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Abstract
Background: Detecting COVID-19 pneumonia and differentiating it from community acquired pneumonia (CAP) has been 

a challenging task for healthcare providers since the pandemic began. We therefore aim to develop and evaluate a simple, non-
invasive tool to accurately detect COVID-19 by using digital chest X-ray (CXR). 

Methods and Results: We performed a retrospective, multi-center study in which deep learning frameworks were used to 
develop the system architecture of the diagnostic tool. The tool was trained and validated by using data from the GitHub database 
and two hospitals in Bangladesh. Python programming was used to calculate all statistical estimates. Our study revealed that 
the artificial intelligence (AI)-based diagnostic tool was able to detect COVID-19 accurately by examining chest X-ray (CXR). 
During the testing phase, the tool could interpret CXR with precision of 0.98, recall/sensitivity of 0.97 and F1 score of 0.97 for 
COVID-19. The evaluation results showed high sensitivity (90%) and specificity (92%) in detecting COVID-19. The AUC values 
for COVID-19 and pneumonia were 0.91 and 0.87, respectively.

Conclusion: The developed AI-based diagnostic tool can offer the healthcare providers an effective means of detecting 
and differentiating COVID-19 from other types of pneumonia, thus contributing to reducing the long-term impact of this deadly 
disease.(International Journal of Biomedicine. 2022;12(3):459-465.)

Key Points
•	 The major strength of this study is that it has led to the development of a technology-based tool that can precisely detect 

COVID-19 at an early stage and immediately isolate infected patients from the healthy population.
•	 This next generation test can be accessed by healthcare providers remotely and therefore provide an added convenience.
•	 The main limitation is with this tool COVID-19 pneumonia may be confused with other types of pneumonia if the quality of 

the chest image is too low. Moreover, it focuses only on detecting whether or not the disease is COVID-19, but not its severity.
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Abbreviations
AI, artificial intelligence; AUC, area under the curve; CAP, 
community acquired pneumonia; CT, computed tomography; 
CNN, convolutional neural network; CXR, chest X-ray; 
CL, convolutional layer; DCNN, deep convolutional neural 
networks; PAV, postero-anterior view; ROC curve, receiver 
operating characteristic curve; ReLU, rectified linear unit; 
VGG,  Visual Geometry Group. 

Introduction
The novel coronavirus, known as severe acute 

respiratory syndrome coronavirus 2 (SARS-CoV-2), is 
responsible for COVID-19, which primarily causes respiratory 
illnesses of varying severity, ranging from the common cold 
to fatal pneumonia.(1-3) The virus is highly transmissible and 
has ravaged the world since it was first identified in late 2019. 
So far, it has affected millions of people, causing a global 
pandemic and incapacitating healthcare systems.(2-5) Although 
the SARS-CoV-2 potentially affects multiple organs of the 
human body, it mainly infiltrates the lower respiratory system, 
triggering inflammatory changes in the lung tissue. Most of 
these infected patients commonly present with mild fever and 
dry cough; however, about one-fifth of all infected patients 
progress to severe pneumonia or even death.(1,4-6)

Detecting COVID-19 throughout the pandemic has been 
a challenging and daunting task because of the shortage of 
diagnostic tools in many countries. The detection was mostly 
dependent on a molecular technique called Polymerase Chain 
Reaction (PCR), which has been the most preferred testing 
procedure since the beginning of this pandemic. However, as 
the transmission of COVID-19 escalated, the health systems 
of most countries struggled to provide the testing services 
to their entire population due to diverse technical, financial, 
and logistical barriers.(6-8) Moreover, due to the similarities 
between clinical presentations of COVID-19 and other types 
of pneumonia, establishing a correct diagnosis poses greater 
challenges to healthcare providers. Accordingly, major 
medical societies in multiple countries have recommended 
using chest radiography to diagnose COVID-19 pneumonia 
and also to differentiate it from other community acquired 
pneumonia (CAP).(6) In some cases, a CT scan has also been 
successfully used to detect COVID-19, even in patients with a 
negative PCR test or without symptoms. 

