated.
We can represent interaction self-energies as32,38,40

Σ≶ph(ε) =∑
λ

i∫
∞

−∞

dωλ

2π
Mλ D≶0 (ωλ) λ G≶(ε − ωλ)Mλ, (6)

Σph =
1
2
(Σ>ph − Σ<ph) −

i
2
ℋ (Σ>ph − Σ<ph), (7)

where Mλ represents electron–phonon coupling matrix for phonon
mode λ, ωλ are phonon frequencies, D≶0 is the lesser/greater free
phonon Green’s functions, and ℋ is the Hilbert transform.

The solution of the Dyson equation [Eq. (3)] requires an iter-
ative scheme with specific convergence criteria. Green’s function
at Nth iteration can be assumed as GN ≃ GN−1, which leads to the
representation of the Dyson equation as

GN = [g−1
0 − Σph[GN−1]]

−1
. (8)
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The Dyson equation [Eq. (8)] and Keldysh equation [Eq. (2)]
along with Eqs. (6) and (7) can be solved iteratively to calculate the
current including electron–phonon interaction. The scheme is called
self-consistent Born approximation (SCBA), which is illustrated
in Fig. 1.

Let us rewrite the Dyson equation [Eq. (8)] in the Taylor series
expansion as

GN = g0 + g0Σ[GN−1]g0 + g0Σ[GN−1]g0Σ[GN−1]g0 + ⋅ ⋅ ⋅ , (9)

where Σph is written as Σ for simplicity. From Eq. (9), the SCBA
Green’s function at first iteration G1 is represented as

G1 = g0 + g0Σ[g0]g0 + g0Σ[g0]g0Σ[g0]g0 + ⋅ ⋅ ⋅ . (10)

The SCBA Green’s function contains an infinite number of
terms where some terms are currently conserving. The G1 does
not necessarily preserve the conservation law since there are
higher-order non-conserving terms according to the corresponding
scattering order.22 The current conservation law is fulfilled when
conserving terms are dominant over non-conserving ones. There-
fore, a higher number of iterations may be required to fulfill the
conservation law in the case of strong electron–phonon interactions,
thereby increasing the computational cost.

If we calculate only the conserving terms in the SCBA Green’s
function, the current conservation law is satisfied at each scattering
order. As only the lowest order conserving terms are considered,
the method is called Lowest Order Approximation (LOA). The
first-order LOA can be written as

G1LOA = g0 + g0Σ[g0]g0, (11)

where the interaction self-energy Σ[g0] is calculated only from the
non-interacting Green’s function g0. Reference 23 showed that 1st
order LOA is very similar to the SCBA in the weak-scattering regime.
However, we can apply the Langreth theorem24,27 to Eq. (12) to
obtain the lesser/greater Green’s function from the LOA Green’s
function directly,

G≶1LOA = g≶0 + g0Σ[g0]g≶0 + g0Σ≶[g0]g†
0 + g≶0 Σ†[g0]g†

0 . (12)

FIG. 1. Flow diagram of SCBA and LOA.

Σ≶[g0] and Σ[g0] can be evaluated from Eqs. (6) and (7),
respectively. Σ†[g0] denotes the advanced interaction self-energy.

However, in literature, some articles use an alternative
approach to calculate directly the lesser/greater LOA Green’s func-
tion, G≶LOA, from retarded Green’s function, GLOA, using Keldysh
equation [Eq. (2)] instead of Langreth theorem.20,31–35 However, this
approach is shown here to be less accurate for the case of lowest
order approximation. Keldysh equation can only be used to calculate
lesser/greater Green’s function from retarded Green’s function for

FIG. 2. (a) Junctionless silicon thin film FET with source, channel, and drain dop-
ing of 1020 cm−3 (n-type) and ⟨100⟩ crystallographic orientation. The gate length
LG = 7 nm, the source and drain length LS/D = 6.5 nm, and the thickness is 1.4 nm
(total length is 20 nm with 740 atoms). (b) Current vs gate to source voltage, VGS,
for a drain-source voltage VDS = 0.05 V and at 300 K. (c) Current vs drain to
source voltage, VDS, for a gate-source voltage VGS = 0 V.
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the case of self-consistent Born approximation. In the case of lowest
order approximation if we use the Keldysh equation, we get

