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Abstract

Drug designing and development is an important area of research for pharmaceutical companies and chemical scientists.
However, low efficacy, off-target delivery, time consumption, and high cost impose a hurdle and challenges that impact drug
design and discovery. Further, complex and big data from genomics, proteomics, microarray data, and clinical trials also
impose an obstacle in the drug discovery pipeline. Artificial intelligence and machine learning technology play a crucial role
in drug discovery and development. In other words, artificial neural networks and deep learning algorithms have modernized
the area. Machine learning and deep learning algorithms have been implemented in several drug discovery processes such
as peptide synthesis, structure-based virtual screening, ligand-based virtual screening, toxicity prediction, drug monitoring
and release, pharmacophore modeling, quantitative structure—activity relationship, drug repositioning, polypharmacology,
and physiochemical activity. Evidence from the past strengthens the implementation of artificial intelligence and deep learn-
ing in this field. Moreover, novel data mining, curation, and management techniques provided critical support to recently
developed modeling algorithms. In summary, artificial intelligence and deep learning advancements provide an excellent
opportunity for rational drug design and discovery process, which will eventually impact mankind.

Graphic abstract

The primary concern associated with drug design and development is time consumption and production cost. Further, inef-
ficiency, inaccurate target delivery, and inappropriate dosage are other hurdles that inhibit the process of drug delivery and
development. With advancements in technology, computer-aided drug design integrating artificial intelligence algorithms
can eliminate the challenges and hurdles of traditional drug design and development. Artificial intelligence is referred to as
superset comprising machine learning, whereas machine learning comprises supervised learning, unsupervised learning,
and reinforcement learning. Further, deep learning, a subset of machine learning, has been extensively implemented in drug
design and development. The artificial neural network, deep neural network, support vector machines, classification and
regression, generative adversarial networks, symbolic learning, and meta-learning are examples of the algorithms applied to
the drug design and discovery process. Artificial intelligence has been applied to different areas of drug design and develop-
ment process, such as from peptide synthesis to molecule design, virtual screening to molecular docking, quantitative struc-
ture—activity relationship to drug repositioning, protein misfolding to protein—protein interactions, and molecular pathway
identification to polypharmacology. Artificial intelligence principles have been applied to the classification of active and
inactive, monitoring drug release, pre-clinical and clinical development, primary and secondary drug screening, biomarker
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development, pharmaceutical manufacturing, bioactivity identification and physiochemical properties, prediction of toxicity,

and identification of mode of action.
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Introduction

From the past two decades, the development of efficient and
advanced systems for the targeted delivery of therapeutic
agents with maximum efficiency and minimum risks has
imposed a great challenge among chemical and biological
scientists [1]. Further, the cost of development and time con-
sumption in developing novel therapeutic agents was another
setback in the drug design and development process [2]. To
minimize these challenges and hurdles, researchers around
the globe moved toward computational approaches such as
virtual screening (VS) and molecular docking, which are
also known as traditional approaches. However, these tech-
niques also impose challenges such as inaccuracy and inef-
ficiency [3]. Thus, there is a surge in the implementation
of novel techniques, which are self-sufficient to eliminate
the challenges encountered in traditional computational
approaches. Artificial intelligence (Al), including deep
learning (DL) and machine learning (ML) algorithms, has
emerged as a possible solution, which can overcome prob-
lems and hurdles in the drug design and discovery process
[4]. Additionally, drug discovery and designing comprise
long and complex steps such as target selection and valida-
tion, therapeutic screening and lead compound optimization,
pre-clinical and clinical trials, and manufacturing practices.
These all steps impose another massive challenge in the
identification of effective medication against a disease. Thus,
the biggest question that arises in front of pharmaceutical
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«Fig. 1 a History of artificial intelligence in healthcare: the first break-
through of artificial intelligence in healthcare comes in 1950 with
the development of turning tests. Later on, in 1975, the first research
resource on computers in medicines was developed, followed by
NIH’s first central AIM workshop marked the importance of artificial
intelligence in healthcare. With the development of deep learning in
the 2000s and the introduction of DeepQA in 2007, the scope of arti-
ficial intelligence in healthcare has increased. Further, in 2010 CAD
was applied to endoscopy for the first time, whereas, in 2015, the first
Pharmbot was developed. In 2017, the first FDA-approved cloud-
based DL application was introduced, which also marked the imple-
mentation of artificial intelligence in healthcare. From 2018 to 2020
several Al trials in gastroenterology were performed. b Classification
of artificial intelligence: there are seven classifications of artificial
intelligence, which are reasoning and problem solving, knowledge
representation, planning and social intelligence, perception, machine
learning, robotics: motion and manipulation, and natural language
processing, as discussed by Russel and Norvig in their book “Artifi-
cial Intelligence: A Modern Approach.” Machine learning is further
divided into three significant subsets: supervised learning, unsuper-
vised learning, and deep learning, whereas vision is divided into two
subsets, such as image recognition and machine vision. Similarly,
speech is divided into two subsets: speech to text and text to speech,
whereas natural language processing is classified into five main sub-
sets, including classification, machine translation, question answer-
ing, text generation, and content extraction. ¢ Artificial intelligence in
the healthcare and pharmaceutical industry has five significant appli-
cations, which change the entire scenario. These applications include
research and discovery, clinical development, manufacturing and sup-
ply chain, patient surveillance, and post-market surveillance

companies is managing the cost and speed of the process [5].
Al has answered all these questions in a simple and scientific
manner, which reduced the time consumption and cost of the
process. Moreover, the increase in data digitization in the
pharmaceutical companies and healthcare sector motivates
the implementation of Al to overcome the problems of scru-
tinizing the complex data [6].

Al, which is also referred to as machine intelligence,
means the ability of computer systems to learn from input
or past data. The term Al is commonly used when a machine
mimics cognitive behavior associated with the human brain
during learning and problem solving [7]. Nowadays, bio-
logical and chemical scientists extensively incorporate Al
algorithms in drug designing and discovery process [8].
Computational modeling based on Al and ML principles
provides a great avenue for identification and validation of
chemical compounds, target identification, peptide synthesis,
evaluation of drug toxicity and physiochemical properties,
drug monitoring, drug efficacy and effectiveness, and drug
repositioning [9]. With the advent of Al principles along
with ML and DL algorithms, VS of compounds from chemi-
cal libraries, which comprises more than 10° million com-
pounds, become easy and time-effective. Further, Al models
eliminate the toxicity problems, which arise due to off-target
interactions [10]. Herein, we briefly discuss the evolution of
Al from ML to DL and big data involvement in revolution-
izing the drug discovery process. Later on, we presented an

overview on the congregation of Al and conventional chem-
istry in the improvement of the drug discovery process and
the application of Al in the improvement of the traditional
drug discovery process. Afterward, we discuss the numerous
Al applications throughout the drug design and discovery
processes such as primary and secondary screening, drug
toxicity, drug release and monitoring, drug dosage effective-
ness and efficacy, drug repositioning, and polypharmacol-
ogy, and drug-target interactions.

Evolution of artificial intelligence: machine
learning to deep learning

In September 2015, the Google search trend showed that
after the introduction of ML, Al was the most searched term.
Some describe ML as the primary Al application, while oth-
ers describe it as a subset of AI [11, 12]. Al is an umbrella
term where computer programs are able to think and behave
as humans do, whereas ML is beyond that where data are
inputted in the machine along with an algorithm like Naive
Bayes, decision tree (DT), hidden Markov models (HMM)
and others, which helps the machine to learn without being
explicitly programmed. Later, with the development of neu-
ral networks, machines could classify and organize inputted
data that mimics like a human brain, which further shows
advancement in Al. Around twentieth century, Igor Aizen-
berg and his colleagues, while talking about the artificial
neural network (ANN), brought up the term “deep learning”
for the first time. DL is a subset of ML, which itself is a
subset of Al, and thus, the evolution goes like AI>ML>DL
[13, 14]. ML either uses supervised learning, where the
model is trained to use labeled data, which means that the
input has been tagged with corresponding preferred output
labels or uses unsupervised learning, where the model is
trained to use unlabeled data but looks for recurring pat-
terns from the input data [15]. Others are semi-supervised
learning that uses the combination of both supervised and
unsupervised learnings; self-supervised learning, which is
a special case, uses a two-step process where unsupervised
learning generates labels for unlabeled data and its ultimate
goal is to make supervised learning model; reinforcement
learning is a type of ML which improves its algorithm over
time with the help of a constant feedback loop and lastly
DL where there are many layers of ML algorithms which is
called as a brain-inspired family of algorithms which mim-
ics human brain but requires high computational power for
training and big data to succeed [16, 17]. The origin of ML
dates back to 1943 when McCulloch and Pitts published
an article named “A logical calculus of the idea immanent
in nervous activity,” where they gave the first-ever math-
ematical model of a neural network [18]. Alan M. Turing
theorized the concept of ML in his seminal paper published
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in 1950 [19]. In 1952, Arthur L. Samuel popularized the
term “machine learning” by writing a checker-playing pro-
gram for IBM [20]. In 1957, Frank Rosenblatt developed
perceptron, which was built for image recognition [21].
Henry J. Kelley developed the continuous backpropagation
model in 1960, and a simpler version based only on-chain
rule was developed by Stuart Dreyfus in 1962 [22, 23]. In
1965, Ivakhnenko and Lapa developed the first working DL
networks. Around 1980, Kunihiko Fukushima developed an
ANN called neocognitron that had a multilayered design
that could help the computer learn how to recognize visual
patterns [24]. He also developed the first convolutional neu-
ral network (CNN) which was based on the visual cortex
organization found in animals [25] [Fig. 1].

David Rumelhart, Geoffrey Hinton, and Ronald J. Wil-
liams published a paper entitled “Learning Representations
by Back-propagating Errors” in 1986, which demonstrated
that backpropagation could provide an improvement in
shape recognition and word prediction [26]. After the initial
success, there were some setbacks, but Hinton kept work-
ing during the second Al Winter to achieve new heights.
Thus, he is considered as the Godfather of DL. Soon, in
1989, Yann LeCun gave the first practical demonstration of
backpropagation at Bell Labs [27]. The same year, Chris-
topher Watkins published his thesis entitled “Learning
from Delayed Rewards,” which introduced the concept of
Q-learning, which further improved reinforcement learning
in computer programs [28]. In 1995, Corinna Cortes and
Vladimir Vapnik developed support vector machines (SVM)
to map and recognize similar data [29]. After two years, in
1997, Jiirgen Schmidhuber and Sepp Hochreiter developed
long short-term memory (LSTM) for recurrent neural net-
works [30].

In 1999, a graphic processing unit (GPU) was launched
as a microprocessor circuit, which was developed initially
to accelerate 3D graphics processing for computer gaming.
Later on, GPUs became popular in the field of technology
and research as well because of their ability of parallel com-
puting. A research report presented by META Group in 2001
stated that volume, speed, source and types of data were
increasing, which was a call to prepare for the attack of Big
Data. In 2007 Nvidia introduced compute unified device
architecture (CUDA), a framework that allowed program-
mers and researchers to use GPU for general purpose com-
puting [31]. Since then, with the help of CUDA, researchers
started using GPUs for DL-driven operations, as high mem-
ory bandwidth of GPUs allowed easy handling of massive
data involved in DL algorithms, and thousands of cores in
GPUs allowed simultaneous parallel processing of neural
networks. In 2009, Fei-Fei Li launched ImageNet, which is
a free database containing millions of labeled images that
can be used for research purposes [32]. AlexNet, a convo-
lutional neural network, was created by Alex Krizhevsky
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around 2012, which helped in strengthening the speed and
dropout using rectified linear units [33]. In the same year,
“the cat experiment” conducted by Google Brain concluded
that the network correctly recognizes less than 16% of the
presented objects [34]. In 2014 Nvidia introduced CUDA
deep neural network (cuDNN), a CUDA-based DL library,
which accelerated DL-based operations [35]. Similarly,
“Deep Face” was developed and released in 2014 to identify
faces with 97.5% accuracy [36]. In the same year, generative
adversarial networks (GANs) were introduced, using two
competing neural networks to check whether the data are
genuine or generated [37]. In 2016, Cray Inc. used Micro-
soft’s neural network software on its XC50 supercomputer
with 1000 Nvidia Tesla P100 GPUs that could perform the
task and gave output in a fraction of seconds. In 2017 Nvidia
introduced Tesla V100 GPU, which had tensor cores that
accelerated Al-based operations. However, DL is still in its
growth phase, and creative ideas are required for further
advancement in this field.