In almost all healthcare practices, clinicians use chest 
X-ray (CXR) images to diagnose pneumonia and other lung 
diseases. Nowadays, digital imaging machines–both static and 
mobile–are available in all hospitals and diagnostic centers; 
thus, digital X-rays are widely used for diagnostic purposes. 
However, the main challenge with the interpretation of CXR 
is that it requires a radiologist or a specialist doctor to do the 
analysis, and thereby can be time-consuming and logistically 
inconvenient.(6,7) Moreover, it can become burdensome to the 
already stretched health system as more and more people are 
getting sick due to new COVID-19 variants.

The use of artificial intelligence (AI) in the medical 
field is not new. In particular, the deep learning method 

is being widely used in many healthcare settings due to its 
unique advantages in precisely detecting some complex health 
conditions, such as tuberculosis and lung cancer.(6-9) Therefore, 
we hypothesized that an AI-based tool could be developed 
and trained to detect COVID-19 pneumonia accurately and to 
differentiate it from other types of CAP by using CXRs. In 
this paper, we present the system architecture of an innovative 
AI-based tool and the results of its validation and performance 
in differentiating the COVID-19 pneumonia from other types 
of pneumonia. 

Materials and Methods
Development and Validation Data Sets

We trained our tool to distinguish CXRs of COVID-19 
cases from other CAP. We also instructed the tool to isolate 
the chest radiology with no apparent abnormalities. A total 
of 299 digital CXR images were utilized for training this AI-
based tool. Of them, 89 CXR were COVID-19 positive cases, 
100 were diagnosed as pneumonia cases, and 110 CXRs of 
“normal” patients, i.e., CXR with no chest or lung diseases 
(Figure 1). The validation was carried out to evaluate the 
predicting power of the tool by using a sample of 24 CXRs of 
confirmed COVID-19 patients, 234 images of CAP, and 390 
images of “normal” patients. 

Strict selection criteria were applied to select the desired 
quality of CXRs. Only digital, postero-anterior view (PAV) of 
the images were used. For developing the tool, we used CXRs 
of confirmed COVID-19 cases and CAP; and CXRs of non-
pneumonia or ‘normal’ cases. The CXRs of CAP and “normal” 
cases were selected randomly, fulfilling the inclusion criteria. 
Only confirmed SARS-CoV-2 cases were considered, which 
were anonymous but had a complete record, ranging from 
the identification (ID) number, clinical history, and the final 
outcomes of treatment. Chest images from any unauthorized 
sources or of low resolution were discarded.

We used CXRs from two hospitals (Rangpur Medical 
College Hospital, Rangpur; Cardio Care Hospital, Dhaka) 
in Bangladesh and the COVID-19 CXR images from the 
GitHub database.(10) Special attention was given to selecting 
CXR images of those patients who had a complete trail of 
demographic and diagnostic history in the dataset. Although 
we used CXR images of hospital patients, we had no direct 
contact with patients. All data were stored in a secure, 
encrypted database with strict security and privacy protocols 
in place. 

Fig. 1. Data used to train the model.
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Although we used the chest images from a known 
dataset, we did not directly involve patients or any other human 
participants. The study protocol was reviewed and approved 
by the university ethics committee, and written permission 
was obtained from participating hospitals. Moreover, the data 
used were encrypted and anonymous.

Statistical analysis
In order to measure sensitivity and specificity, the AI-

based tool was validated by randomly uploading data from the 
above-mentioned three data types. Rigorous statistical analysis 
was performed, and the outputs of each round of validations 
were observed and recorded. These outputs were then 
compared with the WHO dataset for accuracy and precision. 
The performance of the tool was analyzed and verified on the 
basis of standard measures, such as sensitivity, specificity, ROC 
curve and AUC. Python programming was used to calculate 
all statistical estimates. Furthermore, we drew an ROC curve, 
which is the plot of sensitivity versus 1-Specificity. The AUC 
was also used for an effective measure of accuracy.

