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A B S T R A C T   

Early identification and adequate treatment can help prevent lung disorders from becoming chronic, severe, and 
life-threatening. X-ray images are commonly used and an automated and effective method involving deep 
learning techniques can potentially contribute to quick and accurate diagnosis of lung disorders. However, in the 
study of medical imaging using deep learning, two obstacles limit interpretability. One is an insufficient and 
imbalanced number of training samples in most medical datasets. The other is excessive training time. Although 
training time can be reduced by decreasing the number of pixels in the images, training with low resolution 
images tends to result in poor performance. This study represents a solution to overcome these impediments by 
balancing the number of images and reducing overall processing time while preserving accuracy. The dataset 
used in this research contains an unequal number of images in the different classes. The quantity of data in the 
classes is balanced by creating synthetic images based on the patterns and characteristics of the original images, 
using a Deep Convolutional Generative Adversarial Network (DCGAN). Unwanted regions are removed from the 
X-ray images, the brightness and contrast of the images are enhanced, and the abnormalities are highlighted by 
using different artifact removal, noise reduction, and enhancement techniques. We propose a Modified Compact 
Convolutional Transformer (MCCT) model using 32 × 32 sized images for the categorization of lung disorders 
into four classes. An ablation study of eleven cases is employed to adjust several hyper parameters and layer 
topologies. This reduces training time while preserving accuracy. Six transfer learning models, VGG19, VGG16, 
ResNet152, ResNet50, ResNet50V2, and MobileNet are applied with the same image size the performance is 
compared with the proposed MCCT model. Our MCCT model records the greatest test accuracy of 95.37%, 
requiring a short training time, 10-12 s/epoch, whereas the other models only reach near-moderate performance 
with accuracies ranging from 43% to 79% and training times of 80-90 s/epoch. The robustness of the model with 
regards to the number of training samples is validated by training the model multiple times reducing the number 
of training images gradually from 49621 images to 6204 images. Results suggest that even with a smaller dataset, 
the performance is sustained. Our proposed approach may contribute to an effective CAD based diagnostic 
system by addressing the issues of insufficient and imbalanced numbers of medical images, excessive training 
times and low-resolution images.   

1. Introduction 

Deep learning-based methods, specifically deep convolutional neural 
networks (DCNNs), have led to noteworthy breakthroughs in medical 
image categorization and segmentation (Zhang et al., 2019). Due to the 
advances of deep learning in Computer Aided Diagnosis (CAD) systems, 
these are now widely used in studies of CAD systems for different 

medical imaging techniques. Although these approaches have the po-
tential to be more reliable and accurate than traditional feature-based 
methods, the drawbacks of deep learning models include the require-
ment of large numbers of training images with the associated long 
training time and complexity (Mamalakis et al., 2021). Introducing 
transfer learning could address the concern of requiring large datasets, 
however other concerns remain, including extensive computational 
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requirements and training times, generalization capability, performance 
consistency and robustness of the model (Alhasan and Hasaneen, 2021; 
Hussain et al., 2021). Lung disease is regarded a major health challenge 
worldwide and is one of the most common causes of death. COVID-19 
has become a major threat to global health and the pandemic has 
severely affected healthcare systems, the global economy, education, 
workplaces, tourism etc. (Rahman et al., 2021; Vocaturo et al., 2021). 
Even though the first outbreak of the virus occurred years ago, it is still a 
serious threat because the number of deaths and new cases is rising 
every day (Ayris et al., 2022). An accurate prediction of risk factors can 
help to prevent lung diseases from becoming chronic, severe, and 
life-threatening conditions. In this regard, timely diagnosis and proper 
treatment planning can prevent spread of infections and deterioration of 
lung diseases, thus reducing the mortality rate. Research focusing on the 
detection of lung diseases, including COVID-19, from chest X-rays in-
dicates that X-ray images contain meaningful information regarding the 
progression of the disease (Borghesi et al., 2020; Cozzi et al., 2020). An 
automated and reliable approach based on deep learning techniques 
using X-ray images could be a promising solution in the diagnosis of lung 
diseases. CNN models trained on standard chest radiography images to 
detect and categorize lung disorders require extensive computational 
resources and time (Zumpano et al., 2021; Sarv Ahrabi et al., 2021). 
These impediments are compounded by the problem of small medical 
datasets with an imbalanced number of images in the different classes. 
However, successful classification models addressing the computational 
complexity issue can be built without convolutions. In this regard, 
transformers have become a key focus of Machine Learning (ML) 
research. The most notable work in this area is Vision Transformer (ViT), 
which implements a pure self-attention-based model on sequences of 
image patches and achieves competitive performance when compared to 
CNNs. In terms of computational efficiency and accuracy, ViT models 
outperform CNNs by almost a factor of four and achieve better accu-
racies on large datasets with less training time (Paul & Chen, 2022). 
Because self-attention layers are faster than recurrent layers (Vaswani 
et al., 2017), transformers are also substantially more efficient than 
Recurrent Neural Networks (RNNs) if we take into consideration the 
computational complexity of the “Sequential operations”. ViTs can 
address the issue of training time, but due to the architecture of the 
transformer models, they are data-hungry and require massive amounts 
of data to provide satisfactory results. In medical research, collecting a 
large amount of annotated image data is often challenging, time 
consuming and costly. To resolve this, Hassani et al. (2021) introduced 
Compact Convolutional Transformer (CCT) by adding simple 

convolutional blocks to the tokenization step of the vision transformer. 
This resulted in reducing training time with noteworthy performance 
improvements. In this study, the COVID-19 Radiography dataset is used 
for the automatic detection and classification of lung diseases into 
COVID-19, Normal, Lung Opacity, and Viral Pneumonia. In this context, 
the issues of training time and complexity, small medical datasets, an 
imbalanced number of images and low resolution images are addressed 
with noteworthy performance. The main contributions can be summa-
rized as follows:  

i The dataset used for the experiment, contains imbalanced 
numbers of images in the different classes which might lead to 
poor performance of the model. Therefore, the dataset is 
balanced by producing synthetic images using Generative 
Adversarial Network (GAN) for the classes that contain fewer 
images.  

ii A number of image preprocessing techniques, Morphological 
Opening, Gamma Correction, CLAHE, Bilateral, and Spectrum, 
are applied to remove artifacts and enhance the quality of the 
images.  

iii Several statistical analysis PSNR, SSIM, MSE, RMSE measures are 
employed to ensure that the image processing techniques do not 
degrade image quality.  

iv To address the issues of high training time and low numbers of 
images, we propose a model named MCCT by modifying an 
original CCT model for the automatic classification of lung dis-
eases. The tokenization step of the vision transformer is per-
formed using convolutional blocks, reducing model training time 
significantly while achieving good accuracy even with low reso-
lution images.  

v An ablation study is performed by changing different hyper- 
parameters and the layer architecture of the proposed model to 
further improve the performance and reduce the number of pa-
rameters and the time complexity.  

vi Several transfer learning models, including VGG19, VGG16, 
ResNet152, ResNet50, ResNet50V2, MobileNet, are applied to 
our dataset to compare the performance of the proposed MCCT 
model in terms of accuracy and training time with images of pixel 
size 32 × 32.  

vii To evaluate the generalization capability and sustainability of our 
model further with regards to the volume of the training dataset, 
the model is trained four times, gradually decreasing the number 
of images. Results suggests that, even for a lower number of 

Fig. 1. The process to classify Chest X-ray (CXR) images into four classes using MCCT. Each phase represented by a block.  
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images, the model yields satisfactory performance validating the 
robustness of MCCT model.  

viii Several performances metrics, such as accuracy, precision, 
sensitivity, recall, F1-score, and MCC are evaluated to compare 
the performance of transfer learning models with the proposed 
MCCT model. It is found that our proposed MCCT model out-
performs the transfer learning models in terms of accuracy and 
training time while using 32 × 32 sized images as training data. 

The MCCT model records the highest test accuracy of 95.37% 
requiring a training time of 10-12 sec/epoch while VGG19, VGG16, 
ResNet152, ResNet50, ResNet50V2, and MobileNet yield test accuracies 
of 79.51%, 76.97%, 53.39%, 67.77%, 65.35% and 43.42% respectively 
requiring a training time of 10-12 sec/epoch on average. Moreover, 
while decreasing the number of images gradually from 49621 to 6204, 
the performance is sustained with accuracies in a range of 91%-95%. 
This study may help to address the issues of computational complexity, 
training time, data imbalance, and data inadequacy. 

The remainder of this paper is organized as followsSection 2 de-
scribes the details of the proposed methodology. Section 3 describes the 
dataset. Section 4 presents details of GAN and its architecture. Section 5 
provides an overview of image preprocessing techniques. The models 
and experimental setup are summarized in Section 6. Section 7 discusses 
the ablation study and results. Section 8 gives a brief overview and 
comparison with related work. Section 9 concludes the paper. 

2. Methodology 

The study is conducted by introducing deep learning approaches to 
classify Chest X-ray (CXR) images into four classes. Fig. 1 illustrates the 
process. 