Revolutionizing drug discovery process: role
of big data and artificial intelligence

Big data can be defined as data sets that are too gigantic and
intricate to be analyzed with the conventional data analyzing
software, tools, and techniques. The three main character-
istic features of big data are volume, velocity, and variety,
where volume represents the huge amount and mass of data
generated, velocity represents the rate at which these data
are being reproduced, and variety represents heterogenicity
present in the data sets [38]. With the advent of microar-
ray, RNA-seq, and high-throughput sequencing (HTS) tech-
nologies, a plethora of biomedical data is being engendered
every day, due to which contemporary drug discovery has
made a transition into the big data era. In drug discovery,
the first and foremost step is the identification of appropri-
ate targets (e.g., genes, proteins) involved in disease patho-
physiology, followed by finding suitable drugs or drug-like
molecules which can meddle with these targets, and now we
have access to a constellation of biomedical data repositories
which can help us in this regard [39]. Moreover, the evolu-
tion of Al has made big data analytics a lot easier as there is
a myriad of ML techniques available now, which can help in
extracting useful features, patterns, and structures present in
these big biomedical data sets [40]. For target identification,
a feature like a gene expression is widely used to understand
disease mechanisms and find genes responsible for the dis-
ease. Microarray and RNA-seq technologies have generated
a large amount of gene expression data for various disorders.
NCBI Gene Expression Omnibus (GEO) (https://www.ncbi.
nlm.nih.gov/geo/) [41], The Cancer Genome Atlas (TCGA)
(https://www.cancer.gov/about-nci/organization/ccg/resea
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rch/structural-genomics/tcga) [42], Arrayexpress (https://
www.ebi.ac.uk/arrayexpress/) [43], are some of the big
repositories which contain gene expression data. By analyz-
ing gene expression signatures, we can find out target genes
responsible for different disorders. For example, using the
ML approach and gene expression data, van IJzendoorn et al.
2019 found out novel biomarkers and potential drug targets
for rare soft tissue sarcoma [44].

Further, genome-wide association studies (GWAS) can
determine the interrelation of genomic variants with par-
ticular complex disorders [45]. GWAS central (https://www.
gwascentral.org/) [46], NHGRI-EBI GWAS Catalog (https://
www.ebi.ac.uk/gwas/home) [47] are some of the reposito-
ries which contain GWAS data. Further, with the help of
GWAS, we can ascertain the disease-associated genetic loci,
and it has been observed that genes linked with these loci
are potential therapeutic targets. For instance, Li et al. [48]
used the GWAS catalog, gene expression, epigenomics, and
methylation data to determine target genes associated with
juvenile idiopathic arthritis loci through ML analysis . In
addition, specific genes whose mutations can lead to dif-
ferent threatening diseases are also promising therapeutic
targets. These risk genes can be identified by analyzing the
various genome and exome sequencing data. For sequencing
data, we have public repositories like Sequence read archive
(https://www.ncbi.nlm.nih.gov/sra) [49], which contains
sequencing data obtained from next-gen sequencing tech-
nology. The National Cancer Institute Genomic Data Com-
mons (NCIGDC) (https://gdc.cancer.gov/) [50] and TCGA
are data repositories that contain sequencing data related to
cancer. Moreover, taking advantage of big data and Al, Han
et al. 2019 have developed DriverML (https://github.com/
HelloYiHan/DriverML), a supervised ML-based tool that
can point out driver genes related to cancer [51] [Fig. 2].

Moreover, sometimes even published literature can be
used for target identification, and PubMed (https://pubmed.
ncbi.nlm.nih.gov/) [52] is a major repository of the vari-
ous published biomedical literature, whose data mining can
help in identifying targets for different disorders. After an
appropriate target has been identified and validated, the next
step is to find suitable drugs and/or drug-like molecules that
can interact with the target and elicit the desired response
[53]. In the age of big data, the multitude of big chemical
databases is at our disposal, which can help in finding per-
fect drugs for a specific target. Likewise, PubChem (https://
pubchem.ncbi.nlm.nih.gov/) [54] is a freely accessible
chemical database that contains data of various chemical
structures, including their biological, physical, chemical,
and toxic properties [55]. Further, the ChEMBL database
(https://www.ebi.ac.uk/chembl/) [56] is an open access big
database containing data of numerous bioactive compounds
exhibiting drug-like properties [57]. The ChEMBL data-
base also contains information on absorption, distribution,

metabolism, and excretion (ADME)), toxicity properties of
these compounds, and even their target interactions. Fur-
ther, DrugBank (https://go.drugbank.com/) [58] is another
open access pharmaceutical data repository which contains
data of various drugs, their targets, and mechanism [59].
Additionally, the library of integrated network-based cellular
signature (LINCS) L1000 (https://lincsproject.org/LINCS/)
[60] is another repository that contains information on the
change in gene expression signatures of human cell lines
when treated with different chemical compounds. LINCS
L1000 data-driven search engine, known as L1000CDS?, is
an open-access search engine that contains data of drugs that
can revert the expression of differentially expressed genes;
hence, they too can be used for drug discovery [61]. Further,
the protein data bank (PDB) (https://www.rcsb.org/) [62]
is another freely accessible online repository that contains
data of three-dimensional structures of proteins, DNA, RNA
[63]. PDB data are also widely used to assess protein—ligand
interactions and then find appropriate inhibitors of a target
protein. Xu et al. [64] combined ML and molecular docking
to find inhibitors of COVID 3CL proteinase; here, the crystal
structure of COVID 3CL proteinase was obtained from PDB.

Congregation of artificial intelligence
and conventional chemistry: improves drug
discovery

In the pharmaceutical industry, Al has emerged as a possible
solution to the problems raised due to classical chemistry or
chemical space, which hampers drug discovery and develop-
ment. With the advancements in technologies and the devel-
opment of high-performance computers, Al algorithms such
as ML to DL have been increased in computer-aided drug
design (CADD). Al is not a new technique for scientists in
drug discovery and development; neither chemists’ desire to
accurately forecast chemical activity-structure relationships.
For example, Hammett relates equilibrium constants with
reaction rates, whereas Hansch performed computer-assisted
prediction of drug compounds’ physicochemical properties
and biological activity. The success of Hansch provides an
avenue for research that will focus on (a) detailed identifi-
cation and prediction of the chemical structure along with
the characterization of properties such as pharmacophores
and three-dimensional structure and (b) hypothesize com-
plex mathematical equations that will relate to chemical
representation and biological activity of the predicted com-
pound. However, scientists’ main aim in the current era is to
improve the drug discovery and development process with
high accuracy and confidence scores through ML algorithms
based on classical chemistry activities. This will encour-
age chemists to identify the potential of Al techniques for
answering two crucial questions of medical chemistry, such
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as "what should be the next compound?” and "what is the
process of making a compound?”. Thus, the last two dec-
ades developed many techniques and tools for computational
drug discovery, quantitative-structure activity relationship
(QSAR) methods, and free-energy minimization techniques.
For example, [65] distinguish compound cell activity using
machine intelligence methods such as DT, random forest
(RF) method, CNN, SVM, LSTM network, and gradient
boosting machine. Among the mentioned models, in some
models, the compounds were expressed as a string by the
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simplified molecular input line entry system and directly
used as input data instead of any chemical descriptor and
act as natural language processing. They have used two dif-
ferent cutoffs for the single data set (Z-score =3) and the
whole data set (Z-score =5 or 6). Later on, they incorporated
nine different metrics used to evaluate the model’s precision,
accuracy, the area under the curve, and Cohen’s K value. The
results demonstrated that the gradient boosting machine is
competent at balanced data distribution. The experiment’s
outcomes also concluded that classical ML methods and
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«Fig.2 Application of big data for drug designing and discovery:
with the increase in biological and chemical data from the litera-
ture, in vitro, in vivo, clinical studies, genomics studies, proteomics
studies, metabolomics studies, gene ontology studies, and molecular
pathway data, different data repositories have been developed. For
instance, ChemSpider, ChEMBL, ZINC, BindingDB, and PubChem
are the essential databases for compound synthesis and screening
in the drug designing and discovery process. The data stored in the
above-said databases were curated and screened out for pharmaco-
logical and physicochemical properties of compound necessary for
the drug discovery process instead of quantum mechanical calcula-
tions such as solvation energy and proton affinity the wave function,
atomic forces, and transition state. The high-throughput screened data
were subject to filtration based on drug-likeness, PAINS calculation,
ADMET analysis, and toxicity. The filtered compounds were subject
to artificial intelligence models such as deep learning, random forest,
classification and regression, and neural networks for further analy-
sis. These compounds were then subjected to quantitative-structure
activity relationship and pharmacophore models followed by molecu-
lar docking and molecular dynamics simulations studies. Afterward,
the final predicted compounds were visualized for binding energy
calculations and active site identification. Thus, the final compound
was identified and underwent in vitro and in vivo experimental stud-
ies for validation. However, quantum mechanical properties play a
crucial role in the process of drug discovery and designing, but these
properties cannot directly hamper the process of drug designing. QM
methods include ab initio density functional theory and semi-empir-
ical calculations, where accurate calculations use electron correla-
tion methods. QM will become a more prominent tool in the reper-
toire of the computational medicinal chemist. Therefore, modern QM
approaches will play a more direct role in informing and streamlining
the drug-discovery process

DL methods could classify compound cell activity [65].
Similarly, [66] predicted the PAMPA effective permeability
using a two-QSAR approach, where the authors developed
a classical QSAR model and an ML-based QSAR model
using a partial least square (PLS) scheme and hierarchi-
cal SVM (HSVR) scheme. The authors concluded that the
HSVR scheme executed better than the PLS scheme in the
training set, test set, and statistical analysis [66]. Further, for
the synthesis of new compounds, chemical scientists read-
ily depended on published literature. With advancements in
automated drug discovery methods involving Al and ML, it
is relatively simple to distinguish between existing drugs and
novel chemical structures. For example, [67] applied a com-
putational approach to screen the hepatotoxic ingredients in
traditional Chinese medicines, whereas [68] demonstrated
the phylogenetic relationship, structure—toxicity relationship,
and herb-ingredient network using computational technique.
Recently, Zhang et al. implemented computational analy-
sis against a novel coronavirus, where the authors screened
different compounds that were biologically active against
severe acute respiratory syndrome (SARS). Later on, the
compounds were subjected to ADME and docking analysis.
The results concluded that 13 existing Chinese traditional
medicines were effective against novel coronavirus [69].
Thus, conventional chemistry-oriented drug discovery and
development concepts combined with computational drug

designing provide a great future research platform. Moreo-
ver, system biology and chemical scientists worldwide, in
coordination with computational scientists, develop modern
ML algorithms and principles to enhance drug discovery
and development.

Transforming traditional computational
drug design through artificial intelligence
and machine learning techniques

For many years computational methods have played an
essential role in drug design and discovery, which trans-
formed the whole process of drug design. However, many
issues like time cost, computational cost, and reliability, are
still associated with traditional computational methods [70,
71]. Al has the potential to remove all these bottlenecks
in the area of computational drug design, and it also can
enhance the role of computational methods in drug develop-
ment. Moreover, with the advent of ML-based tools, it has
become relatively easier to determine the three-dimensional
structure of a target protein, which is a critical step in drug
discovery, as novel drugs are designed based on the three-
dimensional ligand biding environment of a protein [72, 73].
Recently, Google’s DeepMind (https://github.com/deepm
ind) has devised an Al-based tool trained on PDB structural
data, referred to as AlphaFold, which can predict the 3D
structure of proteins from their amino acid sequences [74].
AlphaFold predicts 3D structures of proteins in two steps:
(1) firstly, using a CNN it transforms an amino acid sequence
of a protein to distance matrix as well as a torsion angle
matrix, (ii) secondly, using a gradient optimization technique
it translates these two matrices into the three-dimensional
structure of a protein [75]. Likewise, Mohammed AlQurai-
shi from Harvard Medical school has also designed a DL-
based tool that takes protein’s amino acid sequence as input
and generates its three-dimensional structure. This model,
referred as Recurrent Geometric Network (https://github.
com/aqlaboratory/rgn), uses a single neural network to figure
out bond angles and angle of rotation of chemical bonds con-
necting different amino acids in order to predict the three-
dimensional structure of a given protein [76].

Further, quantum mechanics is used to determine the
properties of molecules at a subatomic level, which is used
to estimate protein—ligand interactions during drug develop-
ment. However, sometimes with conventional computational
techniques, quantum mechanics can be computationally
very expensive and demanding, which can affect its accu-
racy [77]. However, with Al, quantum mechanics can get
more user-friendly and efficacious. Schtutt et al. 2019 have
recently developed a DL-driven tool, referred to as SChNOrb
(https://github.com/atomistic-machine-learning/SchNOrb),
which can predict molecular orbitals and wave functions of
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organic molecules accurately. With these data, we can deter-
mine the electronic properties of molecules, the arrangement
of chemical bonds around a molecule, and the location of
reactive sites [78]. Thus, SchNOrb can help researchers in
designing new pharmaceutical drugs. Moreover, molecular
dynamics (MD) simulation analyzes how molecules behave
and interact at an atomistic level [79]. In drug discovery, MD
simulation is used to evaluate protein-ligand interactions
and binding stability. One major issue with MD simulation is
that it can be very arduous and time-consuming. Al has the
capacity to accelerate the process of MD simulation [80]. In
this regard, Drew Bennett et al. performed MD simulations
to calculate free energies for transferring 15,000 small mol-
ecules from water to cyclohexane to train a 3D convolutional
network and spatial graph CNN using these free energies and
some other atomistic features. The researchers found that the
trained neural networks predicted free energies of transfer
with almost similar accuracy compared to MD simulation
calculations [81]. This study shows that ML techniques can
improvize and expedite MD simulations. However, a large
amount of training data is required to achieve this.
Moreover, de novo drug design has also taken advantage
of Al in recent years. For example, Q.Bai et al. 2020 have
devised MolAlcal (https://molaical.github.io/), a tool that
can design three-dimensional drugs in three-dimensional
protein pockets [82]. MolAICal designs 3D drugs by action
of two components: (i) first component uses DL and genetic
algorithm trained on the US food and drug administration
(FDA)-approved drugs, for de novo drug design, (ii) sec-
ond component combines molecular docking and DL model
trained on ZINC database (https://zinc.docking.org/) [83].
Likewise, Popova et al. 2018 designed a deep reinforcement
learning-based algorithm, referred to as ReLeaSE (https://
github.com/isayev/ReLeaSE), for de novo drug design.
ReLeaSE achieves its desired outcome by integrating two
deep neural networks (DNN), known as generative and pre-
dictive, where the generative model is used to produce new
compounds, and the predictive model is used to predict the
properties of the compound [84]. Further, in recent times,
Al has been used to upgrade the process of synthesis plan-
ning as well, a process that is used to determine an optimal
synthesis pathway for a molecule of interest. Recently, Grzy-
bowski et al. [85] developed a DT-based program, referred to
as chematica, to design novel synthesis pathways for desired
molecules. Similarly, Genheden et al. have implemented
AiZynthFinder (https://github.com/MolecularAl/aizynthfin
der), an open-source tool for retrosynthesis planning built
on Monte Carlo tree search, which is regulated by a neural
network [86]. Likewise, Segler et al. [87] used the integra-
tion of three distinct neural networks in conjugation with
the Monte Carlo tree search to discover novel retrosynthe-
sis routes. ICSYNTH (https://www.deepmatter.io/products/
icsynth/) is another tool that can produce novel chemical
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synthesis pathways by using a collection of chemical rules
which are generated via ML models [88].

