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Abstract 

 

Musculoskeletal diseases require immediate attention to avoid chronic issues since they impact 

over 1.7 billion individuals globally. Radiographic images frequently identify musculoskeletal 

illnesses and abnormalities in medical computer vision. Researchers have suggested many methods 

for this purpose. In this research, we suggest five state-of-the-art transfer learning modelswith a 

partial layer-freezing technique where initial layers of a pre-trained model were frozen, except the 

last ten layers, to identify such Musculoskeletal Abnormalities using the MURA dataset,one of the 

most extensive collections of upper extremity radiographs. This method outperforms the 

performance of the baseline model in finger and humerus studies by achieving Cohen's kappascore 

of 0.439 in the DenseNet169 model and 0.638 in the DenseNet121 model. Although the current 

approach faces challenges in reaching sufficient accuracy for wrist, elbow, forearm, hand,and 

shoulder studies, there are positive improvements. When applied to radiographic images, the 

DenseNet network surpasses the ResNet, Inception, and Xception networks when evaluated using 

five different evaluation metrics. This shows that progress is being made in enhancing the 

performance of neural networks for improved medical image processing and analysis. 

 

 
Keywords: Binary Classification; Convolutional Neural Network; Transfer Learning; Layer- 

freezing; DenseNet network; ResNet; Inception; and Xception networks 
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Chapter 1- Introduction 
 

 

1.1 Introduction 

 

Musculoskeletal conditions are a severe concern that must be addressed immediately to avoid 

serious long-term issues, including obesity, chronic pain, and disability, affecting people's quality 

of life [1]. Musculoskeletal disability affects many people, including radiologists who spend hours 

detecting abnormalities in patients' radiographs. A study on radiologists showed that being a 

female radiologist between the ages of 30-39 and examining Computed Tomography (CT) or 

Ultrasound images was related to a higher risk of severe musculoskeletal problems [2]. This leads 

to a serious concern about reducing the workload from the radiologists and automating the 

detection system so that radiologists do not have to spend 7 to 9 hours reviewing the CT Scan. To 

address the issue, Deep Learning models, especially Convolutional Neural Networks, have 

achieved significant results in detecting abnormalities from X-ray images. Krizhevsky et al. 

proposed a CNN-based model that has drawn many researchers' attention [3]. However, to improve 

accuracy and avoid overfitting, CNN requires a large amount of data, which is insufficient in the 

medical industry. To solve this problem, Rajpurkar et al. developed the MURA dataset, which 

consists of 40,561 images from 14,863 upper extremity studies, including the shoulder, humerus, 

elbow, forearm, wrist, hand, and finger, and is an extensive collection of musculoskeletal 

radiographs [4]. Each study is manually classified as normal or abnormal by radiologists. The 

authors used DenseNet169 CNN to compare how well it performed to three radiologists and 

obtained 0.815 sensitivity, 0.887 specificity, and 0.929 AUCROC. To improve the accuracy of this 

baseline model and properly identify abnormalities in an emergency, we proposed the layer- 

freezing technique in the transfer learning models for the MURA dataset. Our paper focuses on 

pre-training several cutting-edge CNN models with ImageNet weights using transfer learning, 

modifying the pre-trained model by adding additional layers on top of the existing model and using 

regularization techniques to prevent overfitting. We trained only the last ten layers of the model to 

use the pre-trained generic features while still learning task-specific features. 
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1.2 Objective 

 

The objectives of this paper are: 

 
1. To analyze the effect of the partial layer-freezing technique on the medical images and 

whether this technique improves the performance of the baseline model. 

2. To identify the best CNN model which outperforms the other models and achieves the best 

result. 

3. To compare the results between the baseline model and our model. We use five evaluation 

metrics, including accuracy, Cohen's Kappa, ROCAUC score, precision, and 

recall/sensitivity, to measure the performance of our model. 

4. To identify the best-performing dataset among the seven upper-extremity studies in the 

MURA dataset in our model. 

 

 
1.3 Motivation 

 
The significant effects of musculoskeletal problems on people's lives, including the possibility of 

obesity, persistent pain, and disability, served as the motivation for this thesis. Convolutional 

Neural Networks (CNNs), a type of deep learning model, have demonstrated promising results in 

identifying anomalies in X-ray pictures. This thesis suggests using the layer-freezing approach in 

transfer learning models customized to the MURA dataset to improve the baseline model's 

performance and reliably identify irregularities in emergency scenarios. Transfer learning will be 

used to pre-train state-of-the-art CNN models with ImageNet weights, and the pre-trained models 

are then enhanced by adding new layers and using regularization techniques to reduce overfitting. 