The Covid19 Radiography Chest X-ray dataset is used for all the 
experiments in this study. The Data augmentation technique DCGAN is 
introduced to deal with the data imbalance problem by generating new 
images. Afterwards, several image preprocessing algorithms are applied 
on the augmented balanced dataset to remove artifacts and enhance the 
images. Statistical analysis methods, Peak signal-to-noise ratio (PSNR), 
Mean Squared Error (MSE), Root Mean Squared Error (RMSE), and the 
structural similarity index measure (SSIM) are used to assess and ensure 
that image quality is not reduced. The preprocessed dataset is split into 

training, validation and testing before feeding the images into the deep 
learning models. We propose a MCCT model using an image size of 32 ×
32 by modifying the layer architecture and hyper parameters of an 
original CCT model. An ablation study of eleven cases is done to ensure 
the best performance while addressing the time complexity. The per-
formance of the MCCT model is compared with five deep learning 
models, VGG16, VGG19, ResNet152, ResNet50, ResNet50V2 and 
MobileNet, in terms of training time and accuracy for an image size of 32 
× 32, Several performance metrics are evaluated and the possible 
occurrence of overfitting is assessed. Further evaluation of the model’s 
robustness is conducted by testing its performance with decreasing 
numbers of images. All processes are described briefly in the sections 
and sub-sections below. 

3. Dataset 

In our research, we evaluated the suggested model on a publicly 
available COVID-19 Radiography Dataset, obtained from “Kaggle” 
(“COVID-19 Radiography Database”) comprising a total of 21149 Chest 
X-ray (CXR) images. The dataset contains four classes. The COVID-19 
class has 3616 images, the Lung Opacity class has 6012 images, the 
Normal class has 10192 images and the Viral Pneumonia class has 1345 
images. All images are 299 × 299 pixels in grayscale format. A summary 
of the dataset is given in Table 1. 

Fig. 2 depicts an example of each of the four classes of this dataset. 

4. Data augmentation using DCGAN 

In computer vision, the performance of a neural network greatly 
depends on the availability of a sufficient number of labeled data. This is 
one of the biggest challenges in medical imaging. To overcome a data 
shortage, the training dataset is often expanded artificially by simple 
image transformations and color adjustment methods, such as scaling, 
flipping, converting, enhancing contrast or brightness, blurring and 
sharpening, white balance, and so on, (Krizhevsky et al., 2017). How-
ever, these augmentations are designed to turn an existing sample into a 
slightly altered sample. The modifications are limited and do not create 
a completely plausible alternative to unseen data (Motamed et al., 
2021). A new, advanced augmentation approach that overcomes the 
limitations of traditional data augmentation methods is synthetic data 
augmentation. 

4.1. Deep convolutional GAN 

GAN is an effective deep learning based generative model that gen-
erates synthetic images, without supervision, using a min-max scheme. 
Synthetic data obtained using a generative model have more variability 
and enrich the dataset to improve the system training process. GANs 
capture the training data distribution and create new examples based on 
the same distribution. This leads to an improved generalization ability of 
CNN models and consequently prevents overfitting (Bowles et al., 2018). 

Table 1 
Dataset Description  

Name Description 

Total Number of Images 21149 
Dimension 299 × 299 
Images type X-ray 
Covid-19 3616 
Normal 10192 
Lung Opacity 6012 
Viral Pneumonia 1345  

Fig. 2. Images from each class of the dataset  
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GANs combine two neural networks, named generator and discrimi-
nator, which create new data instances by minimizing the probability 
distribution distance between the original and generated data. The task 
of the generator is to generate new fake (artificial) data instances that 
look like the original training data. The discriminator network then 
distinguishes the fake (artificially generated) and real data. If the 
discriminator can recognize the fake data, it sends the data back to the 
generator and the generator upgrades the fake data, sending it again to 
the discriminator to recognize. Before applying DCGAN, all the images 
from dataset have been resized to 224 × 224. During training, the 
generator network improves its ability to generate artificial samples by 
minimizing the loss function. The discriminator, on the other hand, 
learns to become better at discriminating between original and fake 
samples by maximizing a similar loss function. Some limitations of a 
basic GAN are supervised learning, inability to detect overfitting, 
instability when used in small datasets (Jin et al., 2020). For this reason, 
we use DCGAN which combines GAN with deep CNN while ensuring a 
stable architecture through modification (Salehinejad et al., 2018). The 
architecture and function of DCGAN is similar to the original GAN, 
except that both the discriminator and the generator networks employ 
convolutional and convolutional-transpose layers. The following equa-
tion is used to train the generator and discriminator networks (Kora 
Venu and Ravula, 2020). 

min
N

max
M

VGAN(M,N) = Ex∼Pdata(x) [logM(x)] + Ez∼Pz(z) [log(1 − M(N(z)))] (1)  

where M is the Discriminator and N is the Generator, Ex∼Pdata(x) and 
Ez∼Pz(z) are the expected values of overall real and fake instances, N(z) is 
the generator function that maps to the data space. x denotes original 
data and M(x) is the probability that x came from the original data 
distribution rather than from the generated data distribution. Pz (z) is 
the random noise variable sampled from a standard normal distribution, 
Fig. 3 represents the detailed architecture of the generator network used 
in this study. 

Initially, the generator takes a random 100 × 1 noise vector as an 
input, which is fed into the dense layer and reshaped to 14 × 14 × 512. 
We use four convolution2D transpose and one conv2D layer in this ar-
chitecture to up sample an image size representation from 14 × 14 ×
512 to a size of 224 × 224 × 3. 

Data of size 14 × 14 × 512 pass through the first Convolutional2D 
Transpose and are reshaped into the image size of 28 × 28 × 256. In the 
second, third and fourth layer, the architecture is same. The output from 
the first Conv2D transpose layer forwards through the batch 

normalization layer, the activation function LeakyReLu and Conv2D 
transpose and is reshaped to respectively 56 × 56 × 128, 112 × 112 × 64 
and 224 × 224 × 32. In the final layer, using the conv2D layer, we obtain 
an output with an image size of 224 × 224 × 3. Batch normalization 
(Ioffe and Szegedy, 2015) is used to stabilize the learning process and 
the input is normalized to have a zero mean and unit variance. 

The discriminator takes the generated images of the generator 
network and the real images of the source dataset as input. This input 
then goes through a combination of convolution layers of four blocks. 
Each convolution block of the discriminator network contains Conv2D, 
LeakyReLu as activation function and a dropout layer. After passing 
through four blocks the discriminator recognizes the image as real or 
fake. The discriminator works as a binary classifier that predicts real of 
fake images. Therefore, binary cross-entropy is employed as the loss 
function, as stated in Equation 2 (Kora Venu and Ravula, 2020): 

JBCE(θ) = −
1
N

∑N

n=1
[yn × log(hθ(xn))+ (1 − yn)× log(1 − hθ(xn))] (2)  

Here, N is the number of training samples, yn is the target label for 
training sample n (the label for an original image is 1 and for a fake 
image is 0), xn is the input for training sample n, and hθ is the model with 
neural network weights θ. 

If the generated image is very similar to a real image, the discrimi-
nator gets tricked into thinking it is a real image and identifies the fake 
image as real. If on the other hand, the generator produces a fake image 
that does not resemble the original image, the discriminator identifies it 
as fake data and gradients are acquired which update the weights of the 
generator through backpropagation. The generator with updated 
weights produces better fake images and keeps trying to trick the 
discriminator into identifying fake images as real. Through these cycles 
of generating and discriminating, a robust generator can be obtained 
which is capable of producing fake images which closely resemble real 
images and can be used to increase the number of images of a particular 
dataset. 

4.2. Training strategy and augmented dataset generation 

As stated before, our dataset contains four classes having an imbal-
anced number of samples for the different classes. The highest number of 
images (10192) is found in the Normal class. We have balanced other 
three classes by creating image numbers close to the Normal class. For 
training DCGAN, the resized (224 × 224) dataset is used. As the Normal 

Fig. 3. Architecture of DCGAN  
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class is considered as threshold, DCGAN is applied to the remaining 
three classes. The model is trained using optimizer Adam, with learning 
rate: 0.0008, batch size 128 and the loss function ‘binary cross-entropy’. 
We base the epoch number on number of images in the original dataset 
using the training time and output. Therefore, for the class Lung Opac-
ity, the model is trained for 200 epochs as the original number of images 
(6012) was sufficient to generate enough transformed images within 
these epochs. However, for the classes COVID and Viral Pneumonia, the 
number of images was not sufficient to generate the required number of 
transformed samples in 200 epochs. For these classes, the number of 
epochs was set to 250. After augmentation the dataset is enlarged from 
21165 images to 49520 images. However, we did not create an equal 
number of images for all classes, as the interpretation capability of our 
classification model might not be evaluated effectively using such a 
completely balanced dataset. Table 2 shows the number of images in the 
original dataset, the number of generated datasets using DCGAN, and 
the total number of images after augmentation. 