Additionally, various text mining-based tools have also
been developed, which can aid the process of traditional
drug discovery. Text mining uses methods like natural lan-
guage processing (NLP) to transform unstructured texts in
various literature and databases into structured data, which
can be analyzed appropriately to gain new insights. NLP is
a branch of Al, which allows computers to process and ana-
lyze human languages like speech and text through Al-based
algorithms. Taking advantage of this Al driven techniques,
various text mining-based tools have been developed. For
instance, Jang et al. 2018 developed PISTON (http://datab
io.gachon.ac.kr/tools/PISTONY/), a tool that can predict drug
side effects and drug indications, using NLP and topic mod-
eling [89]. Likewise, DisGeNET (https://www.disgenet.org/)
is a text mining-driven database that contains a plethora of
information on gene-disease and variants-disease relation-
ships [90]. Data in DisGeNET can analyze various biological
processes like adverse drug reactions, molecular pathways
involved in disease, drug action on targets. Further, STRING
(https://string-db.org/) is another text mining-driven data-
base containing a myriad of information on protein—protein
interactions for various organisms [91]. In addition, STITCH
(http://stitch.embl.de/) is another text mining-driven data-
base, which contains information on interactions between
proteins and chemicals/small molecules [92]. Information
in STICH can also be used to ascertain binding affinities of
drugs and drug-target association.

Artificial intelligence in primary
and secondary drug screening

Today Al has come out as a very successful and demanding
technology because it saves time and is cost-efficient [93].
In general, cell classification, cell sorting, calculating prop-
erties of small molecules, synthesizing organic compounds
with the help of computer programs, designing new com-
pounds, developing assays, and predicting the 3D structure
of target molecules are some time-consuming and tiresome
tasks which with the help of AI can be reduced and can
speed up the process of drug discovery [94, 95]. The primary
drug screening includes the classification and sorting of cells
by image analysis through Al technology. Many ML mod-
els using different algorithms recognize images with great
accuracy but become incompetent when analyzing big data.
To classify the target cell, firstly, the ML model needs to be
trained so that it can identify the cell and its features, which
is basically done by contrasting the image of the targeted
cells, which separates it from the background [96]. Images
with varying textured features like wavelet-based texture
features and Tamura texture features are extracted, which
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is further reduced in dimensions through principal compo-
nent analysis (PCA). A study suggests that least-square SVM
(LS-SVM) showed the highest classification accuracy of
95.34% [97, 98]. Regarding cell sorting, the machine needs
to be fast to separate out the targeted cell type from the given
sample. Evidence suggests that image-activated cell sorting
(IACS) is the most advanced device that could measure the
optical, electrical, and mechanical properties of the cell [99]
[Fig. 3].

The secondary drug screening includes analyzing the
physical properties, bioactivity, and toxicity of the com-
pound. Melting point and partition coefficient are some of
the physical properties that govern the compound’s bio-
availability and are also essential to design new compounds
[100], while designing a drug, molecular representation
can be done using different methods like molecular fin-
gerprinting, simplified molecular-input line-entry system
(SMILES), and Coulomb matrices [101]. These data can be
used in DNN, which comprises two different stages, namely
generative and predictive stage. Though both the stages are
trained separately through supervised learning, when they
are trained jointly, bias can be applied to the output, where
it is either rewarded or penalized for a specific property.
This whole procedure can be used for reinforcement learning
[84]. Matched molecular pair (MMP) has been extensively
used for QSAR studies. MMP is associated with a single
change in a drug candidate, which further influences the
bioactivity of the compound [102]. Along with MMP, other
ML methods are used like DNN, RF, and gradient boosting
machines (GBM) to get modifications. It has been observed
that DNN can predict better than RF and GBM [103]. With
the increase in databases, which are publicly available like
ChEMBL, PubChem, and ZINC, we have access to millions
of compounds annotating information like their structure,
known targets and purchasability; MMP plus ML can predict
bioactivity like oral exposure, intrinsic clearance, ADMET,
and method of action [98, 104, 105]. Optimizing the toxicity
of a compound is the most time-consuming and expensive
task in drug discovery and is a crucial parameter as it adds
significant value to the drug development process.

Applications of artificial intelligence in drug
development process

The most arduous and desponding step in the drug discov-
ery and development process is identifying suitable and
bioactive drug molecules present in the vast size of chemi-
cal space, which is in the order of 10°° molecules. Further,
the drug discovery and development process are considered
a time- and cost-consuming process. The most infuriating
point is that nine out of ten drug molecules usually fail to
pass phase II clinical trials and other regulatory approvals

[106-108]. The above-said limitations of drug discovery and
development can be addressed by implementing Al-based
tools and techniques. Al is involved in every stage of the
drug development process such as small molecules design,
identification of drug dosage and associated effectiveness,
prediction of bioactive agents, protein—protein interactions,
identification of protein folding and misfolding, structure
and ligand-based VS, QSAR modeling, drug repurposing,
prediction of toxicity and bioactive properties, and identi-
fication of mode of action of drug compounds as discussed
below.

Peptide synthesis and small molecule design

Peptides are a biologically active small chain of around 2-50
amino acids, which are increasingly being explored for ther-
apeutic purposes as they have the ability to cross the cellular
barrier and can reach the desired target site [109]. In recent
years, researchers have taken advantage of Al and used it to
discover novel peptides. For instance, Yan et al. 2020 devel-
oped Deep-AmPEP30, a DL-based platform for the identifi-
cation of short anti-microbial peptides (AMPs) [110]. Deep-
AmPEP30 (https://cbbio.online/AXPEP/) is a CNN-driven
tool that predicts short AMPs from DNA sequence data.
Using Deep-AmPEP30, Yan et al. identified novel AMPs
from the genome sequence of C. glabrate, a fungal patho-
gen present in the GI tract. Likewise, Plisson et al. 2020
combined the ML algorithm with an outlier detection tech-
nique to discover AMPs with non-hemolytic profiles [111].
In addition, Kavousi et al. developed IAMPE (http://cbbl.ut.
ac.ir/), a web server for the identification of anti-microbial
peptides, which integrates '>*CNMR-based features and phys-
icochemical features of peptides as input to ML algorithms,
in order to identify novel AMPs [112]. Similarly, Yi et al.
2019 devised ACP-DL (https://github.com/haichengyi/ACP-
DL), a DL-based tool for the discovery of novel anti-cancer
peptides [113]. ACP-DL uses the LSTM algorithm, which is
an improved version of the recursive neural network (RNN),
for differentiating anti-cancer peptides from non-anti-cancer
peptides. Moreover, Yu et al. [114] proposed DeepACP, a
deep recurrent neural network-based model for identifying
anti-cancer peptides. Likewise, Tyagi et al. 2013 developed
an SVM-based platform for identifying new anti-cancer pep-
tides [115]. In addition, Rao et al. 2020 combined a graphi-
cal convolutional network and one-hot encoding to design
ACP-GCN for the discovery of anti-cancer peptides [116].
Moreover, Grisoni et al. used an ensemble of four counter
propagation ANN for identifying new anti-cancer peptides.
Likewise, Wu et al. [117] proposed PTPD, a tool based on
CNN and word2vec, for the discovery of novel peptides for
therapeutics.

Moreover, small molecules are molecules that have very
low molecular weight, and like peptides, small molecules
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are too being explored for therapeutic purposes using Al-
based tools. For instance, Zhavoronkov et al. [118] devised
generative tensorial reinforcement learning (GENTRL),
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a generative reinforcement learning-based tool for the de
novo design of small molecules. With the help of GEN-
TRL (https://github.com/insilicomedicine/GENTRL),
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«Fig. 3 Artificial intelligence in primary and secondary drug screen-
ing: in drug discovery and designing pipeline, screening of potential
lead is crucial, and artificial intelligence plays a great role in identi-
fying novel and potential lead compounds. There are approximately
106 million chemical structure presents in chemical space from dif-
ferent studies such as OMIC studies, clinical and pre-clinical studies,
in vivo assays, and microarray analysis. With machine learning mod-
els such as reinforcement models, logistic models, regression models,
and generative models, these chemical structures are screened out
based on active sites, structure, and target binding ability. The com-
plete drug discovery process through artificial intelligence will take
about 14-18 years, which is comparatively less than the traditional
drug discovery process. The first step in the drug discovery pro-
cess is lead identification, in which disease-modifying target protein
is identified through reverse docking, bioinformatics analysis, and
computational chemical biology. In the second step, primary screen-
ing of compounds is done to select potential lead compounds, which
can inhibit target protein. This can be done through virtual screening
and de novo designing. The next step in the drug discovery process
includes lead optimization and lead compound identification through
focused library design, drug-like analysis, drug-target reproducibility,
and computational biology. Afterward, secondary screening of com-
pounds is performed, followed by pre-clinical trials. The drug discov-
ery process’s final step is clinical development through cell-culture
analysis, animal model experimentation, and patient analysis

Zhavoronkov et al. discovered novel inhibitors of an enzyme,
DDRI1 kinase [118]. Likewise, McCloskey et al. [119] com-
bined DNA-encoded small molecule libraries (DEL) data
with ML models like Graph CNN and RF to discover novel
small drug-like molecules. Similarly, Xing et al. [120] inte-
grated XGBoost, SVM, and DNN to find small molecules
for targets implicated in rheumatoid arthritis.

Identification of drug dosage and drug delivery
effectiveness

Administering an improper dose of any drug to a patient
can lead to undesirable and lethal side effects; hence, it is
crucial to determine a safe drug dose for treatment purposes.
Over the years, it has been challenging to ascertain the opti-
mum dose of a drug that can achieve the desired efficacy
with minimum toxic side effects [121]. With the emergence
of Al lots of researchers are taking the help of ML and
DL algorithms to determine appropriate drug dosage. For
instance, Shen et al. [122] developed an Al-based platform,
referred to as AI-PRS, to determine the optimum dose and
combinations of drugs to be used for HIV treatment through
antiretroviral therapy. AI-PRS is a neural network-driven
approach, which relates drug combinations and dosage to
efficacy through a parabolic response curve (PRS). In their
study, Shen et al. administered a combination of tenofovir,
efavirenz, and lamivudine to 10 HIV patients, and in due
course, using the PRS method, they found out the dose of
tenofovir could be reduced by 33% of the starting dose with-
out causing virus relapse. Hence, using AI-PRS optimum
drug dosage can be found out for other diseases as well.

Further, Pantuck et al. [123] developed CURATE.AI, to
determine adequate drug dose, which uses a patient’s per-
sonal data and transforms it to CURATE.AI profile in order
to ascertain optimum dose. The study was performed, where
a combination of cancer drug enzalutamide and investiga-
tion drug ZEN-3694 was given to a patient with metastatic
castration-resistant prostate cancer. Using CURATE.AI in
the course of time, they found a 50% lower than starting dose
of ZEN-3694, which can achieve desired results and arrest
the cancer growth.

Further, Julkunen et al. [124] devised comboFM (https://
github.com/aalto-ics-kepaco/comboFM), a novel ML-
driven tool, which ascertain appropriate drug combinations
and dose in pre-clinical studies like cancer cell lines. com-
boFM determines appropriate drug combinations and dose
by using factorization machines (https://github.com/gefty/
tffm), an ML framework for high-dimensional data analy-
sis. In their study, using comboFM, Julkunen et al. identi-
fied a novel combination of anti-cancer drugs crizotinib and
bortezomib, showing promising efficacy in lymphoma cell
lines. Similarly, Sharabiani et al. used the ML approach to
determine the optimum initial dose of anticoagulant drug
warfarin. They used relevance vector machines to classify
different patients based on their dose demands, and then,
regression models were used to predict appropriate doses for
the patients [125]. Likewise, Nemati et al. [126] developed
a deep reinforcement learning model trained on multipa-
rameter intelligent monitoring in intensive care II database
(MIMIC 1I) to find an ideal dose of another anticoagulant
drug, heparin. Likewise, Tang et al. [127] used ML tech-
niques like ANN, Bayesian additive regression trees, boosted
regression trees, multivariate adaptive regression splines to
determine the optimum dose of immunosuppressive drug
Tacrolimus. Moreover, Hu et al. [128] performed ML analy-
sis with techniques like classification and regression trees,
multilayer perceptron network, k-nearest neighbor to find
out the safe initial dose of cardiac drug digoxin. In addition,
Imai et al. [129] developed a DT model to find a safe starting
dose of antibiotic drug vancomycin.