This thesis intends to create a more effective and accurate system for recognizing abnormalities in 

X-ray pictures by addressing the problems associated with musculoskeletal condition 

identification and the requirement for workload reduction for radiologists. The suggested method 

of layer-freezing transfer learning with regularization approaches can improve emergency 

diagnosis in musculoskeletal radiography and improve the performance of existing models. 
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1.4 Rational of the study 

 

There has been significant research on the MURA dataset where most researchers preferred CNN 

to detect the abnormalities. However, the layer-freezing technique was not utilized in previous 

research. So, for the first time, we analyze this technique with five state-of-the-art CNN models 

where the training process selectively fine-tunes only the last ten layers of the model, enabling the 

utilization of pre-trained generic features while concurrently learning task-specific features. We 

will apply this technique to seven upper-extremity radiographic studies and labeled each study as 

normal or abnormal. 

 

 
1.5 Research Questions 

 

The MURA dataset is open-source, so we did not have to prepare the dataset from scratch. We 

created seven different datasets from the MURA dataset, each representing different upper- 

extremity studies. Moreover, there is limited research on layer-freezing techniques, so it was 

challenging to implement this method on a large dataset. So, before starting our research, we 

narrowed it down to a few topics and focused on addressing and addressing those concerns. 

1. Does the layer-freezing method work on radiographic images? 

2. Is it feasible to analyze the impact of CNN models? 

3. Is it feasible to compare the accuracy of different models while working with the same 

datasets? 

 

 
1.6 Expected Outcome 

 

In order to detect abnormalities in radiographic images, as was previously said, we used the layer- 

freezing approach for the first time and compared the results on five cutting-edge transfer learning 

models. 

 It will be able to detect abnormalities in seven different studies. 
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 It will outperform the baseline model. 

 It will represent a noble technique to work on X-ray images. 

 

 

1.7 Layout of the Report 

 

The layout of this paper is organized as follows: 

 
Chapter 1 briefly describes the motivation, importance, and method used in this study. 

Chapter 2 discusses some of the research papers regarding the MURA dataset. 

Chapter 3 represents the system model and methodology of the layer-freezing technique. 

 
Chapter 4 analyzes and discusses the results of the seven upper-extremity studies in the MURA 

dataset. 

Chapters 5 and 6 conclude the paper with the limitations and future scope. 
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Chapter 2 – Background Study 
 

 

2.1 Introduction 

 

This part will include literature reviews, research roadblocks, and an evaluation of our findings in 

light of previous research. We shall contrast our study with previous research articles' 

methodology, efforts, results, accuracy, and other factors. In the Challenges section, we will 

describe how we overcame challenges to carry out our research and the lessons we took away from 

them. 

 

 
2.2 Literature Review 

 
After Rajpurkar et al. [4] introduced the MURA dataset, researchers published many research 

papers to improve the accuracy of the baseline. In 2019, Saif et al. [5] published a paper entitled 

"Abnormality Detection in Musculoskeletal Radiographs Using Capsule Network." For 

musculoskeletal radiograph abnormality detection, the authors introduced the capsule network 

architecture. This architecture has demonstrated auspicious properties that can contribute to 

overcoming CNN's limitations. Despite using less training data, this capsule network outperformed 

a 169-layer DenseNet by 10% in terms of kappa score. In the same year, Banga and Waiganjo [6] 

introduced the ensemble200 model in the paper entitled "Abnormality Detection in 

Musculoskeletal Radiographs with Convolutional Neural Networks (Ensembles) and Performance 

Optimization," which surpassed the DenseNet model on the finger studies with a Cohen Kappa 

score of 0.653, indicating reduced model performance variability. The following year, Tirpude et 

al. [7] suggested a 169-layer densely connected convolutional network for detecting abnormalities 

in the MURA dataset. While the model performs well on finger, hand, and wrist tests, it struggles 

to detect abnormalities in elbow, forearm, humerus, and shoulder studies but still achieves high 

accuracy. Later in 2020, Kendal et al. [8] evaluated and compared six CNN architectures to transfer 

learning and a network built from scratch in the paper "Musculoskeletal Images Classification for 

Detection of Fractures Using Transfer Learning." The author observed that transfer learning 

outperformed training the networks from scratch. Twenty-six deep learning-based 
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pre-trained models and two ensemble learning models (EL1 and EL2) were developed by Uysal et 

al. [9] in the paper entitled "Classification of Shoulder X-ray Images with Deep Learning Ensemble 

