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Abstract

Inflammatory mediators play an important function in a variety of disorders. IL-13 tightly

regulates immune responses, notably those associated with allergies and inflammatory

reactions. Predicting interleukin-13 (IL-13) activity is critical since it can be used to

identify those who are more likely to develop IL-13-driven illnesses such as asthma and

atopic dermatitis. Because the major goal of this study is to construct an accurate

Interleukin-13 prediction model utilizing ensemble machine learning methods, we

present an enhanced prediction of IL-13-inducing peptides here. The positive and

negative datasets were collected from a recent study (IL13Pred), and feature extraction

was performed using the ILearnplus package. We used the Best Peptide Sequence

Extractor and reported the results of various techniques individually. The data collection

was unbalanced, therefore we used the Adasyn Algorithm to balance it. For feature

selection, modern feature engineering approaches (Recursive Shapley Value) were

used.The results show that when utilizing our StackingClassifier, specific feature sets as

CKSAAP, DPC, CTDC, and CTraid may be used to accurately classify data.Our

StackingClassifier has improved in terms of accuracy, AUC, and MCC value. Machine

learning techniques for interleukin-13 prediction contribute to a better knowledge of IL-13

and its possible consequences in healthcare. It improves the accuracy and reliability of

Interleukin-13 prediction, allowing for more informed medical decisions to be made for

better patient care and treatment outcomes. This study's successful conclusion

increases our understanding of IL-13 prediction while also highlighting the potential of

machine learning technologies in addressing complicated biological challenges.
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CHAPTER ONE

1.1 Background

Interleukin-13 (IL-13) is a cytokine of big significance in bioinformatics research.
Bioinformatics offers a range of computational equipment and tactics to reading IL-13,
which include gene and protein sequence analysis, shape and characteristic prediction,
correlation detection, and discovery of correlations. its interplay with different molecules.
This finds out about affords treasured records on the relationship between IL-13 and a
variety of diseases, evolutionary components and organic processes [7].

In the subject of bioinformatics, gene sequencing performs an indispensable function in
IL-13 research. The researchers used pc equipment and algorithms to look at the DNA
or RNA sequences that code for IL-13. Sequence alignment strategies permit examining
IL-13 sequences between extraordinary species, perceive conserved regions, and
predict doable practical elements or regulatory motifs [8]. These analyzes furnish
treasured insights into the evolutionary conservation and genetic law of IL-13.

In addition to sequence analysis, bioinformatics researchers are focusing on predicting
the three-D shape of the IL-13 protein. Techniques such as homology modeling make it
less difficult to infer the shape of a protein with the aid of evaluating it with recognized
protein structures. Molecular dynamics modeling lets in simulation in silico kinetics and
folding of IL-13. These expected constructions furnish data about practical domains,
ligand binding sites, and attainable interplay interfaces with different proteins.

Bioinformatics additionally performs a necessary position in grasping the interactions of
IL-13 with different molecules. The researchers' aim used to be to pick out practicable
receptors or signaling pathways worried in IL-13-mediated responses and to predict
IL-13 binding websites and its affinity. with accomplice molecules. Molecular binding
methods enable modeling of IL-13 binding to different receptors or molecules of interest.
Molecular dynamics simulations in addition elucidate the dynamics and balance of these
interactions, offering perception into the underlying molecular mechanisms.
Bioinformatics lookup on IL-13 extends to its involvement in a number of ailments and
organic processes. Through genomic evaluation or large-scale transcriptome information
sets, researchers can discover genes or pathways worried in IL-13 in pathological
conditions. The integration of various datasets, which include gene expression profiles,
protein-protein interplay networks, and genetic variants, helps to perceive the underlying
mechanisms concerned in IL-13-associated diseases. such as asthma, allergic rhinitis or
inflammatory bowel disease. This research makes a contribution to a higher appreciation
of the position of IL-13 in pathogenesis and open doable possibilities for therapeutic
interventions.
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In summary, bioinformatics research of IL-13 consists of gene and protein sequencing,
shape and characteristic prediction, interplay research with different molecules, and
involvement of IL-13 in illnesses and disorders. organic process. The utility of
computational techniques and equipment in these research presents a complete
appreciation of the underlying molecular mechanisms of IL-13 and its practicable as a
therapeutic goal for these disorders. immune issues and more than a few infections.