Predicting bioactive agents and monitoring of drug
release

Designing and monitoring of drug-likeness is a tedious and
time-consuming process. Lately, multiple online tools have
been developed to analyze drug release and check account-
ability of selected bioactive compounds as a carrier. Bench-
mark data sets are later used to validate the computational
analysis. For such evaluation’s pharmacophore based on
the chemical feature suits the best. These models construct
large 3D data sets developed via in silico experiments or in
house compound collection [130]. To study ligand-based
chemical features, various successful experiments have been
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established using the CATALYST program (www.accelrys.
com), and a group of researchers was successful in predict-
ing 11p-hydroxysteroid dehydrogenase type 1 inhibitors
using the VS experiments [131].

Determining bioactive ligands is a crucial step for select-
ing a potent drug for a specific target. Now, researchers are
taking advantage of artificial intelligence in determining
bioactive compounds that can be used for specific targets
associated with a disease. For instance, Wu et al. integrated
DL and RF methods to devise WDL-RF (https://zhanglab.
ccmb.med.umich.edu/WDL-RF/) for determining bioactivity
of G protein-coupled receptors (GPCRs) targeting ligands.
Likewise, Cichonska et al. [132] developed pairwiseMKL
(https://github.com/aalto-ics-kepaco), a multiple kernel
learning-based method, for determining the bioactivity of
compounds [133]. To test their model’s efficiency, they used
to predict the anti-cancerous potency of compounds. Fur-
ther, Mustapha et al. [134] developed an Xgboost model to
determine bioactive chemical molecules. In addition, Mer-
get et al. [135] created machine learning models like DNN,
RF to determine the bioactivity of more than 280 differ-
ent kinases. Furthermore, Arshadi et al. [136] have devised
DeepMalaria, a DL-based model for identifying compounds
having Plasmodium falciparum inhibitory activity. Likewise,
Sugaya et al. [137] created a ligand-efficiency-driven support
vector regression model to ascertain the biological activity
of various chemical compounds. Moreover, Afolabi et al.
[138] used data from the MLD drug data report (MDDR)
repository and applied it to a combination of boosting algo-
rithms to identify novel bioactive compounds. Additionally,
Petinrin et al. [139] used the majority voting technique with
an ensemble of different machine learning models to deter-
mine biologically active molecules.

Further, adverse drug reactions (ADRs) are unexpected,
pernicious, fatal side effects caused by drug administration.
ADRs are a major challenge in drug development, and it has
become essential to identify possible ADRs during the nas-
cent stage of drug development to make the drug develop-
ment process more robust and efficacious. Lately, research-
ers have used Al to determine possible ADRs associated
with different drugs before they are launched in the market
for public use. For instance, Dey et al. [140] used DL-based
model, which can predict ADRs associated with a drug and
even identify chemical substructures responsible for those
ADRs. In addition, Liu et al. [141] integrated chemical,
biological, phenotypic properties of drugs to predict ADR
associated with it via machine learning analysis. Likewise,
Jamal et al. [142] combined biological, chemical, and phe-
notypic properties to predict nervous system ADRs linked
with drugs through machine learning analysis. The authors
also used their model to find out ADRs associated with
current Alzheimer’s drugs. Further, Xue et al. [143] inte-
grated biomedical network topology with a DL algorithm to
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predict Drug-ADR correlation. Moreover, Raja et al. [144]
used machine learning analysis to predict ADRs, which are
a result of drug-drug interactions. They further used their
model to predict ADR related to cutaneous disease drugs.
Besides screening for an effective bioactive agent, another
critical area to work with is drug likeliness and its interac-
tion post-release. Recently, a freely accessible, user-friendly
graphical interface SwissADME (http://www.swissadme.ch)
was developed to evaluate the compatibility of the drug and
its pharmacokinetic actions [145]. Mathematical models
such as Higuchi, Hixson—Crowell, Ritger—Peppas—Kormey-
ers, Brazel-Peppas, Baker—Lonsdale, Hopfenberg, Weibull,
and Peppas—Sahlin have also been applied in drug discovery,
and one of the most common practice has been the calcula-
tion of drug loading capacity of the selected or screened
bioactive molecule.

Prediction of protein folding and protein-protein
interactions

Analyzing protein—protein interactions (PPIs) is crucial for
effective drug development and discovery. Most of the pro-
tein annotation methods use sequence homology that has
limited scope. High-throughput protein—protein interaction
data, with ever-increasing volume, are becoming the foun-
dation for new biological discoveries. A great challenge
to bioinformatics is to manage, analyze, and model these
data. Hence, computational models were developed that
predicts multiple inputs at one place simultaneously [146].
Computational methods are implied to study both PPIs and
protein—protein non-interactions (PPNIs), although PPIs are
considered more informative than PPNIs. PPIs prediction
can be identified as direct PPI, direct PPI with indirect func-
tional associations and PPIs for signal transduction path-
ways [147]. Machine and statistical learning approaches like
K-nearest neighbor, Naive Bayesian, SVM, ANN, DT, and
RF are used to predict the hindrance in PPIs. Use of Bayes-
ian network (BN) has been applied to predict PPIs essen-
tially using gene co-expression, gene ontology (GO), and
other biological process similarity. Data set integration using
BN produces precise and accurate PPI networks illustrating
comprehensive yeast interactome [148]. Another group also
used BN to combine data sets for the yeast to study PPIs
[149]. A novel hierarchical model PCA-ensemble extreme
learning machine (PCA-EELM) to predict protein—protein
interactions only using protein sequences information has
appeared as a powerful tool that gives output with accuracy
and less duration [150]. Further, DNNs PPIs prediction effi-
ciency was improved by a novel method known as DNN for
protein—protein interactions prediction (DeepPPI) (http://
ailab.ahu.edu.cn:8087/DeepPPIl/index.html) [151]. In mam-
malian cells, signal transduction is mostly controlled by PPIs
between unstructured motifs and globular proteins binding
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domains (PBDs). To predict these PBDs across multiple
protein families bespoke ML tool was developed, known as
hierarchical statistical mechanical modeling (HSMM) [152].
Prediction of protein—protein interactions based on ML,
domain-domain affinities and frequency tables, a novel tool
referred to as PPI_SVM, was developed in 2011, which is
freely accessible at (http://code.google.com/p/cmater-bioin
fo/) [153]. Due to the increased number of solved complex
structures, a multimeric threading approach, MULTIPROS-
PECTOR, has been developed. In this method, proteins with
known template structures are rethreaded, and their interac-
tion with other proteins, their interfacial energy, and Z-score
are established [154]. Structure-based threading logistic
regression tool Struct2Net (http://struct2net.csail.mit.edu)
to evaluate the probability of interaction is the first structure-
based PPI predictor apart from homology modeling [155].
Gene cluster-based methods calculate the co-occurrence
probability of orthologs of query proteins encoded from the
same gene clusters. This method is also named domain/gene
co-occurrence. If two proteins’ genes are not close by in the
genome, then this method cannot reliably predict an interac-
tion between these two genes [156, 157].

Structure-based and ligand-based virtual screening

In drug designing and drug discovery, VS is one of the cru-
cial methods of CADD. VS refers to the identification of a
small chemical compound that binds to a drug target. VS is
an efficient method to screen out the promising therapeu-
tic compound from a pool of compounds [158]. Thus, it
becomes an important tool in high-throughput screening,
which incurred the problem of high-cost and low-accuracy
rate. In general, there are two important types of VS that are
structure-based VS (SBVS) and ligand-based VS (LBVS)
[159, 160]. The LBVS depends on the chemical structure
and empirical data of both active and inactive ligands,
which uses the chemical and physiochemical similarities of
active ligands to predict the other active ligand from a pool
of compounds with high bioactivity. However, the LBVS
does not depend on the 3-D structure of the target protein,
and thus, this method is implemented where target struc-
ture or information is missing, and the obtained structural
accuracy is low [161]. On the other hand, SBVS has been
implemented in such cases where 3-D structural informa-
tion of protein or target has been elucidated either through
in vitro or in vivo experiments or through computational
modeling [162, 163]. In general, this method is used to pre-
dict the interaction between the active ligand or its associ-
ated target and to predict the amino acid residues, which
are involved in drug-target binding. In comparison with
LBVS, SBVS possesses high accuracy and precision. How-
ever, SBVS is associated with the problem of an increasing
number of disease-causing proteins and their complicated

conformations [164]. To use ML for VS, there should be a
filtered training set comprising of known active and inactive
compounds. These training data are used to train a model
using supervised learning techniques. The trained model is
then validated, and if it is accurate enough, the model is used
on new data sets to screen compounds with desired activity
against a target [165]. After that, the shortlisted compounds
can go for ADMET analysis, followed by various bioassays
before entering clinical trials. Hence, ML has the power to
speed up VS, make it more robust, and can even reduce false
positives in VS. Docking is the main principle applied in
SBVS, where several Al and ML-based scoring algorithms
have been developed such as NNScore, CScore, SVR-Score,
and ID-Score [166]. Similarly, ML and DL methods such
as RFs, SVMs, CNNs, and shallow neural networks have
been constructed to predict protein—ligand affinity in SBVS.
Moreover, Al-based algorithms have been developed for
molecular dynamic simulation assays in SBVS [167]. On
the other hand, LBVS consists of several steps, and each step
comes up with novel Al- and ML-based algorithms to speed
up the process and increase reliability. For example, several
ML- and DL-based algorithms have been constructed for
the preparation of useful decoy sets such as Gaussian mix-
ture models (GMMs), isolation forests, and artificial neural
networks (ANNSs).

Further, ML models such as PARASHIFT, HEX, USR,
and ShaPE algorithms have been constructed for LBVS
[168, 169]. Currently, with the rise of Al algorithms in the
healthcare and pharma industry, different tools and models
have been developed for both LBVS and SBVS. For exam-
ple, tools such as MTiOpenScreen (http://bioserv.rpbs.
univ-paris-diderot.fr/services/MTiOpenScreen/) [170],
FlexX-Scan [171], CompScore (http://bioquimio.udla.edu.
ec/compscore/) [172], PlayMolecule BindScope (PlayMol-
ecule.org) [173], GeauxDock (http://www.brylinski.org/
geauxdock) [174], EasyVS (http://biosig.unimelb.edu.au/
easyvs) [175], DEKOIS 2.0 [176], PL-PatchSurfer2 (http://
www.kiharalab.org/plps2/) [177], SPOT-ligand 2 (http://
sparks-lab.org/) [178], Gypsum-DL (https://durrantlab.pitt.
edu/gypsum-dl/) [179], and ENRI [180] have been devel-
oped for SBVS. Moreover, mounting evidence validates the
hypothesis that Al plays a critical role in SBVS, such as
identification of non-peptide cysteine-cysteine chemokine
receptor 5 receptor agonists [181], screening of partial ago-
nists of the f2 adrenergic receptor [182], identification of
bromodomain-containing protein 4 inhibitors [183], discov-
ery of natural product-like signal transducer and activator of
transcription 3 dimerization inhibitor [184], prediction of
VHL and hypoxia-inducible factor 1-alpha inhibitors [185],
and prediction of Kelch-like ECH-associated protein-nuclear
factor erythroid 2-related factor 2 (Keap-Nrf2) small-mol-
ecule inhibitors [186]. Likewise, Liu et al. 2017 discovered
low toxicity O-GlcNAc transferase inhibitors, whereas Dou
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«Fig. 4 a Ligand-based virtual screening: in the drug design and dis-
covery process, ligand-based virtual screening is the most crucial
step, which comprises different steps as shown in the figure. The
initial step consists of database screening and the 3-D structural
model’s prediction through the active site for a special target and
X-ray structure of complexes. Later on, pharmacophore modeling of
selected compounds with selected features is performed, followed by
pharmacophore and docking-based virtual screening of compounds.
The screened compounds are subjected to different toxicity and physi-
ochemical properties for further analysis. Finally, the lead compounds
are subjected to in vitro and in vivo bioassays for validation. b struc-
ture-based virtual screening: it is another type of virtual screening
applied in the drug discovery process, where target structure prepa-
ration and chemical compound library preparation are initial steps.
Afterward, structural analysis and binding site prediction are done,
followed by molecular docking of compounds with the selected tar-
get. Later on, molecular dynamics simulation studies are carried out
to validate the screened compounds in silico, followed by experimen-
tal validation through bioassays

et al. [187] identified novel glycogen synthase kinase 3 beta
(GSK-3p) inhibitors through SBVS [188]. Different studies
were conducted on cancer and leukemia through SBVS, such
as the discovery of novel GSK-3f for treatment of acute
myeloid leukemia [189], identification of novel protein argi-
nine methyltransferase 5 inhibitor in non-small cell lung can-
cer [190], identification of vascular endothelial growth factor
receptor 2 potent compounds for the treatment of renal cell
carcinoma [191], identification of multi-targeted inhibitors
against breast cancer [192], and discovery of Mdm?2-p53
inhibitor [193]. Recently, novel corona virus became a huge
problem worldwide, and thus, here also SBVS provides a
great opportunity for chemical and biological scientists to
identify novel drug compounds against disease-causing tar-
gets. For example, Gahlawat et al. 2020 identified that saqui-
navir, lithospermic acid, and 11m_32045235 were promising
therapeutic compound against SARS-Cov-2 main protease,
whereas Selvaraj et al. 2020 demonstrated that TCM 57,025,
TCM 3495, TCM 5376, TCM 20,111, and TCM 31,007
were therapeutic compounds that interact with the substrate-
binding site of N7-MTase [194, 195]. On the same trend,
Cruz et al. 2018 concluded that ZINC91881108 was potent
compound against RIPK2, whereas Simoben et al. 2018
demonstrated eight novel N-(2,5-dioxopyrrolidin-3-yl)-n-
alkylhydroxamate derivatives as smHDACS inhibitors with
ICs, values ranging from 4.4 to 20.3 uM against smHDACS
[196, 197] [Fig. 4].