Models" in 2021. In developing EL1 and EL2 models, pre-trained models such as ResNet, 

ResNeXt, DenseNet, VGG, Inception, MobileNet, and their Spinal FC versions are used. Among 

the 28 distinct classifications, the EL2 model had the best test accuracy and Cohen's kappa values, 

whereas the EL1 model had the most prominent area associated with the fracture class under the 

receiver operating characteristic curve. For EL1, the test accuracy and Cohen's kappa values were 

0.8455 and 0.6907, respectively, and 0.8472 and 0.6942 for EL2. The AUC for EL1 was 0.8862 

and 0.8695 for EL2. Ibrahem Kandel and Mauro Castelli [10] proposed TTA, which can improve 

model prediction by giving various transformations for the same image at a low computing cost in 

the paper entitled, "Improving convolutional neural networks performance for image classification 

using test time augmentation: a case study using MURA dataset" in 2021. In this study, they 

evaluated the influence of TTA on image classification performance on the MURA dataset. They 

discovered that TTA allows for higher performance across multiple datasets and CNNs than 

without TTA. In a recent study in 2022, Singh et al. [11] proposed ComDNet512 model on the 

finger studies in MURA dataset in the paper entitled "Hybrid Deep Learning Approach for 

Automatic Detection in Musculoskeletal Radiographs." With an accuracy of 89.41%, this model 

detected anomalies in finger radiographs. The three models outperformed current models when 

applied to finger radiographs. The model successfully achieved an area under the ROC curve 

(AUC) of 0.894. Precision, recall, F1 Score, and Kappa were all 0.86, 0.94, 0.89, and 0.78, 

respectively. 

 

 
Table 2. 1: Table of Related Works 

 

 

Paper 

ID 

 

Title 

 

Year 

 

Key 

technologies or 

Methods 

(Algorithm) 

 

Contribution 

 

Research 

Gap 

1 Abnormality Detection 

in Musculoskeletal 

2019 Capsule Network Outperformed 

a 169-layer 

A shallow 

network, 
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 Radiographs Using 

Capsule Network 

  DenseNet by 

10% in terms 

of kappa 

score 

explored in 

limitate 

areas. 

2 Abnormality Detection 

in Musculoskeletal 

Radiographs with 

Convolutional Neural 

Networks(Ensembles) 

and Performance 

Optimization 

2019 ensemble200 

model 

[DenseNet201, 

MobileNet, 

NASNETmobile] 

Outperformed 

the baseline 

model on the 

finger studies 

with a Cohen 

Kappa score 

of 0.653 

Cohen 

Kappa was 

lower than 

the 

DenseNet 

model 

3 Abnormal X-Ray 

Detection System using 

Convolution Neural 

Network 

2020 CNN: 

DenseNet169 

In finger, 

hand, and 

wrist studies 

achieves a 

good amount 

of accuracy 

In the 

elbow, 

forearm, 

humerus, 

and 

shoulder, 

studies find 

it difficult to 

detect the 

abnormality 

4 Musculoskeletal Images 

Classification for 

Detection of Fractures 

Using Transfer Learning 

2020 Trained on VGG, 

Xception, 

ResNet, 

GoogleNet, 

InceptionResNet, 

DenseNet, and 

network from 

scratch 

less prone to 

overfitting 

fully 

connected 

layers had a 

negative 

effect on the 

performance 
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5 Classification of 

Shoulder X-ray Images 

with Deep Learning 

Ensemble Models 

2021 pre-trained 

models such as 

ResNet, 

ResNeXt, 

DenseNet, VGG, 

Inception, 

MobileNet, and 

their Spinal FC 

versions 

test accuracy 

was 0.8455, 

0.8472, 

Cohen's 

Kappa was 

0.6907, 

0.6942 

Studied only 

shoulder 

images 

6 Improving convolutional 

neural networks 

performance for image 

classification using test 

time augmentation: 

a case study using 

MURA dataset 

2021 Test Time 

Augmentation 

TTA can 

increase the 

classifier's 

performance 

without 

adding any 

computational 

cost during 

training 

TTA 

requires 

more time to 

evaluate the 

whole test 

set. 