Fig. 4 depicts original images and DCGAN generated images. It can 
be seen that generated images are very similar to the real images. 

5. Image preprocessing techniques 

Image preprocessing, before feeding the images into a neural 
network, is one of the most important steps to ensure that the model’s 
performance and computation time are both optimized. Image pre-
processing in this study includes artifact removal and image enhance-
ment through several commonly used algorithms. The chest X-ray 
images of this dataset have several artifacts, noise and low contrast. First 
artifacts are removed from the images by applying morphological 
opening (Breuel, 2007). Subsequently, gamma correction (Dhar et al., 
2021) and CLAHE (Hassan et al., 2021) are applied to improve the 
brightness and contrast of the images. Bilateral (Tomasi and Manduchi, 
2002) filter is employed to smooth the pixels while preserving the edges 
of ROIs. Finally, a filter for ImageJ software named ‘Spectrum’ (Beer-
avolu et al., 2021) is applied to highlight the abnormality. Statistical 
evaluation with PSNR, MSE, RMSE, and SSIM is done to ensure that the 
image quality is not reduced due to these processing algorithms. 

5.1. Artifact removal 

As artifacts can affect the performance of the model, artifact removal 
is an important step in image preprocessing. This is done by morpho-
logical opening. 

5.1.1. Morphological opening 
To apply morphological opening, the image is first converted to 

binary format using binary thresholding (Breuel, 2007). After convert-
ing to binary format, small noises become more visible. Morphological 
opening is applied on the binary image using a kernel. This kernel’s 
shape and size are determined based on the characteristics of the arti-
facts to be erased. A structural element is a matrix that identifies and 
defines each pixel and its neighborhood. After experimenting with 
several kernel shapes and sizes, a rectangular kernel of size 5 × 5 is 
applied as for this kernel the artifacts are removed successfully while 
preserving the necessary information. Thus, a noise-free binary mask is 
achieved which is later merged with the original image using a bitwise 
AND function. 

5.2. Image enhancement 

Chest X-ray details are often hard to interpret due to their complex 
characteristics and hidden information, which makes it challenging for a 
model to distinguish the classes. To achieve optimal performance, 
suitable image enhancement techniques may aid in improving the visual 
distinction of the Regions of Interest (ROIs) from the background. 

5.2.1. Gamma correction 
Using a nonlinear transformation, gamma correction modifies the 

overall brightness and contrast of an image (Dhar et al., 2021). In this 
study, gamma correction is used to improve the distribution of light and 
dark areas with the aim to highlight the ROI against a dark background. 
The algorithm is applied using the following equation: 

O = I ∧ (1 /G) (3)  

where I is the input image, G is the gamma value and O the output 
image. 

The correction of brightness and contrast depends on the gamma 
value G where G < 1 causes the pixels appear darker and G > 1 makes 
them appear lighter. A suitable gamma value is determined after 
experimenting with several gamma values for our dataset. A gamma 
value of 1.2 is found to result in an optimally enhanced image. 

5.2.2. CLAHE 
CLAHE is applied to balance the overall contrast by correcting over- 

amplification of contrast levels. Rather than working with the entire 
image, the algorithm divides the image into small regions called tiles 
and operates on the individual tiles (Hassan et al., 2021). To apply 
CLAHE, two parameters are used, cliplimit and tilegridsize, where cli-
plimit is the threshold contrast value to be applied and tilegridsize is the 
size of tile in each row and column. These parameter values are deter-
mined after a few experiments with different values on our dataset, 
resulting in a cliplimit of 40 and a tilegridsize of 8 × 8. 

Table 2 
Number of Original and Generated Data using DCGAN  

Class Original Images DCGAN Training Images DCGAN Generated Images Total Images 

COVID-19 3616 1800 9673 13289 
Lung Opacity 6012 1872 7899 13911 
Normal 10192 - - 10192 
Viral Pneumonia 1345 1345 10783 12128  

TOTAL= 21165  TOTAL=28355 TOTAL=49520  

Fig. 4. Original Image and DCGAN Generated Image  
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5.2.3. Bilateral 
The bilateral filter is a way to smooth the pixels of an image while 

preserving the edges. A weighted average of nearby pixel values is used 
in Gaussian smoothing (Tomasi and Manduchi, 2002). The filter applies 
a tonal weight to pixel values that are closer to the pixel value in the 
center, weighting them more heavily than pixel values that are more 
dissimilar. Because of this tonal weighting, the bilateral filter can pre-
serve edges while smoothing flatter sections. To apply the algorithm, the 
parameters diameter, sigmaColor, and sigmaSpace are used. Diameter is 
the pixel size of each neighborhood, sigmaColor is the color space value 
of sigma. As the value increases, nearby colors start to blend with each 
other. Sigma’s coordinate space value is sigmaSpace. 

5.2.4. Spectrum 
ImageJ’s "Look Up Tables (LUTs)" software tool is used to complete 

the final enhancement (Montaha et al., 2021). A multi-color separation 
is achieved using this filter, which is applied to the image to show the 
affected area and surrounding cells separately. LUT has a number of 
filters. To determine the best filter for our dataset, we experimented 
with several LUT filters named ’16 Colors’, ‘Blue Orange ICB’, ‘Green 
Fire Blue’ and ‘Spectrum’. The LUT filter that worked best for our 
dataset was ’Spectrum’. Fig. 5 represents the state of the data after 
applying each LUTs filter. 

The best parameter values associated with the image processing 
methods are chosen after running multiple tests on the dataset. Table 3 
represents the parameter values for all the applied image processing 
techniques. 

Fig. 6 represents the entire image pre-processing process from arti-
facts removal to image enhancement. 

5.3. Verification 

Finally, statistical analysis is done to show that the image quality 
does not deteriorate due to the algorithms (Montaha et al., 2022). The 
equations for these verification methods are given below. 

MSE is probably the simplest and most prevalent loss function. To 
determine the MSE, difference between the predictions made by the 
model and the actual data is squared and then averaged throughout the 
entire dataset. MSE is defined mathematically by the following equation: 

MSE =
1

pq

∑m− 1

i=0

∑n− 1

j=0
(O(m, n), − P(m, n))2 (4)  

where O is the original image, P is the processed image, p and q indicate 
the pixels of O and P, and m, n indicate the rows of the pixels p, q. The 
MSE value ranges from 0 to 1, with a value close to 0 indicating good 
image quality. If the value is greater than 0.5, the quality has deterio-
rated. A value of 0 indicates that the image is completely free of noise. 

PSNR calculates the signal-to-noise ratio between two pictures. This 
ratio is used as a measure of image quality between the original and the 
compressed version. The greater the PSNR, the higher the image quality. 
The mathematical expression of PSNR is: 

PSNR = 20log10

(
(MAX)
̅̅̅̅̅̅̅̅̅̅
MSE

√

)

(5)  

Here, MAX denotes the image’s maximum pixel value (i.e., 299). A good 
PSNR value for an 8-bit image is usually between 30 and 50 dB. 

SSIM is a metric which measures the image quality loss caused by 
image processing. It needs two images: a reference image and a pro-
cessed image with the same image origin. The equation for SSIM: 

SSIM(x, y) =
(
2μxμy + c1

)(
2σxy + c2

)

(
μ2

x + μ2
y + c1

)(
σ2

x + σ2
y + c2

) (6)  

Here, µx and µy are the Gaussian window averages of the two pictures (x, 
y). The variance is denoted σ2

x and σ2
y , while the covariance of the pic-

tures is denoted by σxy. C1 and C2 are the two variables used to stabilize 
the division, where c1 is (0.01 × 255)2 and c2 = (0.03 × 255)2, with 
default values of 0.01 and 0.03. The SSIM ranges from 0 to 1, with 1 
denoting ‘perfect structural similarity’ and 0 denoting ‘no structural 
similarity’. 

RMSE is a commonly used metric for comparing values predicted by 

Fig. 5. Output of various ImageJ filters  

Table 3 
Selected parameter values for all pre-processing algorithms  

Process Algorithm Parameter Value 

Artifact Removal Morphological 
opening 

Structuring element = rectangular 
Kernel Size =5 × 5 

Image 
enhancement 

Gamma correction Value =1.2 
CLAHE ClipLimit=1.5, TileGridSize=8 ×

8 
bilateral Filter diameter =9, 

sigmaColor=75, sigmaSpace=75  

Fig. 6. Flowchart of Image Preprocessing and Its Results  
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a model or estimate to values actually observed. It represents the 
Euclidean distance between the measured true values and the pre-
dictions. RMSE can be expressed as: 

RMSE =

[
∑N

j=1

(
mfi − md

)2

/

N

]1
2

(7)  

Where 
∑

indicates summation, (mfi − md)
2 is the square of differences, 

and N is the dataset size. A lower RMSE, especially near 0, suggests fewer 
errors and better image quality. The computed PSNR, MSE, SSIM, and 
RMSE value of ten random images are presented in Table 4. 