Moreover, different algorithms and tools have been devel-
oped for LBVS such as SwissSimilarity (http://www.swiss
similarity.ch/) [198], METADOCK [199], Open-source plat-
form [200], HybridSim-VS (http://www.rcidm.org/Hybri
dSim-VS/) [201], PKRank [202], PyGOLD (http://www.
agkoch.de/) [203], BRUSELAS (http://bio-hpc.eu/softw
are/Bruselas) [204], RADER (http://rcidm.org/rader/) [205],
QEX [206], IVS2vec (https://github.com/haiping1010/
IVS2Vec) [207], AutoDock Bias (http://autodockbias.wordp

ress.com/) [208], Ligity [209], D3Similarity (https://www.
d3pharma.com/D3Targets-2019-nCoV/D3Similarity/index.
php) [210], and GCAC (http://ccbb.jnu.ac.in/gcac) [211].
Emerging evidence suggests the potential implementation
of AT algorithms in LBVS such as identification of aurora
kinase A inhibitors [212], G-quadruplex-targeting chemo-
types [213], PI3Ka inhibitors [214], targeting dengue virus
non-structural protein 3 helicases [215], potential selective
histone deacetylase 8 inhibitors [216], and novel p-Hydroxy-
phenylpyruvate dioxygenase inhibitors [217]. Apart from
these mentioned studies number of literature validated the
possible implementation of Al in LBVS, such as identifica-
tion of HIV entry inhibitors and potent inhibitors of DNA
methyltransferase [218, 219]. Like SBVS, LBVS also plays
a crucial role in identifying potential therapeutic compounds
against novel human coronaviruses. For example, Amin
et al. 2020 demonstrated the molecular docking study of
some in-house molecules as papain-like protease inhibitors,
whereas Hofmarcher et al. 2020 through DNN identified
30,000 compounds from the library across 3.6 M compounds
as CoV-2 inhibitors [220, 221]. Similarly, Choudhary et al.
2020 identified SARS-CoV-2 cell entry inhibitors, whereas
Ferraz et al. 2020 identified bedaquiline, glibenclamide, and
miconazole as potential therapeutic compounds against cor-
onavirus [222, 223]. Xiao et al. 2018 developed ligand-based
big data DNN models for VS of compound libraries against
six anti-cancer targets. The study integrated 0.5 M chemi-
cal compounds, and the models developed were evaluated
by tenfold cross-validation [224]. With the growing size of
chemical compound libraries, it is become so difficult to find
a potential hit and it is like finding a “needle in a haystack.”
Thus, SBVS and LBVS have huge role in minimizing the
complexity in identification of potential therapeutic com-
pounds against the disease-causing target. Further, Al-based
models in SBVS and LBVS make it simpler with high accu-
racy and precision. Table 1 discusses the different AI- and
DL-based web tools and algorithms implemented in LBVS
and SBVS.

QSAR modeling and drug repurposing

In drug designing and discovery, it is crucial to develop the
relationship between chemical structures and their physi-
ochemical properties with biological activities. Thus, QSAR
modeling is a computational approach through which quanti-
tative mathematical models can be created between chemical
structure and biological activities. The main advantage of
developing a mathematical model is identifying the diverse
chemical structure from molecular databases, which can
be used as therapeutic compounds against a disease target.
Once the most promising compound is selected, it is sub-
jected to laboratory synthesis and in vitro or in vivo testing.
QSAR models are broadly classified into two types that are
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regression model and classification models. Gaussian pro-
cesses (GPs) are a type of QSAR building regression model,
which is a robust and powerful method of QSAR modeling.
GP methods can handle a large number of descriptors and
identify the crucial ones. Recently, two classification models
have been demonstrated using GP that is intrinsic GP clas-
sification methods, and the other is a combination of GP
regression technique and probit analysis [235, 236]. Fur-
ther, the method is suitable for modeling nonlinear relation-
ships and does not require subjective determination of the
model parameters [237]. Recent advancements and increas-
ing applications of ML algorithms such as neural networks,
DL, and SVM provide a great avenue for QSAR modeling.
Several web-based tools and algorithms have been devel-
oped for QSAR modeling such as VEGA platform (https://
www.vega-gsar.eu/) [238], QSAR-Co (https://sites.google.
com/view/qsar-co) [239], FL-QSAR (https://github.com/
bm2-lab/FL-QSAR) [240], Meta-QSAR (https://github.
com/meta-QSAR/simple-tree) (https://github.com/meta-
QSAR/drug-target-descriptors) [241], DPubChem (www.
cbrc.kaust.edu.sa/dpubchem) [242], Transformer-CNN
(https://github.com/bigchem/transformer-cnn) [243], Cloud
3D-QSAR (http://chemyang.ccnu.edu.cn/ccb/server/cloud
3dQSAR/) [244], MoDeSuS and Chemception (https://
github.com/Abdulk084/Chemception) [245]. Karpov et al.
2020 developed a novel algorithm for QSAR modeling based
on ANN called transformer-CNN. The method uses SMILES
augmentation for training and interference. Similarly, Wang
et al. 2020 developed QSAR modeling web-based tools by
integrating the characteristics features of molecular struc-
ture generation, alignment, and molecular interaction field.
Jin et al. through Cloud 3D-QSAR discovered a potent and
selective monoamine oxidase B (MAO-B) inhibitor. In this
study, the authors concluded that (S)-1-(4-((3-fluorobenzyl)
oxy)benzyl)azetidine-2-carboxamide (C3) were more potent
and selective inhibitor of MOB as compared to safinamide.
Further, in vivo analysis revealed that compound C3 could
inhibit cerebral MAO-B activity and rescue 1-methyl-4-phe-
nyl-1,2,3,6-tetrahydropyridine (MPTP)-induced dopamin-
ergic neuronal loss [246]. On the same trend, Bennett et al.
2020, through Chemception, predicted the small molecules
transfer free energy by combining MD simulations and DL
[81]. Moreover, the QSAR-Co tool was implemented in dif-
ferent studies such as the development of multi-target chem-
ometric models for the inhibition of class I phosphoinositide
3-kinases enzyme isoforms, screening of ERK inhibitors
as anti-cancer agents, prediction of K562 cells functional
inhibitors, and prediction of antifungal properties of phe-
nolic compounds [247-250]. Likewise, Kim and Cho 2018
developed a novel algorithm called PyQSAR (https://github.
com/crong-k/pyqsar_tutorial) for a fast QSAR modeling
platform using ML and Jupyter notebook. PyQSAR is a stan-
dalone python package that combines all QSAR modeling

processes in a single workbench [251]. A. S. Geoffrey et al.
2020 conducted two different studies using PyQSAR, such
as identification of potent drug candidates for novel corona-
virus and development of QSAR of quercetin and its tumor
necrosis factor-alpha inhibition activity [252, 253]. Further,
Zuvela et al. developed ANN-based QSAR models for pre-
diction of antioxidant activity of flavonoids. In this study, the
authors integrated six methods such as PaD, PaD,, weights,
stepwise, perturbation, and profile for interpretation and
elucidation of ANN-based models, which calculates trolox-
equivalent antioxidant properties. The results concluded that
the ANN-based algorithm could eliminate the difficulties
that arise due to poor interpretation of quantum mechani-
cal parameters describing the molecular structure [254]. In
parallel, Ding et al. 2020 generated a web-based tool known
as VISAR (https://github.com/Svvord/visar) for dissecting
chemical features through the DNN QSAR approach [255].
The mounting evidence demonstrates the implementation of
QSAR modeling in drug designing and discovery process
such as modeling of ToxCast assays relevant to the molec-
ular initiating events of AOPs in Hepatic Steatosis [256],
development of dipeptidyl peptidase 4 inhibitors against
dipeptidyl peptidase 8 and dipeptidyl peptidase 9 enzymes
[257], the applicability of QSAR model on domain analy-
sis of HIV-1 protease inhibitors [258], and targeting HIV/
HCYV coinfection [259]. A well-recognized problem of ML
models is data imputation for missing values in the bioassay
data for SAR model generation. Basically there are three
major types of missing values: (i) Missing Completely at
Random (MCAR), which occurs when the probability of
missing values in a variable is the same for all samples; (ii)
Missing at Random (MAR), which means that probability
of missing values, at random, in a variable depends only on
the available information in other predictors; (iii) Missing
Not at Random (MNAR), which means when probability
of missing values is not random and depends on the infor-
mation which is not recorded and the existing information
predicts the missing values [260]. There are several ways
to handle missing values like imputation using zero, mean,
median or mode common value, imputation using a ran-
domly selected value, imputing with a model or imputa-
tion using Deep Learning Library—Datawig. Every data set
has missing values that need to be handled wisely in order
to build a robust model [261]. Moreover, the complexity
of data should be removed, and data must be curated to
increase the accuracy and precision of the models gener-
ated. Moreover, initially QSAR models were implemented
for predicting the toxicity and metabolism of small mol-
ecules such as molecules having molecular weight (mw) less
than 1500 m.w. However, the QSAR technology applied in
the early 2000s comes with some sort of constraints such as
accuracy and reliability [262]. With the growing applica-
tion of QSAR in drug discovery and design process such as
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«Fig.5 a Quantitative structure—activity relationship workflow: the
initial step comprises of data set compilation, where data from pub-
lic database and literature database are accumulated and compiled,
which further divided into different subsets for investigation. After-
ward, data set processing is performed, where data pre-processing
and curation followed by calculation of molecular descriptors are
done. After description calculation, data set processing normalization
of data and splitting of data into different sets are performed. In the
third step, model construction is performed, where data sets such as
internal data and external data are accumulated, and learning algo-
rithms are applied for QSAR modeling. Finally, the statistical calcu-
lation is done to measure the model robustness. The final step in the
quantitative-structure activity relationship is model evaluation, where
the model is evaluated by comparison from previous benchmark
models, identifying characteristics features, performance evaluation,
and interpretation of essential features. b Drug repurposing or repo-
sitioning workflow: the first step is collection of data and data pre-
processing followed by computational model generation. The models
generated are support vector machines, logistic regression, random
forest, deep learning, and matrix factorization. Afterward, the genera-
tion of proof-of-concept from a literature source is performed. Later
on, evaluation of repositioning models through cross-validation, case
analysis, and evaluation metrics is performed. Finally, validation of
repurposed drugs is carried out through clinical trials, in vitro studies,
and in vivo studies

VS, lead optimization, and target identification medicinal
scientists and biologist were in constant efforts for devel-
opment of more reliable and dependable approaches [263].
AI/ML algorithms-based QSAR models have potential to
eliminate the constraints imposed by early methods. Al/
ML-based QSAR model, namely hologram-based QSAR
(HQSAR), group-based QSAR (G-QSAR), and Ensemble-
based, have accelerated the drug discovery process by sev-
eral folds [264, 265]. Further, apart from classical Hansch
and Free-Wilson approaches, QSAR has gradually evolved
over the past few years with newer refinementapproaches,
new methods for descriptors calculations, implementation
of methodical validation tests, and involvement of receptor
structural information. Similarly, apart from classical lead
optimization, QSAR have been applied in different emerg-
ing areas of drug discovery and designing such as peptide
QSAR, mixture toxicity QSAR, nanoparticles QSAR, QSAR
of ionic liquids, cosmetic QSAR, phytochemical QSAR, and
material informatics [266] [Fig. 5].