Results
In the following section, we describe the system 

architecture of the AI-based tool and the results of the 
comparative performances of three deep learning image 
classifiers,(11-13) which we experimented with in this study.
Model architectures

For developing the system architecture, we examined 
different deep learning models that were derived from the field 
of artificial intelligence. These models are basically different 
architectures of CNN that has been a dominant method in 
computer vision tasks since the astonishing results were shared 
on the object recognition competition known as the ImageNet 
Large Scale Visual Recognition Competition (ILSVRC) in 
2012. CNN uses multiple perceptrons that analyze image inputs 
and are able to segregate the images from one another. Another 
advantage of using CNN is that it leverages the use of local 
spatial coherence in the input images, which allows them to 
have fewer weights as some parameters are shared. This process 
is found to be efficient in terms of memory and complexity.(14) 

The basic building blocks of CNN are as follows:
Convolution layer

In the convolutional layer (CL), a matrix named kernel 
is passed over the input matrix to create a feature map for the 
next layer. We performed a mathematical operation called 
convolution by sliding the kernel matrix over the input 
matrix. At every location, element-wise matrix multiplication 
was performed and the result summed onto the feature map. 
Convolution is a specialized kind of linear operation that can 
be applied over more than one axis. If we have a 2-Dimensional 
image input, I, and a 2-Dimensional kernel filter, K, the 
convoluted image is calculated as follows: 

Non-linear activation functions
The activation function is a node that comes after CL, 

and the activation function is the nonlinear transformation that 
we do over the input signal. 

Different activation functions are: 
a. ReLU: Rectified linear unit activation function 

(ReLU) is a piecewise linear function that will output the input 
if it is positive; otherwise, it will output zero.

 f(x)=max(0,x)

b.  Leaky ReLU is a variant of ReLU. Instead of being 
0 when z<0, a leaky ReLU allows a small, non-zero, constant 
gradient α (Normally, α=0.01)

c. Sigmoid takes a real value as input and outputs 
another value between 0 and 1. It is easy to work with and has 
all the nice properties of activation functions: it is non-linear, 
continuously differentiable, and it is used in the output layer 
when the classifier is binary.

Pooling layer
A pooling layer is a new layer added after the CL, 

specifically, after a nonlinearity (e.g., ReLU) has been applied 
to the feature map output by a CL. The drawback of the feature 
map output of a CL is that it records the precise position of 
features in the input. This means that cropping, rotation, or 
any other minor changes to the input image will result in a 
completely different feature map. To counter this problem, 
we applied down sampling of CLs. Down sampling was 
achieved by applying a pooling layer after the nonlinearity 
layer. Pooling helped to make the representation become 
approximately invariant to small translations of the input. 
Invariance to translation means that if we translate the input 
by a small amount, the values of most of the pooled outputs do 
not change (Figure 2).

Fully connected layer
At the end of a CNN, the output of the last pooling layer 

acts as input to the fully connected layer. There can be one or 
more of these layers. Fully connected means that every node 
in the first layer is connected to every node in the second 
layer.
Development of system architecture

In this study, we applied three different architectures 
of CNN: i) Visual Geometry Group Network 16 (VGG16), 
ii) Residual Networks 50 (ResNet50), and iii) Depthwise 
CNN, to assess their comparative performances in detecting 
COVID-19 (Figure 3). The results of each of these tests were 
recorded. 

 ( ,  ) = ∑ ∑  ( ,  ) (  −  ,   −  ) 
                                                                            

 

      
     

 

 

Fig. 2. Types of pooling
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Firstly, we studied the performance of VGG16 in 
distinguishing COVID-19 and other types of pneumonia. 
VGG16 is a CNN architecture. It was initially developed by 
the Oxford Robotics Institute’s Karen Simonian and Andrew 
Zisserman and was first submitted to the ImageNet Large Scale 
Visual Recognition Challenge 2014(ILSVRC2014), where it 
performed very well and achieved 92.7% top-5 accuracy.(15) 