It can be observed from Table 4 that the PSNR values of the images 
are larger than 31, the SSIM values are larger than 0.99, the MSE values 
are larger than 0.33 and the RMSE values are larger than 0.54 which 
indicates a good quality of the preprocessed images. The values of PSNR, 
SSIM, MSE and RMSE for the rest of the images in the dataset are close to 
this range which validates the effectiveness of our image preprocessing 
algorithms. 

6. Proposed model 

Vision transformers (Vit) can simultaneously process numerous 
sequential data and can detect long-range relationships between 
sequential pieces using their self-attention mechanism. This makes them 
exceptionally robust in image classification tasks (Huang et al., 2022; 
Islam, 2022; Khan et al., 2022). Nevertheless, most real-world medical 
datasets are insufficient to train ViTs for satisfactory performance. CCT, 
a hybrid compact ViT with convolution, solves this problem. CCT 
models use CNN blocks as patching blocks with a local receptive field 
that maintains local image information. The self-attention mechanism 
collects relationships between image patch pieces and combines perti-
nent information. 

6.1. Compact convolutional transformer (CCT) 

There are two main blocks in the CCT architectures, Convolutional 
Tokenization and Transformer with sequential pooling. Fig. 7 shows the 
detailed mechanism of CCT. 

The Convolutional Tokenization block is used to generate patches for 
input images (Cubuk et al., 2018). The dimension of the augmented 

images are H × W × C where H is the height, W is the width, and C is the 
number of channels. These images are divided into patches and turned 
into a sequence of length m. For a given image x with dimensions H × W 
× C the operations of Convolutional Tokenization will be: 

x0 = MaxPool(ReLU(Conv2D(x))) (8)  

where, the convolutional layer (Conv2d) has 64 filters with strides 2 
equipped with the ReLU activation function. The maxpool layer then 
downscales the resultant feature maps of Conv2D. The convolutional 
tokenization block can take input images of any size. As a result, CCT 
models do not require all image patches to be of equal sizes. The CNN 
layers help the model to retain local spatial information because of these 
convolutional patches. 

Afterwards, the resultant image patches from the first block go to the 
transformer-based backbone where a Multihead self-attention (MSA) 
layer and a Multilayer perceptron (MLP) head make up the encoder 
block. Layer normalization (LN), GELU activation, and dropout are used 
by the transformer encoder. Layer normalization is applied after posi-
tional embedding in CCT models where the positional embeddings are 
learnable. 

The resultant output of the transformer backbone is pooled through 
the sequence pooling layer where sequence pooling is used as an alter-
native to applying a class token to map sequential outputs to a single 
class [10]. This sequence pooling enables the network to weigh latent 
spaces’ sequential embeddings created by the transformer encoder and 
improve data correlation for the input data. The entire sequence of data 
is pooled by the sequence pooling layer as it comprises relevant infor-
mation from various portion of the input images. This method can be 
called Mapping transformation and is denotes as T : R(b×n×d)→R(b×d)

The operation can be described as: 

xL = f (x0) ∈ R(b×n×d) (9)  

where L is a layer transformer encoder and its output is xL or f(x0). 
Furthermore, a mini-batch size denoted by b, d is considered as the 
embedding dimension and n denoted the sequence length. Afterwards, 
xL is fed to a linear layer g(xL) ∈ R(d× 1) and the softmax activation 
function (Eq. 10) is applied. 

x′

L = softmax
(
g(xL)

T)
∈ R(b×1×n) (10) 

The output can be computed as: 

z = x′

LxL = softmax
(
g(xL)

T)
× xL ∈ R(b×1×d) (11) 

After pooling of the second dimension, z ∈ R(b×d) is achieved as an 
output. This then goes through a linear classification layer and the im-
ages are classified. 

6.2. Base model architecture 

In this study a modified version of a CCT model (MCCT) is proposed, 
which is achieved by conducting ablation studies on a base CCT model. 
Fig. 8 shows the Base Model architecture of CCT. 

The base CCT architecture comprises of multiple modules and layers 

Table 4 
MSE, PSNR, SSIM, and RMSE values for ten images   

PSNR SSIM MSE RMSE 

Image_1 31.68 0.9930 0.44 0.66 
Image_2 32.19 0.9954 0.39 0.62 
Image_3 31.98 0.9936 0.41 0.64 
Image_4 32.86 0.9916 0.33 0.57 
Image_5 31.56 0.9924 0.45 0.67 
Image_6 32.84 0.9955 0.33 0.57 
Image_7 32.24 0.9941 0.38 0.61 
Image_8 33.22 0.9950 0.30 0.54 
Image_9 32.09 0.9944 0.40 0.63 
Image_10 32.01 0.9939 0.40 0.63  

Fig. 7. Structure of CCT  
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including the input layer, the data augmentation layer, the CCT 
Tokenizer, multi-head attention layers, a regularization (stochastic 
depth) layer, pooling layers, dropout layers, dense layers and output 
dense layers equipped with the softmax activation function. The model 
takes images of dimensions 32 × 32 × 3 as input and the data 
augmentation layer performs various geometric augmentations on the 
input images. The augmented images are fed to the CCT Tokenizer block 
and the output image data is reshaped into dimensions 64 × 128. 
Initially, the convolutional layer of CCT Tokenizer block contains strides 
of size 2 and kernels of size 4 and a pooling layer kernel size of 4. After 
tokenization, the data passes through tensorflow addons and then to the 
transformer encoder block. This block comprises of several layers in a 
specific sequence: layer normalization (1), multi-head attention, regu-
larization, layer normalization (2), followed by two pairs of dense and 
dropout layers with a dropout factor of 0.1. Another regularization layer 
is attached at the end of the transformer encoder block. The output of 
this layer is of dimension 64 × 128 and is regularized once again with 
the Regularization layer, followed by another transformer encode block, 

identical to the first one. The output of the second transformer encoder 
block goes through a regularization layer and a normalization layer. The 
normalized output then passes through a dense layer and a softmax layer 
that produces output data of dimensions 64 × 1. This is forwarded to a 
sequence pooling layer which results in output data with a dimension of 
1 × 128. Finally, a linear classification layer classifies the chest X-ray 
images into four classes. 

Furthermore, as a loss function, Categorical Crossentropy is selected 
and the Adam optimizer is used with a learning rate of 0.001. The model 
is run for 100 epochs with a batch size of 128. 

6.3. Ablation study 

As stated, we have performed an ablation study on the base CCT 
model by altering the layer architecture and tuning hyper parameters in 
order to achieve the best possible performance. Eleven ablation studies 
were conducted, including adding or decreasing the number of trans-
former encoder blocks, changing activation functions and pooling layer 

Fig. 8. Base Model architecture of CCT  

Fig. 9. Proposed Model MCCT Architecture  
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types, and experimenting with stride sizes, kernel sizes, pooling layer 
kernel sizes, loss functions, batch sizes, optimizers, and learning rates. 
After completion of all ablation studies, the proposed MCCT model has a 
more robust design with improved classification accuracy and reduced 
processing time. The results of the ablation study can be found in sec-
tion: 7.2. 

6.4. Proposed MCCT architecture 

To minimize time complexity and training times and optimize the 
performance, the proposed MCCT architecture is made shorter and more 
robust. The resultant MCCT architecture after ablation studies has a 
close resemblance to the base CCT model with fewer transformer 
encoder blocks. The base CCT architecture contains two transformer 
encoder blocks whereas the MCCT model contains just one transformer 
encoder block making the model smaller and offering faster training 
times. The rest of the architecture is kept the same with some changes in 
model hyper parameters, including the stride size and kernel size 
(Fig. 9). 

The model does not require positional encoding, unlike transformer- 
based models, which helps in maintaining a low computational 
complexity. Self-attention has a computational complexity of O(n2.d)
where the input sequence length is n and the dimensionality of the 
vector representation is denoted as d. With introduction of positional 
encoding, the computational complexity increases (O(n2.d +

n.d2))(Vaswani et al., 2017). As positional encoding is not necessary in 
the MCCT model and the transformer backbone is purely based on the 
self-attention mechanism, the training and testing phase of the proposed 
model requires fewer resources and is faster. This further increases the 
effectiveness of the model. 

6.5. Training strategy 

To train the models, the batch size was set to 128 and the maximum 
number of epochs was set to 100. The Adam optimizer was utilized with 
a learning rate of 0.001. In multiclass cases, the default loss function is 
‘categorical cross-entropy’ (Lorencin et al., 2021). As previously 
mentioned, ’Relu activation’ is utilized to predict the probability for 
each class. The dataset split ratio was 75% for training, 10% for vali-
dation and 15% for testing. We used three PCs, each with an Intel Core 
i5-8400 processor, NVidia GeForce GTX 1660 GPU, 16 GB of memory, 
and a 256 GB DDR4 SSD for storage, while we experimented with 
various models and setups. 

6.6. Model comparison 

Six deep learning models are compared with MCCT in terms of ac-
curacy and training time using image size of 32 × 32. 