7 Hybrid Deep Learning 

Approach for Automatic 

Detection in 

Musculoskeletal 

Radiographs 

2022 ComDNet512 

model 

identified 

abnormalities 

in finger 

radiographs 

with an 

accuracy of 

89.41% 

Studied only 

finger 

images 
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2.3 Challenges 

 

The most challenging part of this research paper was working with 40,561 multi-view radiographic 

images. The dataset took longer to train, which was not feasible for this research. We divided the 

huge dataset into seven different datasets according to the seven upper-extremity studies to solve 

this issue. Another issue was with the preprocessing of the images. We needed to experiment with 

various features of data augmentation techniques to analyze which features work best with the 

images, which took significant time in our study. However, the whole process was challenging and 

enjoyable, extending our knowledge about deep learning. 
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Chapter 3 - System Methodology 
 

 
 

3.1 Methodology 

 
This study explored five state-of-the-art CNN models, ResNet152V2, DenseNet121, InceptionV3, 

Xception, and DenseNet169, and compared the effect on shoulder, humerus, elbow, forearm, wrist, 

hand, and finger studies. The radiographic images from the MURA dataset were preprocessed 

using data augmentation and CLAHE techniques. Transfer learning models were used for feature 

extraction. One of the primary reasons for using transfer learning to extract features from target 

images is the ability to capture information obtained by pre-trained models on large-scale datasets 

like ImageNet [12]. These pre-trained models have learned to extract significant characteristics 

from images and can be used to train a new model. For fine-tuning the model, we employed the 

partial layer-freezing technique, where the earlier layers of a pre-trained model are frozen while 

the last few layers are trained on new data. Two callbacks were used for modifying and regulating 

the training process. The first callback is ReduceLROnPlateau, which analyzes validation accuracy 

throughout training and reduces the learning rate if there is no progress in the number of epochs of 

patience. ModelCheckpoint is the second callback, which saves the model after each epoch if the 

validation loss has decreased. The five CNN models were trained and evaluated using accuracy, 

Cohen's Kappa, ROCAUC score, precision, and recall/sensitivity. The evaluation results of the 

models were measured and compared to the baseline performance. 
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Figure 3. 1. Block diagram of the methodology 
 

 

 

3.2 Dataset 

 

 
The public musculoskeletal radiograph dataset contains 14,863 studies from 12,173 patients, 

totaling 40,561 multi-view radiographic images [4]. Each standard upper-extremity radiographic 

study type represents an elbow, finger, forearm, hand, humerus, shoulder, and wrist. Between 2001 

and 2012, board-certified radiologists from Stanford Hospital manually labeled each study as 

normal or abnormal during clinical radiographic interpretation in the diagnostic radiology 

environment. We have used 36,808 images from the dataset for training (21935 normal images 

and 14873 abnormal images) and 3197 images for validation (1667 normal images, 1530 abnormal 

images). 
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Table 3. 1: Total number of studies in MURA dataset [4] 
 

 

Study 

Train Validation  

Total Normal Abnormal Normal Abnormal 

Elbow 1094 660 92 66 1912 

Finger 1280 655 92 83 2110 

Hand 1497 521 101 66 2185 

Humerus 321 271 68 67 727 

Forearm 590 287 69 64 1010 

Shoulder 1364 1457 99 95 3015 

Wrist 2134 1326 140 97 3697 

Total Studies 8280 5177 661 538 14656 

 

 

 
 

3.3 Image Preprocessing 

 

 
Image preprocessing is crucial for improving image quality and model accuracy for the 

classification task. As a preprocessing step, we have used CLAHE (Contrast Limited Adaptive 

Histogram Equalization) to enhance the contrast of images and Data Augmentation to reduce 

overfitting. 

 CLAHE (Contrast Limited Adaptive Histogram Equalization) is a variation of AHE 

(Adaptive Histogram Equalization) that restricts image contrast over-amplification. It 

works on small regions known as tiles and then joins neighboring tiles using bilinear 

interpolation to erase the artificial borders. We have used this technique to improve the 

contrast of medical images, making them more suitable for classification and diagnosis. 

 

Figure 3. 2. Before preprocessing images using CLAHE 
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Figure 3. 3. After preprocessing images using CLAHE 

 

 

In our code, a function named "claheImage" takes an input image (Figure 3.2) and produces an 

output image that has been processed using the (CLAHE) approach (Figure 3.3). 

 Data Augmentation: The dataset includes imbalanced studies on the training set, for 

example, only right elbow images. So that the model may learn high-level dataset 

properties that are invariant to typical affine transformations, we augmented the dataset. 

We used data augmentation techniques: rotation range: 45°, zoom range: 0.02, shear range: 

0.02, and horizontal flip: True. Unlike other computer vision tasks, medical images have a 

well-known scale and defined procedures shallower the model to cope with potential 

lightning or further affine modification changes. As a result, much less information is 

required in medical radiography [13]. We only used four data augmentationstrategies for 

the dataset as a result. 