The first and second CLs consist of 64 feature kernel filters, 
and the size of the filter is 3×3. As the input image (RGB image 
with depth 3) passes into the first and second CL, dimensions 
change to 224×224×64. Then the resulting output is passed 
to the max-pooling layer with a stride of 2. The third and 
fourth CLs are of 124 feature kernel filters, and the size of the 
filter is 3×3. These two layers are followed by a max-pooling 
layer with stride 2, and the resulting output will be reduced to 
56×56×128. The fifth, sixth and seventh layers are CLs with 
a kernel size of 3×3. All three use 256 feature maps. These 
layers are followed by a max-pooling layer with stride 2. The 
eighth to thirteenth layers are two sets of CLs with kernel size 
3×3. All these sets of CLs have 512 kernel filters. These layers 
are followed by a max-pooling layer with a stride of 1. Layers 
fourteen and fifteen are fully connected hidden layers of 4096 
units, followed by a softmax output layer (sixteenth layer) of 
1000 units.

Secondly, we deployed ResNet-50, which is also a 
CNN(14) that is 50 layers deep:

•At first, there is a convolution with a kernel size of 7 
* 7 and 64 different kernels, all with a stride of size 2, giving 
us one layer.

•Next, we got max pooling with also a stride size of 2.
•In the next convolution, there was a 1 * 1.64 kernel, after 

that a 3 * 3.64 kernel, and at last 1 * 1.256 kernels; these three 
layers were repeated in total 3 times so, giving us 9 layers in 
this step.

•Next, we saw the kernel of 1 * 1.128, after that a kernel 
of 3 * 3.128, and at last a kernel of 1 * 1.512; this step was 
repeated 4 times so, giving us 12 layers in this step.

•After that, there was a kernel of 1 * 1.256 and two more 
kernels with 3 * 3.256 and 1 * 1.1024, and this is repeated 6 
times, giving us a total of 18 layers.

•And then again a 1 * 1.512 kernel with two more of 3 * 
3.512 and 1 * 1.2048, and this was repeated 3 times, giving us 
a total of 9 layers.

•After that, we did an average pool and ended it with a 
fully connected layer containing 1000 nodes and, in the end, a 
softmax function, so this gives us one layer.

•So, totaling this it gave us a 1 + 9 + 12 + 18 + 9 + 1 = 
50 layers DCNN.

This network allowed us to load a pre-trained version of 
the network trained on more than a million images from the 
ImageNet database. As a result, the network has learned great 
feature representations for a wide range of images. 

Thirdly, we examined the performance of Depthwise 
CNN, which is another deep learning AI function that mimics 
the functioning of the human brain in processing data and 
creating models for use in decision-making. The Depthwise 
convolution model is a 2D convolution that helps to reduce 
overfitting when the number of parameters is high. It deals 

not just with spatial dimension but with depth dimension as 
well as the number of channels. What we did here is apply a 
2D depth filter at each depth level of the input tensor in our 
dataset so that we had 3*4095*4095 (input channels, max-
width, max-height). The filter we used to extract the feature 
was 3*3*3. So the Depthwise convolution breaks the image 
and filter into three different channels and then convolves the 
corresponding channel and then stacks them back. After that, 
we used a 1*1 filter to cover the dimension. Here the amount 
of parameters is reduced by the number of input channels. The 
feature from the Depthwise spatial convolutional model is 
sent to fully connected layers, where the output layer consists 
of three nodes (COVID-19, CAP, and Normal) (Figure 3).

Finalization of system architecture
The comparative analysis showed that among the three 

deep learning image classifiers used in this study (Figure 
4), VGG16 produced the best results. We observed that the 
VGG16 was able to read COVID-19 images more accurately 
than ResNet50 and Depthwise CNN, with a precision of 0.98, 
recall/sensitivity of 0.97, and F1 score of 0.97 (Table 1). Once 
the tool was fully trained, the model was recalibrated and refined 
based on the outputs of the testing process. The whole process 
was random and was meticulously monitored and recorded. 
After several repetitions, the model was finally ready for 
validation (Figure 4). 

Fig. 3. System architecture.