6.6.1. VGG16 
VGG16 is a state-of-the-art transfer learning model which consists of 

sixteen weighted layers. The model obtained 92.7% accuracy for the top 
five test results in the ImageNet dataset. It also won the Large-Scale 
Visual Recognition Challenge (ILSVRC) competition which was orga-
nized by the Oxford Visual Geometry Group. The model can help the 
kernel learn more complex features, because the VGG model has more 
depth. 

6.6.2. VGG19 
VGG19 is a variant of the VGG model with 19 weighted layers, In 

addition to the VGG16 model, there are three additional FC layers with a 
total of 4096, 4096, and 1000 neurons. Also, there are five maxpool 
layers as well as a Softmax classification layer. The ReLU activation 
function is used in the convolutional layers. 

6.6.3. ResNet50 
The ResNet50 architecture uses a combination of convolution filters 

of different sizes to deal with the deterioration of CNN models and 
reduce the training time. This architecture consists of 48 convolutional 
layers in total, as well as a maxpool and an average pool layer. There are 
about 23 million trainable parameters in this model. 

6.6.4. ResNet152 
ResNet152 is another ResNet model which contains 152 layers. The 

fundamental innovation of ResNet152 was that it enabled successful 
training of very deep neural networks with more than 150 layers. ResNet 
is thought to be a good deep learning architecture because it is easy to 
optimize and achieves good results. However, as there are many layers 
in the network architecture, it has a high time complexity. 

6.6.5. ResNet50V2 
ResNet50V2 is a modified version of the original ResNet50. When 

evaluated on the ImageNet dataset, ResNet50V2 outperforms both the 
original ResNet50 and ResNet101. The propagation concept of the 
connections between blocks in ResNet50V2 was changed. 

6.6.6. MobileNet 
MobileNet is a considerably faster and smaller CNN design that 

makes use of a new type of convolutional layer, called Depth wise 
Separable Convolution. MobileNet models are regarded particularly 
useful for implementation on mobile and embedded devices due to their 
modest size. 

7. Results and discussion 

The results of this study are presented and discussed in this section, 
including results of the various ablation studies and model evaluation 
metrics. A discussion regarding the confusion matrix, accuracy loss 
curves, performance evaluation with reduced number of images is also 
included in this section to further evaluate the effectiveness of the 
proposed MCCT model. 

7.1. Evaluation metrics 

To assess the performance of the proposed classification model, 
several metrics are computed. A true positive (TP) is a result in which 
the model classifies the positive class accurately. A true negative (TN) is 
a result in which the model accurately predicts the negative class. A false 
positive (FP) is an outcome in which the model forecasts the positive 
class inaccurately and a false negative (FN) is an outcome in which the 
model forecasts the negative class incorrectly. Accuracy (ACC) is the 
proportion of correct predictions: 

ACC =
TP + TN

TP + TN + FP + FN
(12) 

Precision refers to the percentage of all positive predictions that are 
actually positive. Recall is the ratio of correctly predicted positive results 
to all positive predictions. 

RecaIl =
TP

TP + FN
(13)  

Precision =
TP

TP + FP
(14) 

Specificity is determined by dividing the number of accurate nega-
tive predictions by the total number of negative predictions. F1 Score is 
the harmonic mean of precision and recall. 

Specificity =
TN

TN + FP
(15)  
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F1 = 2
precision ∗ recall
precision + recall

(16) 

Some other metrics which can be calculated with TP, TN, FP, FN are 
false positive rate (FPR), false negative fate (FNR), false discovery rate 
(FDR) and the negative predicted value (NPV): 

FPR =
FP

FP + TN
(17)  

FNR =
FN

FN + TP
(18)  

FDR =
FP

TP + FP
(19)  

Table 5 
Ablation study on various ImageJ image enhancement filters  

Filter 
Name 

Image 
size 

No. of 
Parameter 

Epoch x 
training 
time 

Test 
accuracy 
(%) 

Finding 

Spectrum 32 ×
32 

0.41M 100 × 21s 90.4% Highest 
accuracy 

Green Fire 
Blue 

32 ×
32 

0.41M 100 × 21s 90.18% Near 
highest 
accuracy 

Blue 
Orange 
icb 

32 ×
32 

0.41M 100 × 21s 89.98% Lower 
accuracy 

16 Colors 32 ×
32 

0.41M 100 × 21s 89.01% Lower 
accuracy  

Table 6 
Ablation study on changing transformer layer, activation function, pooling layer, stride size.   

Study 1: changing transformer layer 
Configuration No. Number of transformer encoder block No. of Parameters Epoch x training time Total time Test accuracy (%) Findings 

1 3 0.57M 100 × 32s 53-60 minutes 90.63% High time, 
High accuracy 

2 2 0.41M 100 × 21s 35-40 minutes 90.4% Medium time, 
High accuracy 

3 1 0.24M 100 × 11s 18-20 minutes 90.24% Lower time, 
Near High accuracy 

Study 2: changing the activation function 
Configuration No. Activation function No. of parameters Epoch x training time Test accuracy (%) Findings 
1 Tanh 0.24M 100 × 10s 90.81% Lower accuracy 
2 relu 0.24M 100 × 10s 92.06% Highest accuracy 
3 elu 0.24M 100 × 11s 91.38% Near highest accuracy 
4 softsign 0.24M 100 × 10s 90.4% Lower accuracy 
5 softplus 0.24M 100 × 10s 84.97% Lower accuracy 
Study 3: changing the pooling layer 
Configuration No. Type of pooling layer No of parameters Epoch x training time Test accuracy (%) Findings 
1 Max 0.24M 100 × 10s 92.97% Highest accuracy 
2 Average 0.24M 100 × 10s 92.06% Lower accuracy 
Study 4: changing the stride size 
Configuration No. No. of strides No. of Parameters Epoch x training time Test accuracy (%) Findings 
1 1 0.24M 100 × 10s 94.57% Highest accuracy 
2 2 0.24M 100 × 5s 93.16% Near Highest accuracy 
3 3 0.24M 100 × 5s 92.97% Lower accuracy 
4 4 0.24M 100 × 5s 88.43% Lower accuracy  

Table 7 
Ablation study on changing kernel size, pooling layer kernel size, loss function, batch size  

Study 5: changing the kernel size 
Configuration No. No. of kernel size No. of Parameter Epoch x training time Test accuracy (%) Finding 

1 4 0.3M 100 × 11s 94.33% Near highest accuracy 
2 3 0.24M 100 × 10s 94.57% Highest accuracy 
3 2 0.2M 100 × 12s 93.12% Lower accuracy 
4 1 0.17M 100 × 13s 86.3% Lower accuracy 
Study 6: changing the pooling layer kernel size 
Configuration No. No. of pooling kernel size No. of Parameter Epoch x training time Test accuracy (%) Finding 
1 5 0.24M 100 × 11s 94.57% Near highest accuracy 
2 4 0.24M 100 × 11s 94.72% Near highest accuracy 
3 3 0.24M 100 × 10s 94.80% Highest accuracy 
4 2 0.24M 100 × 10s 93.62% Lower accuracy 
5 1 0.24M 100 × 10s 92.97% Lower accuracy 
Study 7: changing the loss function 
Configuration No. Loss Function No. of Parameter Epoch x training time Test accuracy (%) Finding 
1 Binary Crossentropy 0.24M 100 × 10s 94.57% Near highest accuracy 
2 Categorical Crossentropy 0.24M 100 × 10s 94.80% Highest accuracy 
3 Mean Squared Error 0.24M 100 × 10s 94.68% Near highest accuracy 
4 Mean absolute error 0.24M 100 × 10s 93.93% Lower accuracy 
5 Mean squared logarithmic error 0.24M 100 × 10s 26.76% Lower accuracy 
Study 8: changing the batch size 
Configuration No. Batch size No. of Parameter Epoch x training time Test accuracy (%) Finding 
1 256 0.24M 100 × 9s 94.09% Lower accuracy 
2 128 0.24M 100 × 10s 94.8% Highest accuracy 
3 64 0.24M 100 × 14s 94.56% Near highest accuracy 
4 32 0.24M 100 × 20s 94.3% Near highest accuracy  
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NPV =
TN

TN + FN
(20) 

The Matthews correlation coefficient (MCC) is a more dependable 
statistical metric that yields a high score only if the model performed 
well in all four confusion matrix areas (TP, TN, FP, FN). 

MCC =
TP × TN − FP × FN

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
(TP + FP)(TP + FN)(TN + FP)(TN + FN)

√ (21)  

7.2. Results of the ablation study 

This section describes all the ablation studies conducted in this 
research. First, to determine the best image enhancement technique, a 
total of four ImageJ image filters are explored. The base model is trained 
with all four image enhancement filters and test accuracies are recorded 
in Table 5. 

It is evident that Spectrum filter outperforms the other ImageJ filters, 
acquiring a test accuracy of 90.4%. Spectrum ImageJ filter highlights the 
ROI regions of the chest X-rays, thus increasing the classification per-
formance of the base model. This filter is chosen for further ablation 
studies. 