 
 

3.4 CNN and Transfer Learning 

 
A common kind of neural network for evaluating visual images is the convolutional neural network 

(CNN). Convolutional, pooling, and fully connected layers are among the layers of CNN's 

architecture. The architecture of CNNs, with convolutional layers, pooling layers, and fully 

connected layers, is specifically designed to capture the unique characteristics of images and 

handle the large amount of data involved in image classification. Therefore, CNNs have been 

shown to work better on image classification tasks compared to traditional neural networks. 

Several research papers have demonstrated the effectiveness of CNNs on image classification 

tasks, including Imagenet [3]. In deep learning, transfer learning refers to using a pre-trained model 

on a large dataset as a starting point for solving a new problem. By leveraging the pre-trained 

model's learned representations, the new model can be trained on a smaller dataset, often with 
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better accuracy and efficiency. By fine-tuning the pre-trained model on the new data, the model 

can be adapted to the new dataset while retaining the learned feature representations. It can result 

in improved accuracy and reduced training time compared to training a new model from scratch. 

Transfer learning has become an essential tool in computer vision research, with many state-of- 

the-art models relying on transfer learning to achieve high-performance levels on benchmark 

datasets [14]. 

3.5 CNN Architectures 

 
We used five state-of-the-art architectures to improve the accuracy compared to the baseline model 

of the MURA dataset. 

3.5.1 ResNet 

We use the ResNet152V2 architecture, which has 152 layers, in this paper. He et al. proposed 

ResNet as a deep convolutional neural network architecture for image classification applications 

[15]. It is an enhanced version of the ResNet152 model with reduced error rates and more excellent 

generalization performance. The ResNet design comprises a deep stack of residual blocks that, by 

overcoming the vanishing gradient problem, allow for the practical training of intenseneural 

networks. 

3.5.2 DenseNet 

DenseNet architecture was introduced by Huang et al. [16]. DenseNet is a convolutional neural 

network (CNN) that connects each layer to every other layer in a feed-forward manner, unlike 

traditional CNNs, where each layer is connected only to its subsequent layer. The idea behind 

DenseNet is that by using dense connections, the network can better use the available information 

and gradients throughout the network, leading to better performance with fewer parameters. 

DenseNet comes in different variants, including DenseNet-121 and DenseNet-169, which differ in 

their number of layers and complexity. DenseNet-121 has 121 layers, while DenseNet-169 has 169 

layers, and both have been shown to outperform other popular CNN architectures on variousimage 

classification tasks. 

3.5.3 Inception 

Szegedy et al. introduced the Inception model, a CNN architecture that assists with image 

processing and object recognition [17]. Inception-v3 is a variant of the Inception architecture that 
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uses Label Smoothing, Factorized 7 x 7 convolutions, and an auxiliary classifier to propagate label 

information lower down the network and batch normalization for layers in the sidehead. In 

addition, an Inception module that collects local characteristics and combines them into higher- 

level features is a crucial building element of Inceptionv3. 

3.5.4 Xception 

Chollet introduced the Xception architecture, where each Inception module is replaced in this 

model with a depthwise separable convolution block that performs depthwise (spatial filtering) 

and pointwise (cross-channel filtering) convolutions independently [18]. It helps minimize the 

model's computational cost and memory utilization while boosting accuracy. It also uses skip 

connections to aid gradient propagation and avoid the vanishing gradient problem. Onvarious 

picture classification benchmarks, including ImageNet and CIFAR-10, Xception outperforms 

earlier state-of-the-art models. 

 

 
3.6 Fine-tuning 

Fine-tuning is a strategy that includes training a pre-trained model on a new dataset to improve its 

accuracy for a particular task. We employed five different transfer learning models to predict the 

outcome of the MURA dataset. To increase accuracy and prevent overfitting, we adopted callbacks 

to automate the fine-tuning and a layer-freezing strategy, in which the acquired weights of 

individual layers in a pre-trained neural network are held constant while fine-tuning on a new 

dataset. 

 

 
3.6.1 Callbacks 

The first callback is 'ReduceLROnPlateau,' which checks validation accuracy ('val_accuracy') 

throughout training and decreases the learning rate if there is no progress for the 'patience' number 

of epochs. It does so by increasing the learning rate by a 'factor' value (0.5 in this paper) and 

enforcing a lower constraint on the learning rate of 'min_lr' (1e-5 in this case). This callback 

prevents the model from becoming trapped in a suboptimal local minimum. The 'verbose' option 

is set to 1, which implies that when the learning rate is lowered, the callback will output a message 

to the console. 'ModelCheckpoint' is the second callback, which saves the model after each epoch 
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if the validation loss has decreased. Again, the verbose option is set to 1, which implies that when 

a new best model is saved, the callback will output a message to the console. 