Table 1.
Comparison of used deep learning models

Type of Data Sensitivity, % Specificity, % AUC

VGG 16 97 99 98

ResNet50 95 98 97

Depthwise CNN 96 97 97
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Performance evaluation of the tool
The age group of the study population and patients from 

data sources was between 20 and 90 years. 
The tool was found to be very quick in processing any 

given CXR image. On average, it took 5.7 seconds to complete 
while we ran the tests through our server. We also observed 
that the model was able to accurately detect COVID-19 as the 
tool/model detected 96% of cases as true positive. On the other 
hand, it exhibited a high power of rejecting non-COVID-19 
cases, as specificity is approximately 98%. In addition, the 
results showed low false positives and false negatives, which 
gave us confidence about the accuracy of the model. Similarly, 
the model could also identify pneumonia and normal images 
fairly accurately (Table 2). It is important to note that the 
proposed model has achieved a low rate of false negatives, 
as a high rate of false-negative diagnoses may have moral, 
ethical, financial, and social implications. 

We evaluated our AI-based tool for detecting COVID-19 
by using CXRs from confirmed Bangladeshi COVID-19 
cases. The evaluation results showed high sensitivity (90%) 
and specificity (92%) in detecting COVID-19. The AUC 
values for COVID-19 and pneumonia were 0.91 and 0.87, 
respectively (Table 2).

Both ROC and AUC curves played a central role in 
evaluating the diagnostic ability of tests to show the true state 
of the disease condition, finding the optimal cut-off values 
(close to sensitivity of 100%), and AUC was close to 1. 

Figure 5 reveals that ROC and AUC as alternative diagnostic 
tasks performed well in this case. 

While evaluating the model, we observed that there 
is a strong relationship between pneumonia and COVID-19 
(Figure 6). This may partly be explained by the fact that 
COVID-19 causes serious pneumonia.

Operationalizing the tool
We developed a website to operationalize the AI-based 

tool (www.helpus.ai). The website can be accessed and used 
by health facilities or medical professionals both domestically 
and internationally, provided they have computer access. New 
users will need to register and have their account verified 
before they will be granted a login ID to access the website. 
A webmaster will monitor and manage the system in order 
to protect it from unscrupulous use. A short online training 
program is included to enable new users to use the detection 
tool. The system is user-friendly and consists of a minimum 
interface. Authorized users can upload a digital CXR image to 
be tested on the website. The program will detect if a valid CXR 
image (PAV) has been uploaded; otherwise, it will reject it. If a 
valid image has been submitted, the results of the test will be 
displayed instantly. Our system is tuned to display “positive” 

Table 2. 
Validation results of the Tool

Type of Data Sensitivity, % Specificity, % AUC

COVID-19 (n=24) 90 92 91

Normal (n=234) 8 8 84

Pneumonia (n=390) 86 88 87

Fig. 4. Power of VGG16 in detecting COVID-19 
images accurately. 

Fig. 6. Relationship between Covid-19 and Pneumonia.

Fig. 5. ROC and AUC curves for the diagnostic tests. 
(Note: Class 0 is covid-19, class 1 is Normal and class 2 
is Pneumonia)
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or “negative” results along with a percentile probability of 
that image, whether it is COVID-19, pneumonia, or normal. 
The entire process can take from a few seconds to a couple 
of minutes, depending on the computer and connection speed 
of the user. The data provided by the users can be stored in 
our cloud-based server while maintaining security and privacy 
protocols. The data can be retrieved by users and are accessible 
by the research team for future analysis.