Various experiments are performed by modifying the model’s com-
ponents and analyzing the model’s performance. A classification 
model’s performance may be improved by modifying a number of its 
components. In this study, a total of 11 studies are performed. The re-
sults of these ablation studies are recorded in Tables 6–8.  

• Study 1: changing the transformer layer 

For this study, the configuration of the transformer layers of the base 
model is altered by adding or subtracting transformer encoded blocks in 
order to achieve highest accuracy. Table 6 shows the results of various 
configurations of the proposed model with different numbers of trans-
former encoded blocks. The best performance is achieved with config-
uration 3 (one transformer encoded block) where the model is able to 
achieve nearly the highest accuracy of 90.24% with a significantly lower 
training time. The other two configurations had training times of 35-40 
minutes and 53-60 minutes whereas configuration 3 took only 18-20 
minutes. As configuration 3 contains significantly less trainable pa-
rameters, 0.24 million, this configuration has the lowest training time 
per epoch and is less time consuming. Configuration 3 is therefore 
chosen for further ablation studies.  

• Study 2: changing the activation function 

Various activation functions have a different impact on the perfor-
mance of a classification model. Selecting an optimal activation function 
can be an effective way to increase the performance of a model. A total 
of six activation functions: Tanh, Exponential Linear Units (ELU), ReLU, 
SoftSign and SoftPlus are explored (Table 6). ReLU demonstrates the 
best performance with a test accuracy of 92.06% and 10 seconds per 
epoch (Table 6). Thus, the ReLU activation function is chosen for further 
ablation studies.  

• Study 3: changing the type of pooling layer 

Experiments with two types of pooling layers: maxpooling and 
average pooling are conducted (Table 6). Max pooling layer increased 
the test accuracy from 92.06% to 92.97%. The maxpooling layer is 
therefore chosen for further ablation studies.  

• Study 4: changing the stride size 

This study explores various stride sizes in the transformer layers of 
the modelFour stride sizes: 1, 2, 3 and 4 are tried and the results are 
shown in Table 6. The performance of the model is increased to 94.57% 
while maintaining per epoch training time of 10 seconds with a stride 
size of 1. Thus, a stride size of 1 is chosen to move for further ablation 
studies.  

• Study 5: changing the kernel size 

Various kernel sizes of the transformer layers are explored in this 
study. Kernel sizes of 4, 3, 2 and 1 are experimented with and a kernel 
size of 3 showed the highest test accuracy of 94.57% (Table 7). 
Furthermore, with this kernel size, the model also had the lowest 
training time per epoch of 10 seconds, which contributes to reducing the 
overall training time. A kernel size of 3 for the transformer layers is 
therefore chosen for further ablation studies.  

• Study 6: changing the pooling layer kernel size 

Similar to the previous study, various kernel sizes of the pooling 
layers are experimented with. Pooling layer kernel sizes of 4, 5, 3, 2 and 
1 are tried (Table 7). A kernel size of 3 outperformed the others with a 
94.8% test accuracy (Table 7). For further ablation studies, a kernel size 
of 3 is chosen for the pooling layers of the model.  

• Study 7: changing the loss function 

Experiments using six different loss functions, namely Binary 
Crossentropy, Categorical Crossentropy, Mean Squared Error, Mean 
Absolute Error, Mean Squared Logarithmic Error and Kullback Leibler 

Table 8 
Ablation study on changing optimizer, learning rate, image size  

Study 9: changing the optimizer 
Configuration 
No. 

Optimizer No. of 
Parameter 

Epoch x 
training 
time 

Test 
accuracy 
(%) 

Finding 

1 Adam 0.24M 100 ×
10s 

95.2% Highest 
accuracy 

2 Nadam 0.24M 100 ×
10s 

84.52% Lower 
accuracy 

3 SGD 0.24M 100 ×
10s 

93.4% Lower 
accuracy 

4 Adamax 0.24M 100 ×
10s 

94.18% Near 
highest 
accuracy 

5 RMSprop 0.24M 100 ×
10s 

94.8% Near 
highest 
accuracy 

Study 10: changing the learning rate 
Configuration 

No. 
Learning 
rate 

No. of 
Parameter 

Epoch x 
training 
time 

Test 
accuracy 
(%) 

Finding 

1 0.01 0.24M 100 ×
10s 

88.12 Lower 
accuracy 

2 0.006 0.24M 100 ×
10s 

90.42 Lower 
accuracy 

3 0.001 0.24M 100 ×
10s 

95.37% Highest 
accuracy 

4 0.0008 0.24M 100 ×
10s 

94.8% Near 
highest 
accuracy 

Study 11: changing the image size 
Configuration 

No. 
Image 
size 

No. of 
Parameter 

Epoch x 
training 
time 

Test 
accuracy 
(%) 

Finding 

1 64 0.24M 100 ×
35s 

95.45% Highest 
accuracy 

2 32 0.24M 100 ×
10s 

95.37% Highest 
accuracy 

3 28 0.24M 100 × 9s 94.17% Lower 
accuracy 

4 16 0.24M 100 × 5s 93.43% Lower 
accuracy  
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Divergence are conducted in this study to achieve maximum perfor-
mance from the model. Table 7 showcases the results of various loss 
functions. The model equipped with the Categorical Crossentropy loss 
function is seen to retain the highest test accuracy of 94.8% (Table 7), 
whereas the accuracy is reduced for other loss functions. Thus, Cate-
gorical Crossentropy is selected.  

• Study 8: changing the batch size 

Exploring various batch sizes is necessary as the performance of a 
classification model may vary with different batch sizes. Experimenta-
tion with batch sizes of 256, 128, 64 and 32 is conducted (Table 7). The 
findings indicate that training the model with a batch size of 128 results 
in the highest test accuracy, 94.8%, while maintaining a training time 
per epoch of 10 seconds. The accuracy drops when training with other 
batch sizes (Table 7). The batch size 128 is therefore chosen for further 
ablation studies.  

• Study 9: changing the optimizer 

A total of five optimizers, namely Adam, Nadam, SGD, Adamax and 
RMSprop are experimented with in this study. The learning rates of the 
optimizers are set to 0.001. Table 8 shows that the highest test accuracy, 
of 95.2%, is recorded with the Adam optimizer. The Adam optimizer is 
selected for further ablation studies.  

• Study 10: changing the learning rate 

Further experimentation with the Adam optimizer and various 
learning rates (0.01, 0.006, 0.001 and 0.0008) is done and the results are 
recorded in Table 8. The best performance is obtained with learning rate 
0.001, resulting in a test accuracy of 95.37% while maintaining a 
training time of 10 seconds per epoch. Hence, this learning rate is chosen 
for further ablation studies.  

• Study 11: changing the image size 

For the last study, experiments with the model’s input layer image 
dimensions (image height and width) are conducted. Image sizes of 64 
× 64, 32 × 32, 28 × 28 and 16 × 16 are tried. Table 8 contains the 
results of this study. The highest accuracy (95.45%) is achieved for an 
image size of 64 × 64 with a per epoch training time of 35 seconds. 
However, the model managed to achieve nearly the highest testing 

accuracy, of 95.37%, with an image size of 32 × 32 while significantly 
lowering the per epoch training time, from 35 seconds to just 10 sec-
onds. As our goal is to build a model with good performance while also 
keeping time complexity in mind, an image size of 32 × 32 is chosen for 
the input image dimension because this consumes less training time 
while maintaining good performance. Fig. 10 visualizes the gradual 
increase in test accuracy with all ablation studies conducted on the base 
model. 

The final configuration of the MCCT model is summarized in Table 9. 

7.3. Performance analysis of proposed model 

By conducting ablation studies on the base model, a final MCCT 

Fig. 10. Improvement in test accuracy over 11 ablation studies.  

Table 9 
Configuration of proposed MCCT architecture after ablation study  

Configuration Value 

Image size 32 × 32 
Epochs 100 
Optimization function Adam 
Learning rate 0.001 
Batch size 128 
Kernel size 3 
Activation function relu 
Loss Function Categorical Crossen-tropy 
pooling layer kernel size 

stride size 
pooling layer 
projection_dim 
stochastic_depth_rate 
weight_decay 

3 
1 
Max pooling 
128 
0.1 
0.0001  

Table 10 
Various matrices computed for performance evaluation of MCCT model.  

Measure Value 

Recall 95.44% 
Specificity 98.43% 
Precision 95.34% 
F1 Score (F1) 95.39% 
Fall-out or False Positive Rate (FPR) 0.015% 
Miss Rate or False Negative Rate (FNR) 0.045% 
False Discovery Rate (FDR) 0.046% 
Negative Predictive Value (NPV) 98.48% 
Matthews Correlation Coefficient (MCC) 0.93%  
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model can be achieved which significant increases the classification 
performance. This is achieved through alterations and various configu-
rations of the model. Some evaluation metrics including statistical 
analysis for the proposed MCCT model are shown in Table 10. 