Apart from QSAR modeling, the Al algorithm has also
been implemented in drug repurposing or drug repositioning
method. In drug designing and discovery, drug repositioning
refers to the investigation of drugs that have already been
developed for one diseased condition and reposition them
for other diseased conditions. Repositioning drugs might be
successful due to the possibility of multiple-target involve-
ment in multiple diseases [267-269]. On another note, the
emergence of large data sets from genomics, proteomics, and
pharmacological in vivo and in vitro studies provides a great
avenue for drug repositioning. Recently, the emergence of
Al-based tools and algorithms in drug discovery provides

a platform for future research. ML algorithms replace the
chemical similarity and molecular docking-based conven-
tional methods with new system biology methods, which
can evaluate drug effects [270-273]. Thus, different AI-
based algorithm and web-based tools have been developed
in recent times such as DrugNet (http://genome2.ugr.es/
drugnet/) [274], DRIMC (https://github.com/linwang 1982/
DRIMC) [275], DPDR-CPI (http://cpi.bio-x.cn/dpdt/) [276],
PHARMGKSB (https://www.pharmgkb.org/) [277], PRO-
MISCUOUS 2.0 (http://bioinformatics.charite.de/promi
scuous2) [278], and DRRS (http://bioinformatics.csu.edu.
cn/resources/softs/DrugRepositioning/DRRS/index.html)
[279]. Moreover, Yella and Jegga et al. 2020 constructed
a model for drug repositioning using a multi-view graph
attention approach known as MGATRx [280], whereas Yan
et al. 2019 constructed a novel algorithm for drug repurpos-
ing based on a multisimilarity fusion approach known as
BiRWDDA [281]. Further, Fahimian et al. 2020 constructed
a novel algorithm known as RepCOOL to identify promising
repurposed drugs for breast cancer stage II. The results con-
cluded that doxorubicin, paclitaxel, trastuzumab, and tamox-
ifen were potential therapeutic agents against breast cancer
stage II [282]. Likewise, Li et al. 2020 constructed a com-
putational framework of host-based drug repurposing for
broad-spectrum antivirals against RNA virus. In this study,
the authors investigated 2352 approved drugs and 1062 natu-
ral compounds against different viral pathogens and con-
cluded that the repurposed drugs were effective against zika
virus and coronavirus [283]. Further, Wu et al. 2020 applied
ML models, namely structural profile prediction model and
biological profile prediction model, to predict anti-fibrosis
drug candidates. The results demonstrated that the area
under the receiver operating characteristics curve were 0.879
and 0.972 in the training set, whereas 0.814 and 0.874 in the
testing set. The results concluded that natural products pos-
sess anti-fibrosis characteristics and serve as potential anti-
fibrosis drug targets [284]. Recently, COVID-19 emerged as
a global pandemic and researchers around the globe started
the hunt for promising therapeutic agents. In this regard Al-
based drug repositioning plays a crucial role. For example,
network-based drug repurposing identified 16 potential
anti-HCoV repurposable drugs, whereas Hooshmand et al.
2020 identified 12 promising drug targets for COVID-19
based on the multimodal DL approach [285, 286]. In recent
times, the development of neural networks, DL models, and
pipelines for drug repositioning have increased to a great
extent. For example, SNF-CVAE based on drug similarity
network fusion identified promising therapeutic agents for
Alzheimer’s disease (AD) and juvenile rheumatoid arthri-
tis, whereas DTI-RCNN based on neural network algorithm
and integrates long short-term memory predicts drug-target
interactions [287, 288]. PhenoPredict and SDTNBI are
two other ML-based algorithms used to identify disease
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phenome-wide drug repositioning for schizophrenia and
prediction of drug-target interactions, respectively [289,
290]. Zang et al. 2019 developed a DL-based model known
as deepDR (https://github.com/ChengF-Lab/deepDR) to
predict in silico drug repositioning. In the study, the authors
integrate 10 different types of biological networks such as
drug-disease, drug-side effects, drug-target, and seven drug-
drug networks. The results concluded that deepDR predicted
approved drugs such as risperidone and aripiprazole for the
treatment of Alzheimer’s disease (AD), whereas methylphe-
nidate and pergolide for treatment of Parkinson’s disease
(PD) [291]. Likewise, Chen et al. 2020 constructed an Al-
based novel algorithm called as iDrug (https://github.com/
Case-esaC/iDrug) for the integration of drug repositioning
and drug-target prediction through cross-network embed-
ding. The efficiency and effectiveness of iDrug allow users
to understand novel clinical insights of drug-target-disease
mechanisms [292]. Studies demonstrated that drug repurpos-
ing through an Al-based algorithm can be implemented in
cancer. For example, Li et al. 2020 integrated transcriptom-
ics data and chemical structure information using DL and
identified that pimozide as a promising therapeutic candidate
against non-small cell lung cancer [293]. Similarly, Kuenzi
et al. 2020 predicted drug response and synergy using a DL
model of human cancer cells. The results concluded that
predicted combinations improve progression-free survival,
and response predictions stratify ER-positive breast cancer
patient clinical outcomes [294]. Another Al application
in drug repurposing comes from the study performed by
Wang et al. 2020, which used bipartite graph convolutional
networks for in silico drug repurposing. The authors con-
structed a model known as BiFusion (https://github.com/
zcwang(0702/BiFusion) through DL and heterogeneous
information fusion. The results demonstrated that BiFusion
achieved improved performance than multiple baselines for
drug repurposing [295]. The examples mentioned above
concluded the potential role of Al-based algorithms in drug
repurposing. Further, with the advancement in technology,
chemical scientists, biological scientists, and computational
scientists search the methods for improving the accuracy and
precision of Al-based models. Moreover, both QSAR and
drug repositioning methods of drug discovery are incom-
plete without the involvement of molecular docking, which
is used to analyze the interaction between the target mol-
ecule and a ligand molecule. Initially, in the early 2000s
molecular docking was developed as a standalone tool that
is used to determine the interaction between two molecules
that is a target molecule and a ligand molecule. However,
with the advent of Al technology the applicability of molec-
ular docking has changed. Now molecular docking is being
used in conjugation with MD simulation and Al-based tools
in different areas of drug discovery like VS, target identifica-
tion, polypharmacology, and drug repurposing [296]. The
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implementation of MD simulation and Al-based algorithms
can increase the efficiency and accuracy of molecular dock-
ing. In addition, over the years, limitations in the use of
molecular docking have also been addressed. For instance,
in drug designing, molecular docking can be used only for
those biological targets whose crystal structures are avail-
able as there are many targets whose structures are not avail-
able. Thus, a technique like homology modeling has been
developed to overcome this hindrance [297]. Further, crystal
structure data in PDB are increasing exponentially, enhanc-
ing the applicability of molecular docking in drug discovery.
Table 2 discusses the tools and algorithm that have been
implemented in in silico QSAR and drug repositioning.

Prediction of physicochemical properties
and bioactivity

It is a well-established fact that every chemical compound
is associated with physicochemical properties such as solu-
bility, partition coefficient, ionization degree, permeability
coefficient, which may hinder the pharmacokinetic proper-
ties of the compound and drug-target binding efficiency.
Thus, the physicochemical properties of compounds must
be considered while designing a novel drug molecule [100,
298]. For this, different Al-based tools have been developed
to predict the physicochemical properties of chemical com-
pounds. The Al-based tools developed for predicting bio-
physical and biochemical properties of compounds include
molecular fingerprinting, a SMILES format, Coulomb matri-
ces, and potential energy measurements, which are used in
the DNN training phase [299, 300]. Recently, Zhang et al.
developed a QSAR model to predict the six different physi-
ochemical properties of environmental agents extracted
from environmental protection agency (EPA). Similarly,
Lusci et al. 2013 constructed a neural network-based model
to predict the molecular properties. In the study, molecules
are described by undirected cyclic graphs, whereas the for-
mer approaches for predicting physicochemical properties
use directed acyclic graphs [301]. Later on, six Al-based
algorithms were constructed for the prediction of human
intestinal absorption of compounds. The methods con-
structed are SVM, k-nearest neighbor, probabilistic neural
network, ANN, PLS, and linear discriminate model. Among
the above-said models, SVM has higher accuracy of 91.54%
[302]. In 2016, Zang et al. developed an ML-based model
for the prediction of physicochemical properties such as
octanol-water partition coefficient, water solubility, boiling
point, melting point, vapor pressure, and bioconcentration
factors of environmental chemicals [303]. Moreover, differ-
ent Al-based tools have been developed such as ALOGPS
2.1 (http://www.vcclab.org/lab/alogps/) [304], ASNN
(http://www.vcclab.org/lab/asnn/) [305], E-BABEL (http://
www.vcclab.org/lab/babel/) [304], PCLIENT (http://www.
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vecelab.org/lab/pclient/) [304], E-DRAGON (http:/www.
vcclab.org/lab/edragon/) [304], ChemSpider (http://www.
chemspider.com/) [306], SPARC (http://sparc.chem.uga.
edu/sparc/) [307], and OSIRIS property explorer (https://
www.organic-chemistry.org/prog/peo/) [308]. In 2020, a
study was conducted to design, synthesize, and ADMET
prediction of bis-benzimidazole as anticancer agents. In the
same study, the author calculated molecular properties of
compounds through Lipinski’s rule of five and predicted
the pre-ADMET properties of the synthetic compounds
[309]. Further, Puratchikody et al. 2016 used ORISIS prop-
erty explorer in their study to predict the quantitative struc-
tural toxicity of tyrosine derivates intended for safe, potent
inflammation treatment. The results concluded that out of
55 potent molecules, only 19 molecules were considered
as potent cyclooxygenase-2 inhibitors [310]. On similar
lines, RF- and DNN-based models were constructed to
predict human intestinal absorption of different chemical
compounds. Thus, from the examples, it must be concluded
that the Al-based approach has a significant role in drug
discovery and development through the prediction of phys-
icochemical properties.

Moreover, the therapeutic activity of drug molecules
depends on their binding efficiency with the receptor or tar-
get, and thus, the chemical molecule, which are not able to
show the binding affinity with the drug target, will not be
considered as a therapeutic agent. For this reason, the pre-
diction of the binding affinity of a chemical molecule with
the therapeutic target is vital for drug discovery and develop-
ment [311]. Recent advancements in Al algorithms enhance
the process of binding affinity prediction, which uses simi-
larity features of the drug and its associated target. Several
web-based tools have been developed, such as ChemMapper
and the similarity ensemble approach (SEA). Further, ML-
and DL-based models for the identification of drug-target
affinity have been constructed, such as KronRLS, SimBoost,
DeepDTA, and PADME [312]. The KronRLS predicts the
similarity between a drug and its target to calculate the drug-
target binding affinity based on the ML algorithm. KronRLS
considered both feature-based and similarity-based interac-
tion while predicting drug-target binding affinity [313]. DL
approaches such as DeepDTA (https://github.com/hkmzt
rk/DeepDTA) [314], and PADME [315] predict drug-target
binding affinity, which depends on the 3-D structure of a
protein. Beck et al. 2020 conducted a study to predict com-
mercially available antiviral drugs as a potential therapeu-
tic agent against novel coronavirus (SARS-CoV-2) through
DeepDTA [316]. Similarly, Lee and Kim 2019 predicted the
drug-target interactions by DNN based on large-scale drug-
induced transcriptome data using PADME [317]. Another
DL model that uses both RNN and CNN was constructed
to predict drug-target binding affinity, which is called as
DeepAffinity (https://github.com/Shen-Lab/DeepAffinity)

[318]. Jiang et al. 2019, using DeepAffinity, proposed a
novel protein descriptor for identifying drug-target interac-
tion, whereas Born et al. 2020 with the help of Deep Affin-
ity, identified antiviral candidates for SARS-CoV-2 [319,
320]. The above data validate the importance of ML and
DL algorithms in physiochemical properties and bioactiv-
ity of drug molecules during drug designing. However, the
validation and accuracy of such algorithms are still a signifi-
cant drawback from a research perspective. Thus, extensive
research should be done to maximize the accuracy and preci-
sion of Al-based algorithms through curated and extensive
data input. In Table 2, we have summarized the tools and
databases for physiochemical and bioactivity prediction
based on Al algorithms, including DL, neural networks,
SVM, and others.

Prediction of mode of action and toxicity
of compounds

Drug toxicity refers to the chemical molecule’s adverse effect
on an organism or on any part of the organism due to the
compound’s mode of action or metabolism. The extended
scope of Al has the potential to predict the off-target and
on-target effects of drug molecules along with in vivo safety
analysis of chemical compounds before their synthesis has
fascinated the scientists associated with the drug develop-
ment process. The involvement of Al has reduced drug
development time, cost, attrition rates, and human resources.
For this different web-based tools have been developed such
as LimTox (http://limtox.bioinfo.cnio.es/) [321], pkCSM
(http://biosig.unimelb.edu.au/pkcsm/) [322], admetSAR
(http://Immd.ecust.edu.cn/admetsar2/) [323], and Toxtree
(http://toxtree.sourceforge.net/) [324]. Srivastava et al. 2020
used admetSAR to evaluate the toxicity of Withania somnif-
era as a therapeutic compound against COVID-19, whereas
Uygun et al. 2021 incorporated pkCSM for the identifica-
tion of the therapeutic effect and toxicological properties
of pyrazolo[1,5-a]pyrazine-4(5H)-one derivative on lung
adenocarcinoma cell line [325, 326]. Advancements in Al-
based approaches led to the development of different toxic-
ity prediction software and web-based tools such as Tox21
(https://ntp.niehs.nih.gov/whatwestudy/tox2 1/index.html)
[327], SEA (http://sea.bkslab.org/) [328], eToxPred (https://
www.brylinski.org/etoxpred-0) [329], and TargeTox (https://
github.com/artem-lysenko/TargeTox) [330]. Tox21 evalu-
ates the toxicity of 12,707 environmental compounds and
drugs, whereas SEA forecasts the toxicity of 656 marketed
drugs against 73 unintended targets. TargeTox predicts tox-
icity risk based on the target-drug biological network. In
2016, Huang et al. predicted the in vivo toxicity profile and
mechanism characterization of more than 10,000 chemical
compounds through modeling Tox21, whereas, in the same
year, Zhou et al. predicted the cancer-relevant proteins using

@ Springer
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an improved molecular SEA [331, 332]. Further, Gupta and
Rana. 2019 employed eToxPred to predict the toxicity of
small molecules of androgen receptor. The authors incor-
porated 1444 characteristics features of small molecules on
10,273 drugs in which 461 are considered as active and 9812
are inactive [333].