G≶1LOA = G1LOA[∑
α

Σ≶α + Σ≶[g0]]G†
1LOA

= (g0 + g0Σ[g0]g0)[∑
α

Σ≶α + Σ≶[g0]](g†
0 + g†

0 Σ†[g0]g†
0)

= g0(∑
α

Σ≶α)g†
0 + g0Σ[g0]g0(∑

α
Σ≶α)g†

0 + g0Σ≶[g0]g†
0

+ g0(∑
α

Σ≶α)g†
0 Σ†[g0]g†

0 + g0Σ≶[g0]g†
0 Σ†[g0]g†

0

+ g0Σ[g0]g0(∑
α

Σ≶α)g†
0 Σ†[g0]g†

0

+ g0Σ[g0]g0Σ≶[g0] (g†
0 + g†

0 Σ†[g0]g†
0)

= g≶0 + g0Σ[g0]g≶0 + g0Σ≶[g0]g†
0 + g≶0 Σ†[g0]g†

0

+ g0Σ≶[g0]g†
0 Σ†[g0]g†

0 + g0Σ[g0]g≶0 Σ†[g0]g†
0

+ g0Σ[g0]g0Σ≶[g0] (g†
0 + g†

0 Σ†[g0]g†
0), (13)

where g≶0 = g0[∑αΣ≶α ]g†
0 [Eq. (4)]. Here, the first four terms of

Eq. (14) are similar to that of Eq. (13). The last three terms of

Eq. (13) are redundant and will cause incorrect results. Therefore,
the Keldysh equation is not suitable for calculating lesser/greater
Green’s function for the case of lowest order approximation. To
get a more correct LOA current, we need to use G≶1LOA calculated
in Eq. (12) instead of Eq. (13). Here, we finally get the interacting
current equation by substituting G≶(ε) with G≶1LOA in Eq. (1),

Iα =
2e
h ∫

∞

−∞

dε Tr[Σ<α(ε){g>0 + g0Σ[g0]g>0 + g0Σ>[g0]g†
0

+ g>0 Σ†[g0]g†
0} − Σ>α(ε){g<0 + g0Σ[g0]g<0

+ g0Σ<[g0]g†
0 + g<0 Σ†[g0]g†

0}]. (14)

The first-principles calculation of LOA current can be com-
putationally burdensome for large devices. The main computa-
tional burden comes from the first-principles calculation of the
electron–phonon coupling matrix Mλ and its integration over a
large number of phonon modes λ (e.g., 3000 phonon modes for a
device of 1000 atoms). The coupling matrix is calculated from the
dynamical matrix and Hamiltonian derivates. The computational
burden of Dynamical matrix calculation can be reduced significantly
by using classical force-field calculation using Tersoff potential.41

In repeated two-probe devices, where the atomic configuration of
the central region is a repetition of the electrode unit cell along
the transport direction, Hamiltonian derivates of the central region

FIG. 3. Projected local device density of states (DDOS) of junctionless FET shows little change between non-interacting and interacting devices in the ON state, but the
OFF state shows a decrease in the conduction band edge (from 0.9 to 0.6 eV) in the channel region due to electron–phonon interaction. εL and εR denote the left and right
electrode Fermi levels.
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can be approximated from that of the electrode unit cell. Addition-
ally, instead of using a large number of phonon modes, we can
sum the phonon modes in energy intervals to create new effec-
tive phonon modes. The sufficient number of effective phonon
modes is usually less than 50, which further reduces the computation
cost.

An alternative way to include electron–phonon interaction on
current is the stochastic sampling of lattice vibrations. However,
when stochastic sampling with these methods is performed, many
transmission calculations must be done with increasing compu-
tational cost. Recently, Zacharias et al.36 discovered that a single
supercell configuration is representative of all the samples of lat-
tice vibrations. Calculating the non-interacting Landauer–Büttiker
transmission T0 of that single lattice configuration is enough to
obtain interacting current. The method is known as Special Ther-
mal Displacement (STD) method.13 The interacting current due
to electron–phonon interaction can be calculated as the thermally
averaged current for atomic displacements, uλ(T, V), given by13

I(V , T) = 2e
h ∫ dE⟨𝒯 (E, T)⟩[fL − fR],

⟨𝒯 (E, T)⟩ = Πλ ∫ duλ
exp(−u2

λ/2σ2
λ)√

2πσλ
⟨𝒯 (E,{uλ})⟩.