While evaluating the proposed MCCT model with the test set, the 
model achieves an F1 score of 95.39% while it scored 95.44% and 
98.43% in terms of recall and specificity respectively, with a precision of 
95.34%. FPR and FNR values are also computed, resulting in values of 
0.015% and 0.045% respectively. The model managed to keep FDR 
score quite low (0.046%) while maintaining an NPV value of 98.48%. 
The MCC value of the model is 0.93% where 1 is considered a perfect 
MCC score (Houssein et al., 2022). 

Fig. 11 visualizes the accuracy and loss curves for the proposed 
MCCT model. The training and validation curves are found to converge 
quite efficiently without showing major gaps between the curves, indi-
cating no sign of overfitting during the training process of the model. 
Similarly, the loss curves show (Fig. 11) steady convergence from the 
start to the final epoch. It can be concluded that no occurrence of over 
fitting or underfitting can observed during the training phase of the 
model. 

Fig. 12 shows the confusion matrix generated from the MCCT model. 
Row values indicate the true labels of the test images. The labels pre-
dicted by the model on the test set images are represented by column 
values. The diagonal values in the confusion matrix (Fig. 12) represent 
the number of correctly predicted test images by the model. It can be 

seen that the model is not biased to one or multiple classes and does not 
predict any particular class much better than the others. In fact, the 
model gives near equal numbers of correct predictions across all classes 
which further demonstrates the robustness of the model. 

Experiments are conducted by reducing the number of input images 
to evaluate the performance consistency of the proposed MCCT model. 
The MCCT model is again trained and evaluated multiple times. In each 
step the number of images in the dataset is reduced to nearly half of the 
previous number of images. Results are shown in Fig. 13. 

Fig. 13 shows that while the model is trained with half the number 
images (24809 images) of the original dataset, the accuracy drops only 
about 1%. Further decreasing the number of images to 12402, still re-
sults in a high-test accuracy, of 92.83%. Training and evaluating the 
model with only 6204 images, results in moderate performance with a 
test accuracy of 90.86%. Six thousand images are a very low number for 
traditional CNN and ViT models. However, even with such a small 
number of images (six thousand), the proposed MCCT model is able to 
produce a good result while maintaining low training times. This dem-
onstrates the performance consistency of the model. 

7.4. Comparison with transfer learning models 

For evaluation, the proposed model is compared with six state of the 
art transfer learning CNN models. All six models are trained and tested 
on the same dataset as the proposed model and the input image di-
mensions are kept at 32 × 32 pixels. The Categorical crossentropy loss 
function and the ReLu activation function are utilized for all transfer 
learning models. The models are tested with the Adam optimizer with a 
learning rate of 0.001 and a batch size of 128. All models are trained for 
100 epochs. The findings of this experiment are shown in Table 11. 

These findings show that among the six transfer learning models, 

Fig. 11. Loss curve and accuracy curve of CCT model after ablation study.  

Fig. 12. Confusion matrix of proposed MCCT model after ablation study.  

Fig. 13. Evaluation of proposed model with reduced number of images  
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VGG16 achieved the highest accuracy, 79.51%, while the other models 
had accuracies in the range of 43% to 77% (Table 11). It can be seen that 
CNN models are struggling to achieve even moderate performance when 
trained with input image of small dimensions like 32 × 32 pixels. In 
contrast, MCCT can be seen to be very robust as it outperformed all six 
CNN models with a top accuracy of 95.37% (Table 11) for 32 × 32-pixel 
input images. Training with such small sized images results in lower 
training times and requires less storage space which can be important for 
large datasets. The MCCT model has 241,861 trainable parameters 
(Table 11) which is quite low compared to the CNN models (Table 11). 
The small number of parameters contributes to shorter training periods, 
of 10–11 seconds per epoch. CNN models with larger parameter 
numbers require more than 60 seconds per epoch for training (Table 11). 
The total training time for 49621 images is reduced from nearly two 
hours (for traditional CNN models) to just 18-20 minutes (for our 
model). This is a significant improvement in terms of time complexity. In 
addition, acquiring near optimal performance with smaller sized images 
requires less memory and storage space, making the model less resource 
hungry and contributing to reduced space complexity. 

8. Related work 

In recent years, a growth of Machine Learning and Deep Learning 
approaches are observed across a variety of applications in lung disease 
detection and classification. 

Kong and Cheng (2022) proposed a model based on DenseNet, 
VGG16 feature fusion and used the attention mechanism to extract deep 
features and classify lung images into three classes. To deal with data 
imbalance and unequal distribution, they developed the fine-tuned 
global attention block (GAB) and a category attention block (CAB) 
while ResNet was used to segment image data. Their model achieved an 
accuracy of 98% for binary classification and 97.3% for multi classifi-
cation. The processing time required was 104 minutes for DenseNet201, 
90 minutes for VGG16, 103 minutes for DenseNet169, 100 minutes for 
Xception and 110 minutes for their proposed model. Xu et al. (2021) 
proposed a two-stage prediction model to classify lung diseases into five 
classes. Their proposed MANet model uses the mask attention mecha-
nism (MA) as spatial attention maps for all CXR images in order to 
extract the lung regions in the first stage and applies a CNN to classify 
the segmented images in the second stage. MA improved the test clas-
sification accuracy of ResNet34, ResNet50, VGG16, and Inception v3 
where ResNet50 with MA achieved the greatest average test accuracy of 
96.32%. However, the average training time of the evaluated models 
was 2 to 7 hours. Other authors (Umer et al., 2022), used CNN to extract 
features of CXR images and classify them into four classes using VGG16 
and AlexNet. They generated 1000 images from only 264 original ones 
using ImageDataGenerator. The prediction accuracies were 97.21% for 
binary class and 84.76% for multi-class prediction. Regarding training 
time, their proposed model required 1.5 hours, VGG16 3.25 hours and 
AlexNet 2.5 hours. Narin et al. (2021) used five pre-trained models, 
ResNet50, ResNet152, ResNet101, Inception-ResNetV2 and Incep-
tionV3, to detect lung disease using CXR images. Three different datasets 
were used to evaluate the performance of the proposed models. 
ResNet50 performed best with accuracies of 96.1% for Dataset-1, 99.5% 

for Dataset-2 and 99.7% for Dataset-3. Training times for all models 
were high. Bhattacharyya et al. (2022) detected lung disease using a 
three step Deep learning based approach. A conditional generative 
adversarial network (C-GAN) was used in the first step to segment the 
raw X-ray data in order to acquire the lung images. They then fed the 
segmented lung images into a unique pipeline that combined key point 
extraction methods and trained deep neural networks (DNN) for 
discriminatory feature extraction. In the last stage, several machine 
learning (ML) models were used to categorize COVID-19, pneumonia, 
and normal lungs. They obtained the best accuracy of 96.6% using the 
VGG-19 for binary class. In the study of Wang et al. (2020), a hybrid 
model of deep and machine learning was developed to classify lung 
disease. Experimenting with five pre trained models including VGG16, 
InceptionV3, ResNet50, Xception and DenseNet121, Xception was found 
to perform best. Afterwards, they developed a hybrid Xception and SVM 
model and achieved an accuracy of 99.33%. Zebin and Rezvy (2021) 
applied pre-trained VGG16, ResNet50, and EfficientNetB0 to classify 
lung images into three classes. They used 802 CXR images and trained a 
generative adversarial framework (CycleGAN) to generate minority 
class data. The classification accuracy was 90%, 94.3%, and 96.8% for 
VGG16, ResNet50, and EfficientNetB0 respectively. Other authors 
(Akter et al., 2021), applied 11 existing CNN models to classify lung 
diseases, with some image\s preprocessing techniques and some modi-
fication to the models. A robust model, MobileNetV2, acquired an ac-
curacy of 98%. The lowest processing time of these models was 2.5 
hours. Ismael and Şengür (2021) also used pre-trained ResNet18, 
ResNet50, ResNet101, VGG16, and VGG19 models and SVM with 
various kernel functions to classify lung diseases. With the Linear kernel 
function, the deep features collected from the ResNet50 model and SVM 
classifier yielded an accuracy of 94.7%. Toraman et al. (2020) proposed 
an artificial neural network system based on Convolutional CapsNet to 
classify chest X-rays into three classes, where each class contained same 
number of 1050 images. To evaluate the performance, they used a 
10-fold cross-validation, resulting in an accuracy of 97.21% for binary 
class classification, and 97.24% and 84.22% for multi-class classifica-
tion. The processing time required was 72 s/epoch with data augmen-
tation, and 16 s/epoch without data augmentation. However, an 
improved accuracy can be achieved when using a completely balanced 
dataset. A limitation of this study is the high processing time. Jin et al. 
(2021) proposed a three-step ensemble model which includes a feature 
extractor, a feature selector, and a classifier to classify lung images into 
three classes. Comparing the performance of five existing models, their 
proposed AlexNet+ReliefF+SVM obtained the best accuracy of 98.64%. 
They used AlexNet as feature extractor which had a running time of 
(5.991 s). Marques et al. (2020) proposed an automated lung disease 
diagnostic system introducing an EffecientNet pipeline for classifying 
chest X-ray images into three classes. The proposed EfficientNet model 
recorded accuracies of 99.62% and 96.70% for binary and multi-class 
classification respectively. The model training time was 111.83 mi-
nutes for multi-class and 79.16 minutes for binary class classification 
with a total of 17M parameters. A balanced dataset was used where each 
class contained 404 X-ray images. Duong et al. (2021) proposed a 
Hybrid model of modified EfficientNet and modified original Vision 
Transformer to detect tuberculosis from chest X-ray images. The authors 

Table 11 
Performance comparison with six states of the art transfer learning CNN models.  