DeepTox (http://bioinf.jku.at/research/DeepTox/tox21.
html) [334] and PrOCTOR (https://github.com/kgayvert/
PrOCTOR) [335], are used for prediction of toxicity of new
compounds and prediction of the toxicity probability in
clinical trials, respectively. For example, Robledo-Cadena
et al. 2020 predicted the effect of non-steroidal anti-inflam-
matory drugs on cisplatin, paclitaxel, and doxorubicin effi-
cacy against cervix cancer cells using PrOCTOR, whereas
Gilvary et al. 2020 identified the novel indications for 2,576
small molecules incorporated with 16 different drug fea-
tures for PD and Type 2 diabetes [336, 337]. Similarly,
using DeepTox, Simm et al. 2018 analyzed and repurposed
high-throughput imaging assay data to predict the biological
activity of different chemical compounds that were targeting
alternative biological pathways and processes [338]. Fur-
thermore, DeepTox was used for the development of several
ML and DL algorithms, which predicts the toxicity proper-
ties and chemical characteristics features of drug compounds
such as SMILES2Vec (predicts chemical properties) [339],
Chemception (DNN-based prediction of chemical proper-
ties) [245], DeepSynergy (prediction of anti-cancer drug
synergy with DL) [340], and deepAOT (prediction of com-
pound acute oral toxicity) [341]. However, the accuracy and
precision of DeepTox and PrOCTOR could be increased by
using large and refined data sets, which could be achieved
with the pharmaceutical industry’s involvement. Recently,
other ML-based tools such as SPIDER [342] and read-across
structure—activity relationships (RASAR) [343] were devel-
oped, which are capable of analyzing p-lapachone targets
and linking molecular structures and toxic properties of an
unknown compound, respectively.

Zhang et al. [344] developed different toxicity predic-
tive models for drug-induced liver toxicity based on five
ML algorithms combined with MACCS or FP4 fingerprint-
ing. The results demonstrated that the best model yielded
an accuracy rate of 75% against an external validation data
set [344]. Similarly, several toxicity evaluation algorithms
were constructed based on ML methods such as relevance
vector machine (RVM), regularized-RF, C5.0 trees, eXtreme
gradient boosting (XGBoost), AdaBoost, SVM boosting
(SVMBoost), RVM Boosting (RVMBoost). The constructed
models were used to evaluate rat oral acute toxicity, respira-
tory toxicity, and urinary tract toxicity [345-348]. In recent
years, the execution of deep-learning algorithms has led to
novel approaches for the molecular representation of chemi-
cal compounds, making DL methods suitable for predicting
compound toxicity. Further, the potential for DL algorithms

@ Springer

for toxicity prediction depends on the quality and quantity of
data sets. In short, more research should be done to make Al-
based algorithms reliable for toxicity prediction. However,
the current ML-based predictors remain inappropriate to
replace biological systems, but they are sufficient to extend
the medicinal chemistry principles in the right direction,
which reduces the number of synthesis cycles. Further, the
detailed description of toxicity prediction Al-based algo-
rithms and tools is discussed in Table 2.

Identification of molecular pathways
and polypharmacology

One of the significant outcomes of Al and ML algorithms
in drug discovery and development is the prediction and
estimation of overall topology and dynamics of disease net-
work or drug-drug interaction or drug-target relationships
[349]. This methodology offers a vast avenue for the identi-
fication of novel molecular therapeutic targets for a particu-
lar disease. Text mining-driven databases like DisGeNET,
STITCH, STRING are widely used to ascertain gene-dis-
ease associations, drug-target associations, and molecular
pathways, respectively. For instance, Gu et al. 2020 used
the similarity ensemble approach to identify targets for 197
most commonly used Chinese herbs. Later, the DisGeNET
database was used to associate those drug targets with dif-
ferent diseases, thus linking herbs with diseases in which
they can be used [350]. Further, chen et al. 2019 used the
STITCH database to find targets of potential drugs short-
listed for esophageal carcinoma [351]. Likewise, Taha et al.
2020 used the STITCH database to find targets for active
constituents of Nandina domestica, a plant used for treat-
ing various tumors. Later STRING database was used to
construct compound-target pathways with the help of the
cytoscape tool [352].

In medicinal chemistry, polypharmacology refers to
designing a single drug molecule capable of interacting
with multiple targets in a disease-related drug-target bio-
logical network. It is best suited for designing a promising
therapeutic agent for more complex diseases such as cancer,
neurodegenerative disease (NDDs), diabetes, heart failure,
and many others [353-355]. ML-based methods have the
potential to analyze guilt-by-association molecular networks
due to strong mining capabilities and data analysis. Further,
ML models assist in the rational design of multitarget ligand
through the generation of chemical compounds with desired
polypharmacological features as ML models generate a vast
number of chemical structures with different chemical and
topological features. Thus, the probability of discovering
multi-target ligands increases. Furthermore, ML models help
in the identification of multi-target ligands, where there are
dissimilar binding pockets. Recent advancements in Al in
drug discovery and development have led to the generation
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of web-based tools and stand-alone software packages for
polypharmacology prediction such as polypharmacology
browser (PPB) (http://www.gdb.unibe.ch/) [356], TarPred
(http://www.dddc.ac.cn/tarpred/) [140], Self-Organizing
Map Based Prediction of Drug Equivalence Relationship
(SPiDER) (http://modlabcadd.ethz.ch/software/spider)
[357], Targethunter (https://www.cbligand.org/TargetHunt
er3D/) [358], PharmMapper (http://lilab-ecust.cn/pharm
mapper/) [359], ChemMapper (http://lilab.ecust.edu.cn/
chemmapper/) [360], and Swiss Target Prediction (Swis-
sTargetPrediction) (http://www.swisstargetprediction.ch/)
[361]. Poirier et al. 2018 conducted an experiment using
PPB for the identification of lysophosphatidic acid acyltrans-
ferase P as a therapeutic target of nanomolar angiogenesis,
whereas Ozhathil et al. 2018 identified potent and selective
small-molecule inhibitors of cation channel transient recep-
tor potential cation channel subfamily M member 4 using
PPB [362, 363]. Further, Vleet Van et al. 2018 implemented
the TarPred tool for screening strategies and methods for
improved off-target liability prediction, whereas, in the same
year, Ratnawati et al. predicted the active compounds from
SMILES codes using backpropagation algorithm [364, 365].
Among the above said web-based tools PharmMapper and
ChemMapper were frequently used for current research. For
example, synergistic mechanism of huangqi and huanglian
for Diabetes Mellitus [366], investigation of blood enrich-
ing mechanism of danggui buxue decoction [367], and pre-
diction of multiple mechanisms of Hedyotis diffusa Willd.
On Colorectal Cancer [368], used PharmMapper. Similarly,
identification of human copper trafficking blocker in can-
cer [369], identification of multi-target ligands through
chemical-protein interaction in AD [370], prediction of the
anticancer mechanism of Kushen Injection against Hepato-
cellular carcinoma [371], and discovery of Pteridin-7(8H)-
one-Based as therapeutic compound against epidermal
growth factor receptor kinase T790M/L858R mutant [372],
were performed using ChemMapper. One major limita-
tion of AI algorithms for polypharmacology prediction is
inadequate data or reliability of the data set. Thus, quantum
chemical calculations, which provide fine-tuned data set,
should be done and, thus, which can increase the accuracy
of a predictive model.

Moreover, Al in drug development opened the gates for
identifying molecular pathways or molecular targets for
the treatment of human disease through genomics informa-
tion, biochemical features, and target specifications [373].
“OpenTargets” (https://www.opentargets.org/) [374], a
freeware and ML-based tool, used for prioritizing potential
therapeutic drug targets with over 71% accuracy. Recently,
Nabirotchkin et al.identified the unfolded protein response
and autophagy-related pathways of common approved drugs
against COVID-19, whereas Lopez-Cortes et al. identified
allele frequencies in colorectal cancer [375, 376]. Further,

GWAS studies conducted by Isac-Lopez et al. [377] pre-
dicted the multiple risk loci and highlighted fibrotic and
vasculopathy pathways. The results demonstrated that 27
independent genome-wide-associated signals and 13 novel
risk loci were associated with systematic sclerosis. Martin
et al. studied chromatin interactions to predict novel gene
targets in rheumatic diseases. In the same study, the authors
concluded that 454 high confidence genes were associated
with rheumatic disease, in which 48 were drug targets, and
11 were existing targets. Finally, they demonstrated that 367
drugs were suitable for repositioning [378].

Implementation of artificial intelligence
in de novo drug designing

The iterative process to design 3D structures of receptors to
generate a novel molecule is termed as de novo drug design-
ing, which is intended to produce new dynamics. However,
de novo drug designing has not seen a boundless use in med-
ication disclosure. Further, the field has seen some recovery
recently because of advancements in the field of Al [421,
422]. VS has emerged as a massive tool in the drug improve-
ment measure, as it conducts profitable in silico look in an
enormous number of blends, further, extending yields of
potential medicine leads. As a subset of Al, ML is a tech-
nique for coordinating VS for drug leads, which generally
incorporates gathering a filtered set of compounds, contain-
ing known actives and inactive compounds to train a model
[423, 424]. In the wake of setting up the model, it is tested
and, if accurate enough, used on a previously unknown data-
base, to identify novel drug. In this section, we discuss how
Al has proved to be a boon for drug designing using the de
novo technique.

In one study, the researchers utilized the indolent space
portrayal to prepare a model dependent on the quantitative
estimate of drug-likeness (QED) drug-similarity score and
the manufactured availability score synthetic accessibility
score (SAS) [425]. In another distribution, the presentation
of such a variational autoencoder was contrasted with an
antagonistic autoencoder [426]. The ill-disposed autoen-
coder comprises of a generative model delivering novel
compound structures. A second discriminative antagonistic
model is prepared to differentiate genuine particles from pro-
duced ones, while the generative model attempts to trick the
discriminative one [427]. The antagonistic autoencoder cre-
ated more substantial structures than the variational autoen-
coder in generation mode essentially. In mix with an in silico
model, novel structures anticipated to be dynamic against
the dopamine receptor type, 2 could be gotten. Researches
utilized a generative ill-disposed organization (GAN) to pro-
pose mixes with putative anticancer properties [428].
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RNN has likewise been effectively utilized for de novo
drug design. Since SMILES strings encode substance struc-
tures in a grouping of letters, RNNs have been utilized to
generate compound structures. It was observed that RNNs
have the potential to utilize SMILES strings for drug design-
ing [429]. A similar methodology was likewise effectively
utilized for the development of novel peptide structures
[430]. Neural network learning was effectively applied to
inclination the created mixes toward wanted properties
[431]. Similarly, transfer learning was utilized as another
system to create novel synthetic structures with an ideal
natural action. In the subsequent steps, the organization is
prepared to get familiar with the SMILES syntax with a huge
preparing set [432, 433]. In the subsequent advance, the
preparation is proceeded with mixes having the ideal move-
ment. Moreover, additional epochs of training were adequate
to reach the stage of novel combinations into a compound
space involved by dynamic atoms. Five atoms were com-
bined in light of such a methodology, and the plan action
could be affirmed for four particles against atomic, chemical
receptors [434]. A few distinct designs have been proposed,
which have created legitimate, important novel structures.
The novel synthesis has been investigated by these strate-
gies, with the property dissemination of the created mol-
ecules or atoms being similar to the extensive training set
used. The primary application for this strategy was adequate,
with 4 out of 5 atoms indicating the ideal action [435]. Opti-
mization of Al and multi-objective has been a promising
solution to bridge the chemical and biological phases. Novel
pairs of multi-objectives based on RNN for the automated
de novo design based on SMILES were developed to find
the best possible match between physicochemical properties
and their constrained biological targets. The results indicated
that Al and multi-objective optimization allows capturing
the latent links joining chemical and biological aspects, thus
providing easy-to-use options for customizable design strate-
gies, which proved especially effective for both lead genera-
tion and lead optimization [436].

ML models like SVM, RF, DNNs, and many others have
been used for drug discovery for analyzing the pharmaceu-
ticals applications from docking to VS [437]. Recently, drug
repurposing has emerged as an innovative approach to mini-
mize drug development duration that usually involves data
mining and Al [438]. A group proposed a question—answer
artificial system (QAAI) that had the capability to repur-
pose drugs that used Google semantic Al universal encoder
to compute the sentence embedding in the red brain JSON
database. The study validated prediction for the lipoxyge-
nase inhibitor drug zileuton as a modulator of the NRF2
pathway in vitro, with potential applications to reduce mac-
rophage M1 phenotype and reactive oxygen species pro-
duction. This novel approach has been proved to effective
for reposition in NDDs [439]. With the rapid development
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of systems-based pharmacology and polypharmacology,
method development for the rational design of multi-target
drugs has to become urgent. The first de novo multi-target
drug configuration program known as LigBuilder V3 (http://
www.pkumdl.cn/ligbuilder3/) has been devised to design
ligands for different receptors, numerous coupling locales
of one receptor, or different configurations of one receptor.
LigBuilder V3 is again used for multi-target drug plans and
enhancement, particularly for compact ligands for proteins
with varying ligand binding sites [440]. De novo drug design
actively seeks to use sets of chemical rules for the fast and
efficient identification of structurally new chemotypes with
the desired set of biological properties. Moreover, fragment-
based de novo design tools have been successfully applied in
the discovery of non-covalent inhibitors. Herein a new pro-
tocol, called Cov_FB3D, has been devised, which involves
the in silico assembly of potential novel covalent inhibitors
by identifying the active fragments in the covalently binding
site of the target protein [441].