3.6.2 Layer-freezing 

In this paper, the last ten layers of the five pre-trained models are trainable, while the preceding 

levels are frozen. This method is frequently employed when the pre-trained model is comparable 

to the task at hand but needs some tweaking to accommodate the new dataset. While the frozen 

layers extract data, the trainable layers learn task-specific characteristics. 
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a.DenseNet b.Inception c.ResNet d.Xception 

 
Figure 3. 4. Trainable layers in the CNN models 
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3.7 Evaluation Metrics 

 
The following metrics were used to assess the standard of the resulting models and compare them 

to the one proposed by Rajpurkar et al. while presenting the MURA dataset: 

3.7.1 Accuracy 

Accuracy is one of the commonly used evaluation metrics for CNN models. It measures the 

proportion of correctly predicted instances among all instances. For binary classification problems, 

accuracy can also be calculated in terms of True Positives (TP), True Negatives (TN), False 

Positives (FP), and False Negatives (FN) as follows: 

 

 
 

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = 
(𝑇𝑃 + 𝑇𝑁) 

 
 

(𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁) 
 

 

(1) 

 

 

 

 
3.7.2 Cohen's Kappa 

Cohen's Kappa is a metric that measures the agreement between two raters or between a rater and 

a classification model. It considers the possibility of random agreement, providing a more robust 

measure than simple percent agreement. It is commonly used in cases where the classes are 

imbalanced. The formula for Cohen's Kappa is: 

 

 
 

𝐾 = 
𝑃𝑜 − 𝑃 

 
 

1 −𝑃𝑒 

 

(2) 
 

 
 

Where Po is the observed agreement, and Pe is the expected agreement. 
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3.7.3 ROCAUC Score 

ROCAUC (Receiver Operating Characteristic Area Under the Curve) evaluates a binary 

classification model's performance across various classification thresholds. The area under the 

ROC curve, which compares the true positive rate (TPR) against the false positive rate (FPR) for 

various classification thresholds, is used to compute it. 

 

 
3.7.4 Precision 

The fraction of genuine positives among all positive classifications produced by the model is 

measured as precision. The precision formula is as follows: 

 

 
 

 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 
𝑇𝑃 

𝑇𝑃 + 𝐹𝑃 

 
 

 
(3) 

 

 
 

Precision is an essential parameter for models with a high cost of false positives. For example, a 

false positive might lead to needless and sometimes hazardous therapies in medical diagnostics. A 

high-accuracy model is preferable in such instances. 

 

 
3.7.5 Recall/Sensitivity 

In evaluation metrics for CNN models, recall (also known as sensitivity) is a metric that measures 

the proportion of actual positive samples that the model correctly identifies. The formula for the 

recall is: 

 
𝑅𝑒𝑐𝑎𝑙𝑙 = 

𝑇𝑃 

𝑇𝑃 + 𝐹𝑁 

 
 
 

(4) 
 

Recall measures how well the model can detect positive samples. 
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Chapter 4 - Result Analysis and Discussion 
 

 

4.1 Discussion 

 
Except for the learning rate, all hyper-parameters remained constant throughout the studies. The 

models were fine-tuned properly, and the batch size was 12. In all of the tests, the Adam optimizer 

was employed. All of the images have been scaled to 224 x 224 pixels. Because the dataset is 

binarily categorized, binary cross-entropy was used as the loss function, and the models were 

trained for 50 epochs. As the dataset is already divided into train and validation, there was no train- 

test split in this experiment. Following training, the performance of each model was assessed using 

the evaluation metrics given in the method section and compared to the baseline model. 

 

 
4.2 Wrist Dataset Result 

 

In the wrist dataset, there were 9752 images for training (5765 normal images, 3986 abnormal 

images) and 659 images for testing (364 normal images, 295 abnormal images). DenseNet169 

performed the best of the models, with DenseNet121 having better precision and ResNet152V2 

having higher recall than DenseNet169. Nonetheless, none of the evaluated models outperformed 

the baseline proposed by Rajpurkar et al. 