1.2 Motivation of the research

There are numerous factors that use bioinformatics methods that are expecting
interleukin-thirteen (IL-13) behavior and residences inside the discipline of Machine
Learning. IL-13 is a cytokine that plays a crucial role in numerous biological processes
which includes immune reaction, irritation and tissue restore. knowledge of the
complicated interactions and capabilities of IL-13 can provide treasured insights into the
development of healing procedures for various illnesses which include asthma, allergic
illnesses and positive styles of illnesses. most cancers.

System gaining knowledge of algorithms have verified to be very powerful in studying
huge organic records sets and extracting significant styles and relationships. by means
of harnessing the electricity of gadget learning in the context of IL-13 bioinformatics,
researchers can find hidden styles, discover ability biomarkers, and higher apprehend
the molecular mechanisms that motive illnesses related to IL-13. you may have a deeper
know-how.
The predictive energy of system studying models helps identify new drug targets and
broaden customized clinical techniques. accurately predicting IL-13 conduct lets in
researchers to apprehend the effectiveness of various healing interventions and optimize
remedy strategies for individual sufferers. this could revolutionize the sector of precision
remedy, permitting healthcare companies to customize remedies based at the particular
wishes and traits of every patient.

Similarly, the mixing of gadget learning and bioinformatics could accelerate the drug
improvement process. the usage of computational fashions and predictive algorithms,
researchers can search huge libraries of compounds and prioritize capacity drug
candidates for in addition experimental validation. This elevated drug discovery
procedure has the capability to seriously reduce the prices, time, and assets related to
traditional trial and blunders methods

In precise, the dynamics of the usage of gadget learning to predict interleukin-thirteen
bioinformatics will enhance our understanding of IL-13 related illnesses, identify healing
targets, optimize techniques of treatment and accelerate drug improvement. springing up
from ability. Through combining the strength of gadget-gaining knowledge of algorithms
with the significant number of organic statistics to be had, researchers can benefit from
precious insights that could exchange and enhance health care. affected person final
results.
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CHAPTER TWO

2.1 Introduction

IL-13 (Interleukin-13) is a cytokine, which is a tiny protein that plays a function in cell
signalling and communication within the immune system. It is produced by many
immune cells, including T helper 2 (Th2) cells, mast cells, and eosinophils.

Immune responses, particularly those connected to allergy and inflammatory reactions
(McKenzie et al,. 1993), are tightly regulated by IL-13. It increases the development and
activation of many immune cells, including B cells, T cells, and macrophages, and can
also influence the activity of epithelial and endothelial cells.

Particularly, IL-13 plays a role in the pathogenesis of a number of allergic illnesses like
asthma and atopic dermatitis as well as inflammatory illnesses like inflammatory bowel
disease. For these conditions, IL-13 signalling targeting has emerged as a crucial
therapeutic strategy.

Interleukin-13 (IL-13), a cytokine that promotes inflammation, is discussed in the study
(Ningjing et al., 2021) in relation to cardiovascular diseases (CVDs). The heart's reaction
to both acute and long-term injury is characterised by inflammation, although the
molecular underpinnings and underlying mechanisms are poorly known. IL-13 has been
linked to a number of CVDs, including myocarditis, myocardial infarction, and heart
failure, according to recent investigations.

Predicting interleukin-13 (IL-13) activity is crucial because it can be used to spot those
who are at a higher risk of contracting IL-13-driven disorders including asthma and
atopic dermatitis (Corren et al., 2013). Healthcare professionals can track the
development of disease and modify treatment regimens by identifying raised IL-13 levels
or enhanced IL-13 activity. Predicting IL-13 activity can also help with the creation of
specialised treatments for certain illnesses. Patients with high levels of IL-13 activity, for
instance, may be more likely to respond to biologic medications that block IL-13
signalling, such as dupilumab, which is licensed for the treatment of atopic dermatitis
and asthma(Rael et al., 2011). This can lessen the possibility of negative effects and
increase treatment outcomes. Predicting IL-13 activity can also help with the creation of
new treatments for illnesses that are IL-13-mediated. Understanding the mechanisms
underlying IL-13 activity will help researchers find novel therapeutic targets and increase
the variety of treatments available to patients.