(15)

According to Ref. 13, sampling of displacements, uλ(T, V), can
be replaced by a single displacement given by

uSTD(T) =∑
λ

sλ(−1)λ−1σλ(T)eλ. (16)

If we compare the Tailor expansion of Eq. (15) around uλ with Tay-
lor expansion around uSTD, both expressions tend to be the same for
large systems. Because in large systems, for each pair of degenerate
phonon modes, the corresponding terms of the Taylor series cancel
each other, resulting in only the even-order terms, which are simi-
lar for both Taylor series. Thus, the STD configuration approximates
the correct thermally averaged current.

III. RESULTS
The first device we investigate for electron–phonon interac-

tion is a 2D silicon junctionless double-gated FET with a 7 nm gate
length [Fig. 2(a)]. The electronic transport occurs along the ⟨100⟩
crystallographic direction (horizontal direction) under the quantum
confinements in the vertical direction. The surfaces of 2D silicon
structure in a confined direction are passivated with Hydrogen
atoms, and the out-of-plane direction is periodic. Two 1 nm-thick
SiO2 dielectric layers surround the silicon structure in confined
directions. The device has the same n-type doping in the source,
channel, and drain region. That is why it is called junctionless FET
due to no junction in the transport direction.

In the first principles calculation (DFT), we use Local Density
Approximation (LDA) in combination with norm-conserving pseu-
dopotentials. We use a single-zeta-polarized basis set for Si and H
atoms along with 9 k-points in the periodic direction and 87 k-points
in the transport direction. In order to calculate electron–phonon
interaction either by LOA method or by STD method, we need

a Dynamical matrix, which is calculated from classical force-field
calculation using Tersoff potential.41

In the current vs gate voltage characteristics graph [Fig. 2(b)],
the comparison between non-interacting currents and interacting
currents (calculated by LOA and STD method) is shown. We observe
that electron–phonon interaction has more and opposite effect in the
OFF-current than ON-current. This phenomenon can be explained
by the scattering and tunneling effect. In the ON-current state,
electron–phonon scattering is dominant but not too strong due to
the very short channel length. That is why, ON-current is reduced
due to electron–phonon interaction, but the reduction is not too

FIG. 4. (a) n-i-n silicon thin film FET with source and drain doping of 1021 cm−3

and ⟨100⟩ crystallographic orientation. The gate length LG = 7 nm, the source
and drain length LS/D = 6.5 nm, and the thickness is 1.4 nm (total length is 20 nm
with 740 atoms). (b) Current vs gate to source voltage, VGS, for a source–drain
voltage VSD = 0.1 V and at 300 K. (c) Current vs drain to source voltage, VDS, for
a gate-source voltage VGS = 0 V.
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FIG. 5. Projected local device density of states (DDOS) of n-i-n FET shows little change between non-interacting and interacting devices in the ON state, but the OFF state
shows a decrease in the conduction band edge (from 0.7 to 0.6 eV) in the channel region due to electron–phonon interaction. εL and εR denote the left and right electrode
Fermi levels.

high. In the OFF-current state, the tunneling effect is much greater
than the scattering effect. This leads to an increase in OFF-current
up to four orders of magnitude and degradation of subthreshold
slope from 100 to 150 mV/dec.

Figure 2(c) shows the current vs drain voltage characteristics
for non-interacting and interacting cases. The ON-current reduction
is due to the electron–phonon scattering effect. In Figs. 2(b) and 2(c),
the interacting currents obtained by LOA and STD methods show
excellent agreement. Since the two methods are very different, it can
be perceived that these two approaches for interacting with current
calculation are valid.

The projected local device density of states of the junc-
tionless FET in Fig. 3 shows little change in the ON current
stage due to electron–phonon interaction, which supports the low
ON-current reduction. In the OFF-current stage, a considerable
decrease in the conduction band edge (from 0.9 to 0.6 eV) in the
channel region is shown. The decrease of the conduction band edge
indicates the large increase of OFF-current due to electron–phonon
interaction.