 

 
Table 4. 1: Results of wrist dataset 

 

Model Accuracy Kappa ROCAUC Precision Recall/sensitivity 

Baseline  0.931    

ResNet152V2 76%[0.494] 0.505 0.75 0.77 0.65 

DenseNet121 76%[0.502] 0.5 0.74 0.88 0.55 

InceptionV3 74%[0.525] 0.461 0.72 0.82 0.54 

Xception 74%[0.53] 0.465 0.73 0.75 0.63 

DenseNet169 77%[0.457] 0.526 0.76 0.82 0.62 
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4.3 Elbow Dataset Result 

 
In the elbow dataset, there were 4931 images for training (2925 normal images, 2006 abnormal 

images) and 465 images for testing (235 normal images, 230 abnormal images). In this model, 

ResNet152V2 and DenseNet169 performed well on all the metrics, where DenseNet169 had the 

best precision, and ResNet152V2 had the best sensitivity. However, the models underperformed 

compared to the baseline kappa score. 

Table 4. 2: Results of elbow dataset 
 

Model Accuracy Kappa ROCAUC Precision Recall/sensitivity 

Baseline  0.71    

ResNet152V2 77%[0.57] 0.53 0.76 0.82 0.67 

DenseNet121 74%[0.553] 0.469 0.73 0.9 0.52 

InceptionV3 73%[0.533] 0.465 0.73 0.85 0.56 

Xception 75%[0.498] 0.495 0.75 0.83 0.61 

DenseNet169 77%[0.507] 0.529 0.76 0.92 0.58 

 

 

 
 

4.4 Finger Dataset Result 

 
In the finger dataset, there were 5106 images for training (3138 normal images, 1968 abnormal 

images) and 461 images for testing (214 normal images, 247 abnormal images). In this dataset, 

InceptionV3 and DenseNet169 models performed best in all metrics and outperformed the kappa 

score of the baseline model. 

Table 4. 3: Results of finger dataset 
 

Model Accuracy Kappa ROCAUC Precision Recall/sensitivity 

Baseline  0.389    

ResNet152V2 63%[0.626] 0.279 0.64 0.75 0.47 

DenseNet121 66%[0.67] 0.343 0.68 0.79 0.5 

InceptionV3 71%[0.589] 0.426 0.72 0.8 0.62 

Xception 69%[0.630] 0.38 0.69 0.78 0.59 

DenseNet169 72%[0.591] 0.439 0.72 0.81 0.62 



22 

© Daffodil International University 
 

4.5 Forearm Dataset Result 

 

In the forearm dataset, there were 1825 images for training (1164 normal images, 661 abnormal 

images) and 301 images for testing (150 normal images, 151 abnormal images). The denseNet121 

model performed better than others and scored best in all assessments. 

Table 4. 4: Results of forearm dataset 
 

Model Accuracy Kappa ROCAUC Precision Recall/sensitivity 

Baseline  0.737    

ResNet152V2 74%[0.554] 0.476 0.74 0.82 0.61 

DenseNet121 76%[0.513] 0.522 0.76 0.86 0.63 

InceptionV3 71%[0.616] 0.416 0.71 0.86 0.5 

Xception 73%[0.583] 0.456 0.73 0.82 0.58 

DenseNet169 74%[0.561] 0.476 0.74 0.84 0.59 

 
 

4.6 Shoulder Dataset Result 

 

In the shoulder dataset, there were 8379 images for training (4211 normal images, 4168 abnormal 

images) and 563 images for testing (285 normal images, 278 abnormal images). The CNN models 

performed poorly compared to the baseline model in the shoulder dataset. The best kappa score 

was 0.449, achieved by InceptionV3. However, the recall was better than the wrist, elbow, finger, 

and forearm datasets because the shoulder dataset was quite balanced with normal and abnormal 

images. 

Table 4. 5: Results of shoulder dataset 
 

Model Accuracy Kappa ROCAUC Precision Recall/sensitivity 

Baseline  0.729    

ResNet152V2 70%[0.57] 0.407 0.7 0.69 0.72 

DenseNet121 73%[0.535] 0.46 0.73 0.72 0.75 

InceptionV3 72%[0.543] 0.449 0.72 0.74 0.69 

Xception 68%[0.574] 0.354 0.68 0.65 0.73 

DenseNet169 69%[[0.576] 0.359 0.68 0.64 0.79 
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4.7 Hand Dataset Result 

 
There were 5543 images for training (4059 normal images, 1484 abnormal images) and 460 images 

for testing (271 normal images, 189 abnormal images) in the hand dataset. In comparison to the 

baseline, the models performed poorly. Despite the models' moderate precision, the kappa score 

and recall were deficient. However, the ResNet152V2 model outperformed the other models. 