Model Number of params epochs Total time 
(min) 

Per epoch time Optimizer Batch size Image size Learning rate Accuracy 

VGG19 20026436 100 100-120 61-63s Adam 128 32 0.001 76.97% 
VGG16 14716740 100 100-120 61-63s Adam 128 32 0.001 79.51% 
ResNet152 58379140 100 100-120 61-63s Adam 128 32 0.001 53.39% 
ResNet50 23595908 100 100-120 61-63s Adam 128 32 0.001 67.77% 
ResNet50V2 23572996 100 100-120 61-63s Adam 128 32 0.001 65.35% 
MobileNet 3232964 100 100-120 61-63s Adam 128 32 0.001 43.42% 
MCCT 241861 100 18-20 11-12s Adam 128 32 0.001 95.37%  
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Table 12 
Comparative analysis of the existing models and the proposed model  

Paper Model Number of 
Image 

Image Size Training Time Limitation 

Kong et al. (2022) DenseNet201, VGG16, DenseNet169, 
Xception, Proposed model 

6518 512 × 512 104 min, 
90 min, 
103 min, 
100 min, 
110 min 

1. Limited amount of data 
2.High processing time and low 
precision. 
3.No image preprocessing techniques 
used. 

Xu et al. (2021) ResNet34+MA, ResNet50+MA, 
VGG16+MA, 
Inceptionv3+MA 

6792 512 × 512 132.6 min, 
148.2 min, 
453.6 min, 
153.6 min 

1. Limited amount of data 
2. Higher processing time 
3. No image preprocessing techniques 
used.  

Umer et al. (2021) Proposed model, VGG16, AlexNet 264 - 90 min, 
195 min, 
150 min 

1. Limited amount of data. 
2.High processing time and low 
multiclass classification accuracy.  

Narin et al. (2021) ResNet50, ResNet101, ResNet152, 
InceptionV3, Inception-ResNetV2 

8088 224 × 224 
to 229 ×
299 

Minimum 243.6 minutes to 
maximum 381 minutes 

1.Very high training times. 
2. Limited amount of data 
3. No image preprocessing techniques 
used. 

Bhattacharyya 
et al. (2022) 

VGG-16, 
VGG-19, DenseNet-169, DenseNet-201, 
sCNN 

1030 - 17.43 min, 
21.48 min, 
13.52 min, 
38.3 min, 
3.33 min 

1. Limited amount of data. 
2. No image preprocessing techniques 
used. 

Wang et al. (2020) VGG16, InceptionV3, ResNet50, Xception, 
DenseNet121, 

1105 224 × 224 0.65 min/epoch, 0.73 min/epoch, 
0.68 min/epoch, 
0.7 min/epoch, 
0.73 min/epoch 

1. Limited amount of data. 
2. No image preprocessing techniques 
used. 

Zebin et al. (2020) VGG16, ResNet50, EfficientNetB0 802 224 × 224 15 min, 
15 min, 
15 min 

1. Limited amount of data. 
2. No image preprocessing techniques 
used. 

Akter et al. (2021) VGG16, VGG19, MobileNetv2, 
InceptionV3, NFNet, ResNet50, ResNet101, 
DenseNet, EfficientNetB7, AlexNet, 
GoogLeNet 

13808 299 × 299 310.8 min, 
376.2 min, 
325.2 min, 
456 min, 
366 min, 
272.4 min, 
370.8 min, 
387 min, 
385.2 min, 
374.4 min, 
150 min 

1.High processing time with 
binary class prediction. 

Ismael et al. 
(2021) 

ResNet50 Features + SVM, Fine-tuning of 
ResNet50, 
End-to-end training of CNN, 
BSIF + SVM  

380 224 × 224 -  1. Limited amount of data 
2. No image preprocessing techniques 
used. 

Toraman et al. 
(2020) 

Convolutional CapsNet 3150 128 × 128 With Data augmentation 1.2 min/ 
epoch, Without data augmentation 
0.27 min/epoch 

1.Limited amount of data 

Jin et al. (2021) AlexNet + ReliefF + SVM 1743 227 × 227 
× 3 

- 1. Limited amount of data 
2. No image preprocessing techniques 
used. 

Marques et al. 
(2020) 

EffecientNet 404 - 111.83 minutes 1. Limited amount of data 
2. Higher processing time 
3. No image preprocessing techniques 
used. 

Duong et al. ViT_Base_EfficientNet_B1_224 28672 384 × 384 
× 3 

720 min 1.Higher processing time  

Tangudu et al. 
(2022) 

GoogleNet, InceptionResNet, ResNet50, 
MobileNet, MNRSC 

5184 224 × 224, 
128 × 128 

0.85 min/epoch, 1.95 min/epoch, 
0.98 min/epoch, 
0.75 min/epoch, 
0.78 min/epoch 

1.Fails to maintain its performance in 
noisy and low-quality datasets with 
imbalanced data 

Mamalakis et al. 
(2021) 

DenResCov-19 6696 - - 1. Limited amount of data. 
2.Imbalanced Dataset 
3. No image preprocessing techniques 
used 

Proposed 
Study 

MCCT 21165 32 × 32 18-20 min Our study addressed these 
limitations: 
1.A large amount of data 
2.Dataset balanced 
3.Image preprocessing techniques 
used 
4. Low processing time 
5. Maintain model performance in 
noisy and low-quality dataset  
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experimented with 14 configurations of the hybrid model and ViT_Ba-
se_EfficientNet_B1_224 achieved the maximum accuracy of 97.72%. The 
proposed model’s parameter size was 94M and the training phase took 
12 hours to complete. In the study of Tangudu et al. (2022) a model was 
proposed based on MobileNet and residual separable convolution blocks 
for the detection of lung diseases from chest X-rays, having 3.626 M 
parameters and requiring 89.9 seconds training time. The model ach-
ieved 99% accuracy in binary classification. Mamalakis et al. (2021) 
established a transfer learning pipeline that consists of DenseNet-121 
and ResNet-50 with an extra CNN block. The author proposed 
DenResCov-19 to classify lung images into three classes using four 
datasets. Their achieved F1 values were 98.21, 87.29, 76.09, 83.17%. 

In the majority of the studies discussed above and included in the 
literature table (Table 12), similar shortcomings can be observed such as 
an imbalanced dataset or a lack of data, long processing times, and a lack 
of image processing techniques. 

Image resolution is an important factor in developing common deep 
learning models for medical imaging (Lakhani, 2020). In a study, Sab-
ottke and Spieler (2020) examined well-known deep CNN models to 
identify radiographs at image resolutions ranging from 32 × 32 pixels to 
600 × 600 pixels. The study showed that when the pixel size of the 
image is reduced, it removes the information that CNNs need for clas-
sificationand the accuracy drops. Our study overcomes this limitation by 
proposing a robust model that employs low-resolution images (32 × 32 
pixel) and achieves high accuracy. 

9. Conclusion 

A lung CAD system is developed in this work to classify lung images 
into four categories. DCGAN is applied to the dataset to balance the 
number of images and image pre-processing methods are utilized to 
eliminate noise and artifacts and to enhance the visibility of the ROIs of 
the images. We propose a MCCT model based on the original CCT model, 
which outperforms CNNs in computational efficiency and accuracy. Our 
proposed network is subjected to ablation research in order to assess and 
improve the model’s robustness, resulting in a training accuracy of 
95.37%, a precision of 95.34%, a recall of 95.44% and an F1-score of 
95.39%. The proposed model is compared with six transfer learning 
models, VGG19, VGG16, ResNet152, ResNet50, ResNet50V2, and 
MobileNet in terms of accuracy and training time. For the same set of 32 
× 32-pixel images, the other models have accuracies ranging from 43% 
to 77%, whereas our model has an accuracy of 95.37%. The results of 
this study show that our proposed technique produced an accurate lung 
disease classification model, when trained with 32 × 32-pixel input 
images. When training with large datasets, smaller size images might 
result in shorter training times and less storage space, which can be very 
advantageous. Our model also minimizes the number of trainable pa-
rameters, reducing the training time. The proposed model may help to 
correctly classify lung X-ray images in a very short time. Finally, we 
intend to evaluate the MCCT in a variety of datasets in order to assess its 
generalization and robustness in different medical image classification 
tasks. 
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