The second device under investigation is similar to the first
device except for the doping profile. It is a two-dimensional silicon
n-i-n double-gated FET with a 7 nm gate length [Fig. 4(a)]. Unlike
junctionless FET, this device has an intrinsic silicon region under
the gates and an n-doping region outside the gate. The n-type dop-
ing of 1021 cm−3 is ten times of the junctionless case. The electronic
transport in this device occurs along the ⟨100⟩ crystallographic

direction (horizontal direction) under the quantum confinements in
the vertical direction similar to the junctionless FET. The hydrogen
passivation and dielectric layers of this device are the same as the
first device. The first-principles calculation and classical force field
calculation of the n-i-n FET are the same as the junctionless FET.

Figure 4(b) shows the interacting and non-interacting
current vs gate voltage of the n-i-n FET. The interacting current is
calculated by LOA and STD methods. The ON-current reduction
and OFF-current increase due to electron–phonon interaction
follow the trend of the junctionless device. The explanation for the
change in current is same as for the first device. However, n-i-n
FET has a lower OFF-current increase than the junctionless device.
The OFF-current is increased up to ten times, and the subthreshold
slope is degraded from 150 to 185 mV/dec due to electron–phonon
interaction.

TABLE I. Comparison among different parameters of the two devices.

Degradation in Decrease in
Increase in subthreshold conduction

Devices OFF-current slope (mV/dec) bandedge (eV)

Junctionless FET 104 100 to 150 0.9 to 0.6
n-i-n FET 101 150 to 185 0.7 to 0.6
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TABLE II. Comparison between proposed and conventional method42 in terms of
computational time.

Proposed LOA method Conventional LOA
(for a device consisting (for a device consisting

of 740 atoms) of only 56 atoms)

Time spent on IV
curve (in terms
of core hours) 90 h 468 h

Figure 4(c) shows the current vs drain voltage characteris-
tics for non-interacting and interacting cases. The ON-current is
reduced due to the electron–phonon interaction. Again, in this
n-i-in FET, the interacting currents calculated by LOA and STD
methods show excellent agreement, which reconfirms that the two
methods for interacting current calculation are valid.

The projected local device density of states of the n-i-in FET
in Fig. 5 shows little change in the ON current stage due to
electron–phonon interaction, which supports the low ON-current
reduction. In the OFF-current stage, a decrease in the conduction
band edge (from 0.7 to 0.6 eV) in the channel region is shown.
The decrease of the conduction band edge indicates the increase of
OFF-current due to electron–phonon interaction.

Table I presents the comparison among the various parameters
of junctionless FET and n-i-in FET. The junctionless device seems
to have a greater change in parameters due to electron–phonon
interaction.

Table II presents the comparison between our proposed LOA
method and a conventional LOA method42 in terms of computa-
tional time required for the IV curve. The conventional LOA method
requires higher time for simulating a device of only 56 atoms,
whereas our device consists of 740 atoms and still requires lesser
time using our proposed method.

IV. CONCLUSION
In summary, we have made several approximations on the LOA

method, such as classical force-field calculation of dynamical matrix,
a small number of effective phonon modes, and coupling matrix
calculation of repeatable electrode unit cell. These pave the way
for calculating electron–phonon interaction with modest computa-
tional resources. Among the two existing approaches of the direct
LOA method, the Langreth theorem-based approach is theoreti-
cally shown to be accurate. To validate the approach, we have
compared the output of the LOA method with that of the STD
method. The STD method does not require the burdensome cal-
culation of electron–phonon coupling matrix and thereby reduces
the computational cost greatly. We have demonstrated phonon-
limited electronic transport for junctionless FET and n-i-in FET
using the two first-principles methods. As both devices maintain
low electron–phonon scattering, 1st LOA is shown to be sufficient
to give accurate results. Both methods show a similar decrease in
ON-current, increase in OFF-current, and degradation of subthresh-
old slope in the two devices. Since the two very different methods
provide similar outputs for both devices, it confirms that the two

methods for interacting current calculation are justified. The com-
putational strategy of the STD method makes it appealing for device
modeling where the LOA method may not work due to strong
electron–phonon scattering.
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