Discussion
The pace of transmission of different variants of 

COVID-19 is so exponential that many health systems are 
facing an uphill battle to cope with the testing of COVID-19 and 
detection of COVID-19-induced pneumonia.(1,6) Traditionally, 
CXR is part of the routine check-up for patients with respiratory 
symptoms, and digital imaging is widely accessible, even 
in resource-poor healthcare settings. Therefore, integrating 
the proposed AI-based tool will help healthcare providers to 
analyze a combination of chest radiography in their existing 
general practice. Our results provide evidence that this AI-
based tool has the potential to improve the quality and accuracy 
of the radiologic interpretation of COVID-19 pneumonia. 
We also believe that it can be acceptable to both healthcare 
workers and patients and can become relatively inexpensive, 
compared to other diagnostic methods. Intensive efforts have 
been made in recent years to generate evidence suggesting that 
the examination of radiologic images is an effective method 
for diagnosing COVID-19. Others have demonstrated that 
AI technology is able to read CXR and CT scans to detect 
different lung diseases, especially pneumonia, lung cancers, and 
tuberculosis. However, the main challenges are either getting a 
radiologist to interpret the chest radiographs or even the inability 
to differentiate COVID-19 pneumonia from other CAP if the 
radiologist is not trained in reading the COVID-19 radiographs. 
In our study, we demonstrated that a fully developed AI-based 
tool could read any chest radiographs with high precision. We 
have also operationalized the tool via user-friendly software, 
which instantly displays the correct result once the CXR is 
scanned. The software can be operated by any service provider 
having basic IT knowledge. During the evaluation, our AI-based 
tool showed excellent performance with high sensitivity (90%) 
and specificity (92%) in detecting COVID-19 pneumonia. 
The AUC values for COVID-19 and pneumonia were 0.91 
and 0.87, respectively. Our result corroborates the outcomes 
of other similar efforts where machine learning models were 
trained to diagnose COVID-19. However, most of those studies 
were limited in their scope and dataset. Only a couple of studies 
had relatively larger datasets with varying degrees of precision. 
Some studies also trained the machine learning tools to detect 
COVID-19 by analyzing CT scans.

In Bangladesh, digital imaging is available almost 
everywhere, both in rural and urban clinics. Due to technological 
advancements, good-quality digital imaging machines are also 
in good supply. There are even mobile imaging units in the 
most remote areas of the country, which allows the clinicians 
to get the chest imaging done as and when they need it. In 
our study, we systematically validated the tool by using real-

life data from two hospitals in Bangladesh. We also included 
a good number of CXRs of random patients with no known 
chest symptoms to train and test our tool to differentiate the 
non-pneumonia or “normal” cases from the pneumonia ones. 

During the testing and validation, our AI-based tool 
performed very well in identifying COVID-19 by analyzing 
the 2D chest radiology PAV. We further evaluated the AI tool 
by using CXRs of COVID-19 patients from two Bangladeshi 
hospitals. We demonstrated that our tool had high sensitivity 
and specificity, which conforms to previous studies.(6-9,16-18) 

However, the uniqueness of our model is that it is simple and 
is able to differentiate three scenarios – COVID-19 pneumonia, 
CAP, and those with no obvious abnormalities – by analyzing 
readily available digital CXR instead of CT scans which, in 
turn, could easily be integrated into the regular medical practice. 

Although our AI-based tool was able to detect 
COVID-19 accurately, this research has some limitations. 
As COVID-19 is caused by a type of coronavirus, it may 
produce changes in the chest imaging similar to CAP. This 
tool may sometimes give incorrect results only if the image 
quality is too poor. However, during our validation process, 
it consistently produced highly accurate results for randomly 
selected CXR images. Another limitation is that due to the 
limited availability of data, we were unable to evaluate the 
tool with real-time Bangladeshi data extensively. Lastly, the 
tool focuses only on detecting the existence of COVID-19, not 
the severity of the disease.

Conclusion
In this study, we developed a simple, non-invasive, 

AI-based tool to diagnose COVID-19 pneumonia by using 
traditional CXR, which can assist the government and the 
private healthcare workers who are attempting to triage both 
symptomatic and asymptomatic COVID-19 patients. We 
demonstrated that our AI-based tool is effective in detecting 
COVID-19 and can differentiate COVID-19 from other CAP 
by analyzing CXRs. Therefore, it gives a glimpse of hope to 
the policy-makers and service providers who are striving for 
an alternative diagnostic tool to screen, detect and triage the 
mass population for COVID-19. However, further validation 
of this tool may be needed with larger datasets before 
operationalizing it nationwide.  
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