Artificial intelligence: possible role
in pharmaceutical manufacturing
and clinical trial design

The use of computational methods is quite well established
in the pharmaceutical industries. However, the introduction
of Al has given a broader scope to develop new approaches
that can improve and optimize drug discovery [442]. This
has not only encouraged the scientific community but has
also resulted in the growing partnership between the phar-
maceutical industry and Al companies [443]. A study stated
that the overall success rate for 21,143 drugs was nearly
5.2% in 2013, which was less than 11.2% in 2005. Thus,
the use of Al is mainly associated with a need to reduce
attrition and costs [444]. It usually takes 12 years to bring a
new drug to the market, which can cost up to 3 billion USD
[445]. Further, it is a huge task to find a new drug when there
are ~ 10%° existing drug-like molecules [446]. The current
drug discovery challenges are related to the toxicity of the
drug, its side effects, choosing the right target site, appropri-
ate dosages, and even intellectual property [447]. The phar-
maceutical industry mostly does not share pharmacokinetic
and pharmacodynamic measurements of the drugs until they
are approved. In addition to that, very less drug discovery
data are available to train AI models [448]. There needs to be
a community that can regulate and manage preclinical and
clinical pharmacology data to accelerate the progress of Al
in this field. Recent advances in Al have impacted clinical
pharmacology in many ways like literature searching and
processing, interactions with online predictive ML models,
ML methods in framing policy to encourage healthcare in
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many countries and also to get predictive analysis for drug-
related information [449, 450].

When a drug candidate successfully passes all preclinical
tests, it is then administered to patients under clinical trials,
which comprises of three phases: Phase 1, drug safety test-
ing with a small number of people; Phase 2, drug efficacy
testing with the small number of human subjects affected by
a particular disease; Phase 3, efficacy studies with a large
number of patients and after passing the clinical trials FDA
reviews it for approval and commercialization [451, 452].
Further, the failure rate of clinical trials adds up to the drug
development process’s inefficiency, and each failed trial
ruins the investment and impairs the costs of preclinical
testing. The two main reasons behind high failure rates are
improper patient selection and inefficient monitoring during
trials. Furthermore, after the introduction of Al technology,
the success rates of clinical trials have improved drasti-
cally [453]. A system for clinical trial matching has been
developed by IBM Watson, which uses medical records of
patients and an abundance of past clinical trial data to cre-
ate detailed clinical findings profiles. It could also be used
to keep a check on patients enrolled [454]. AI models can
also reduce the cost of clinical trials by enhancing the suc-
cess rate by analyzing toxicity, side effects, and other related
parameters [455]. One such example, which predicted the
outcome of phase I and phase II clinical trials, was based on
DL and calculated the probability of possible side effects
and pathway activation score, which was further used to
train the model [456]. Similarly, another project named
Visual Physiological Human was made to support in silico
trials [457]. Further, development in Al technology will help
in better management of clinical trial data, ultimately aiming
to develop personalized medicines.

Involvement of artificial intelligence in drug
development: a case of neurodegenerative
diseases

NDDs are lethal, multifaceted, enervating disorders of the
central nervous system and a major cause of death world-
wide. AD, PD, Amyotrophic Lateral Sclerosis (ALS), and
Huntington’s disease (HD) are some of the most commonly
observed NDDs, which can ultimately lead to the death of
the neurons in different areas of the central nervous system
[458]. The aggregation of toxic, misfolded, cytoplasmic pro-
teins in different brain regions is one of the primary reasons
for the inception of these disorders [459]. Further, these dis-
orders can exhibit varying symptoms like cognitive decline,
slow movement, tremors, memory loss, depression, speaking
problems, muscle stiffness [460, 461]. The major challenge
posed by NDDs is in the area of drug discovery as to date,
no drug has been discovered, which can arrest and revert the

progression of this disorder. Hence, there is a dire need for
new drug targets and drug compounds, which can alleviate
the symptoms and mitigate the diseased conditions of the
central nervous systems [462]. Nowadays, ML is extensively
used to find novel targets and biomarkers associated with
NDDs. For example, Martinez-Ballesteros et al. 2016 com-
bined DT, quantitative association rules, and hierarchical
clustering to determine potential risk genes with AD via
gene expression profiling of patient and control samples.
Further, [463] used a combination of protein—protein interac-
tion networks, autoencoder, and SVM to predict novel target
genes associated with PD. Likewise, [464] used ML models
like RF, DT, generalized linear model, and rule induction to
find out risk genes of HD through gene expression profiling.
Moreover, [465] used a CNN trained on an extensive GWAS
data set to find novel risk single nucleotide polymorphisms
and genes associated with ALS.

Moreover, ML techniques are also being used to find
suitable inhibitors of target proteins implicated in NDDs.
For instance, [466] applied a combination of VS, ML, and
molecular docking to find class 1 and class IIb histone dea-
cetylase inhibitors, as HDAC enzymes have been reported
to promote AD neurotoxicity. Here, ML was used for the
classification of inhibitors and non-inhibitors post-VS. Fur-
ther, [467] used descriptors derived from MD simulation
trajectories of the caspase-8 protein—ligand complex to train
ANN and RF models to find inhibitors of caspase 8 protease,
a protease that has been implicated in AD pathogenesis. In
another study, [468] used data from a traditional Chinese
medicine database, followed by VS, molecular docking, and
ML techniques, including DL, to find inhibitors of GSK3p,
an enzyme implicated in AD. Further, MD simulation was
used to assess the stability of GSK3f-ligand interactions.
Additionally, Ponzoni et al. 2019 made a QSAR model for
finding inhibitors of the BACE1 enzyme, which is responsi-
ble for f-amyloid (Af) aggregation in AD. Here, the QSAR
model was built using an optimum set of molecular descrip-
tors, which were sorted out using an amalgamation of ML
algorithms, hybridization techniques, backward elimination
strategy, and visual analysis [469]. Similarly, [470] used a
cascade of Naive Bayes networks to find potent and safe
abelson tyrosine-protein kinase 1 (c-Abl) inhibitors, which
promote neuroprotection in PD. Likewise, Shao et al. 2018
used integration of SVM algorithm and Tanimoto similarity-
based clustering, followed by in vitro experiments, to find
novel antagonists of both A,, adenosine receptor as well as
Dopamine D, receptor, as it has been observed that blocking
these two receptors leads to neuroprotection in PD [471]. In
addition, [472] implemented molecular docking, AI-QSAR,
and MD simulations to find inhibitors of the NLR family
pyrin domain containing 3 (NLRP3), an inflammasome
involved in PD pathogenesis. Here, VS followed by dock-
ing was used to shortlist compounds from the traditional
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Chinese medicine database, whereas Al and QSAR models
were used to ascertain bioactivity of the compounds, fol-
lowed by assessing their binding stability via MD simula-
tions [472]. Similarly, [473] used molecular docking, Al,
and MD simulations to discover inhibitors of Galectin-3
a protein implicated for neuroinflammation in HD. Here,
molecular docking was used for initial shortlisting, followed
by evaluating the bioactivity of compounds through ML and
assessing their binding stability through MD simulations.
Further, different studies have used ML algorithms for drug
repurposing in NDDs. Similarly, X. Zeng et al. 2019 devel-
oped a DL-based drug repurposing tool, called deepDR
(https://github.com/ChengF-Lab/deepDR), which is used to
find new repurposed drugs for AD and PD [291]. Further-
more, [474] proposed telmisartan as potential repurposed
drug for AD by using a genetic network-driven classifica-
tion model. In addition, [475] proposed a drug repurposing
strategy for PD by scanning scientific literature through an
integration of knowledge representation learning and ML
algorithms .

Future challenges and possible solutions

At present, the major challenge for the pharmaceutical
industry while developing a new drug is its increased costs
and reduced efficiency. However, ML approaches and recent
developments in DL come with great opportunities to reduce
this cost, increase efficiency, and save time during the drug
discovery and development process. Advances in Al algo-
rithms, especially in DL approaches along with improving
architectural hardware and easy accessibility of big data, are
all indicating toward the third wave of Al. Al approaches
in drug development have aroused great interest among
researchers, such that many pharmaceutical companies
have collaborated with Al companies. Moreover, the num-
ber of startups in this field has also escalated and reached
230 by June 2020 [476]. Further, DL approaches integrate
data at multiple levels through nonlinear models, which is
the shortcoming of the AI and ML approaches. However,
integration of data at multiple levels makes DL algorithm
advantageous as it provides great accuracy and precision.
Moreover, in comparison with Al and ML algorithms, DL
provides a much more flexible architecture to create a neu-
ral network for a specific problem [477—480]. Applications
of Al like natural language processing, image, and voice
recognition are easily doable these days, which has beaten
humans in terms of performance [481]. So, it comes with no
surprise that Al can very well be used in the drug discovery
process. Today, Al is used in drug discovery for target iden-
tification, hit discovery, lead optimization, ADMET predic-
tion, and structuring clinical trials. Despite great success,
there are many remaining challenges like high-quality data
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acquisition under which there are two significant concerns.
Firstly, labeling cannot be binary as the action of drugs in
biological systems is complicated; secondly, the amount of
data available in drug discovery is infinitesimal compared
to the enormous amount of information available. There-
fore, a community is required that not only provides quan-
tity but the quality of data. In the pharmaceutical industry,
open data sharing is not common, and Pistoia alliance has
taken the initiative to start a movement that has encouraged
many companies to share their data with others. They also
intend to establish a uniform data format, which is techni-
cally challenging [161]. A possible solution to deal with this
problem is to develop an algorithm that can handle sparse
data; one such has been developed by Stanford University
named “one-shot learning,” which predicts properties of a
drug on the basis of heterogeneous data [482]. Moreover,
the accuracy and uncertainty of the experimental data can
be used for model building, that is instead of establishing
new ML technologies, one can put efforts in training the
existing one by tuning large number of hyperparameters
and optimizing it for good results, although some studies
indicated that some reasonable parameters can be used to
start the optimization [435]. Molecular representation is also
a challenge as it is one of the governing factors in model
building. Few recently developed models learn task-related
features from the raw data and refine the molecular represen-
tation to a standard. Earlier, drug repurposing used to rely
only on clinical observations. However, the current large
amount of data comprising of scientific literature, patents,
and clinical trial results can collectively be used to improve
the screening process. Additionally, DL-based VS can make
full use of the data and reduce false-positive rates obtained
due to imbalance in positive and negative data. Lead opti-
mization is also a challenge in order to develop an efficient
drug with good ADMET properties and target activities;
however, these parameters are independent and at times
mutually incompatible with each other. This problem can
be solved by optimizing each parameter separately and fur-
ther improving the model. Pharmaceutical companies’ faces
trouble recruiting sufficient number of patients for clinical
trials. Al approaches will help identify and recruit target
patients and will also help in managing the collected data.
Regarding drug discovery for neurodegenerative disorders,
the major problem is their unknown pathophysiology which
makes drug identification even more challenging. The “black
box” nature of ML models is an additional challenge where
even experts cannot explain that how the model arrives at
a result and comprehend the biological mechanism behind
it. Furthermore, the escalating numbers of ML models and
their claim to be latest have left non-professional helpless
as they cannot decide which model to choose to solve their
problem. Thus, it will be better if users and developers agree
upon standard objective evaluation and thereafter check
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the performance of the model. Further, it is important to
note that most of the countries do not give patents to those
inventions which are exclusively created by Al technol-
ogy. Moreover, companies who use Al technology for drug
discovery has to go through vigorous process to copyright
their work so as to secure patent rights. Security is also a
major concern, as Al-driven personalized medicine requires
person’s genetic code for which personal information will
be required. Finally, faster computation will be required for
handling big data and it is said that in future the current
supercomputers will be replaced by quantum computers or
another technology which will do the job in minutes rather
than taking hours. Although Al has given many novel targets
and novel compounds for different diseases, still there has
not been any success story where a compound generated
through Al made it to the market for public use. Recently, for
the first time ever, a novel target and its novel inhibitor has
been proposed through Al-based tools. In silico medicine, a
biotechnology company, proposed a novel target involved in
idiopathic pulmonary fibrosis and made its novel inhibitor
from scratch, through their Al-based tools. The identified
small molecule inhibitor has showed good efficacy in human
cells and animal models. In December 2020, in silico nomi-
nated their small molecule inhibitor for investigational new
drug (IND) enabling studies and they are targeting clinical
trials by early 2022. If the trials are successful, then it will
be, for the first time ever, where a novel target and its inhibi-
tor was proposed through Al-based tools and got approved.
Though there are some unavoidable obstacles and tremen-
dous amount of work has to be done to incorporate Al tools
in drug discovery cycle, there is no doubt that in the near
future Al will bring revolutionary changes in drug discovery
and development process.
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