Table 4. 6: Results of hand dataset 
 

Model Accuracy Kappa ROCAUC Precision Recall/sensitivity 

Baseline  0.851    

ResNet152V2 70%[0.606] 0.335 0.65 0.8 0.37 

DenseNet121 63%[0.763] 0.134 0.56 0.73 0.16 

InceptionV3 66%[0.63] 0.224 0.6 0.78 0.25 

Xception 68%[0.629] 0.281 0.63 0.77 0.32 

DenseNet169 65%[0.668] 0.201 0.59 0.77 0.23 

 

 

 

4.8 Humerus Dataset Result 

 
The humerus dataset had 1272 images for training (673 normal images and 599 abnormal images) 

and 288 images for testing (148 normal images and 140 abnormal images). The models performed 

well in this dataset, outperforming the baseline model's kappa score. DenseNet121, InceptionV3, 

and DenseNet169 outscored the baseline model's kappa score. The DenseNet121 model performed 

the best of the three, while the Xception model performed the best in precision. 

Table 4. 7: Results of humerus dataset 
 

Model Accuracy Kappa ROCAUC Precision Recall/sensitivity 

Baseline  0.6    

ResNet152V2 76%[0.509] 0.519 0.76 0.78 0.71 

DenseNet121 82%[0.430] 0.638 0.82 0.77 0.84 

InceptionV3 81%[0.472] 0.611 0.81 0.8 0.8 

Xception 79%[0.49] 0.574 0.79 0.84 0.69 

DenseNet169 81%[0.458] 0.611 0.81 0.79 0.81 
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4.9 Overall Dataset Result 

 

The MURA dataset had 36808 images for training (21935 normal images and 14873 abnormal 

images) and 3197 images for testing (1667 normal images and 1530 abnormal images). According 

to the evaluation metrics, the DenseNet169 model performed better than other models. However, 

the kappa score and sensitivity of the models were inferior to the reference model. 

Table 4. 8: Results of overall dataset 
 

Model Accuracy Kappa ROCAUC Precision Recall/sensitivity 

Baseline  0.705   0.815 

ResNet152V2 73%[0.543] 0.447 0.72 0.8 0.57 

DenseNet121 73%[0.543] 0.459 0.73 0.84 0.55 

InceptionV3 70%[0.57] 0.395 0.69 0.79 0.52 

Xception 71%[0.565] 0.413 0.7 0.77 0.56 

DenseNet169 74%[0.536] 0.466 0.73 0.82 0.57 

 

From the results, finger and humerus images Cohen Kappa scores outperformed the baseline 

model's Cohen Kappa score. In the finger studies, both InceptionV3 and DenseNet169 models 

performed significantly well. In the humerus studies, DenseNet121, InceptionV3, and 

DenseNet169 models outperformed the baseline model. However, DenseNet121 performed better 

than the other two models. 
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5.1 Conclusion 

Chapter 5 - Conclusion 

 

 

 

After analyzing the results of all the studies, we conclude that the partial layer-freezing technique 

improved the performance of the finger and humerus studies of the MURA dataset but did not 

outperform the baseline model on wrist, elbow, forearm, hand, and shoulder analyses. This could 

be because the pre-trained model used for transfer learning was developed on a dataset (Imagenet) 

entirely dissimilar to the target domain (medical images), and freezing the layers might make it 

challenging to capture the characteristics required for the new task adequately. However, research 

shows that freezing earlier layers can be advantageous since they frequently become well-trained 

earlier [19]. The concept is supported by the fact that we froze the previous layers and trained only 

the last ten layers, which improved the performance of finger and humerus studies. Furthermore, 

the DenseNet network showed the potential to perform well on the MURA dataset, whereas the 

Xception network did not achieve the expected result in any of the studies. In conclusion, while 

the five most advanced models discussed in this paper did not perform at the same level as the 

baseline, except for the finger and humerus studies, they may be crucial in providing a second view 

and prioritizing emergency tasks. 
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Chapter 6 - Limitation And Future Scope 
 

 

6.1 Limitations 

 
One of the limitations of our study is that the effect of hyperparameters was not analyzed. Our 

model could perform better if we focused on fine-tuning with hyperparameters. However, 

automated detection of musculoskeletal images in emergencies will help radiologists decide as 

early as possible. 

 

 
6.2 Future Scope 

 
In this scenario, the layer-freezing technique needs further research to understand its capability by 

tweaking parameters according to the CNN models. Furthermore, this approach works well on 

small datasets, which is noteworthy given the scarcity of data in the medical field. 

Finally, we might create an ensemble model using the five trained CNN models. We would train 

a classifier so that each model could learn particular features to differentiate between normal and 

abnormal images. 
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