There are many ways to predict interleukin 13, including experimental techniques like
ELISA assays and Flow cytometry, as well as some computational techniques like
Molecular Docking and Molecular Dynamics Simulations.
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2.2 Literature Review

In biomedical research, machine learning is a crucial technique that enables the study of
huge and complicated information. Machine learning algorithms can find patterns and
relationships in data that aren't always obvious and can be used to forecast outcomes or
categorise data based on certain characteristics. Finding previously undiscovered
correlations between biological parameters is one of machine learning's key advantages
in biomedical research. For instance, new biomarkers for disease diagnosis and
prognosis can be found using machine learning algorithms. Drug targets can also be
predicted based on the molecular characteristics of a disease. The capability of machine
learning to handle huge and complicated datasets is another benefit. The application of
machine learning in biomedical research has drawbacks as well. The calibre of the data
being evaluated is one restriction. Large, high-quality datasets are necessary for
machine learning algorithms to work well, and noisy or missing data might result in
incorrect predictions or classifications.

ELISA, flow cytometry, and western blotting are examples of experimental tests used to
forecast IL-13 activity. In computational approaches, a big collection of gene expression
or protein structure data is analysed using machine learning algorithms. These
techniques can be used to pinpoint prospective treatment targets and forecast the
impact of IL-13 on various cell types and tissues.One essential TH2 cytokine, IL-13, is
responsible for many significant aspects of airway remodelling and inflammation in
allergic asthma patients (Oshima et al., 2001). Anti-IL-13 mAbs and IL-4 receptor
antagonists are two promising focussed treatments for asthma that target the
IL-13/IL-4/Signal Transducer and Activator of Transcription 6 pathway (Ingram et al.,
2012) . IL-13 may play a significant role in the emergence of allergy disorders [3]. In a
different study, researchers reported differential expression levels of 14 cytokines,
including IL-13, in healthy controls, moderate COVID-19 patients, and they found that
the severity of COVID-19 was directly correlated with the greater level of IL-13
expression (Yang et al,. 2020)]. In contrast to non-PAH controls, [Yuan et al.,] address
the higher levels of IL-13 in blood and lung tissue in both animal models of PAH and
patients with PAH.

In this paper, we provide a stacking classifier that uses the LR, RF, SVM, XGB, DT, and
LGBM models to distinguish between peptides/epitopes that induce IL-13 and those that
do not. We used experimentally verified human IL-13 triggering and non-triggering
peptides from IEDB. We applied several cutting-edge machine learning classifiers to this
dataset and assessed the model's performance.
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CHAPTER THREE
RESEARCH METHODOLOGY

3.1 Overview

This study used machine learning methods to estimate the levels of interleukin-13
(IL-13). Data collection, feature extraction using AAC, APAAC, and DPC techniques,
addressing the problem of unbalanced data through the use of ADASYN, and feature
selection using SHAP(Shapley Additive explanations) were all part of the research
approach. For the purpose of predicting IL-13, multiple machine learning algorithms were
trained using the chosen features. This chapter will look at,

❖ Data collection
❖ Feature Extraction
❖ Addressing Data Imbalance
❖ Feature Selection
❖ Splitting Data for Train - Test
❖ Applying Machine learning Knowledge

3.2 Methodology
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3.3 Data Collection Process

In order to build the interleukin-13 prediction model (StackIL13), we obtained a
benchmark dataset from an article on IL-13Pred that had already been published. The
IEDB, the biggest collection of immunological epitopes, served as the source of this
dataset. It includes 2908 experimentally proven non-IL-13 producing peptides/epitopes
in addition to 313 experimentally validated peptides/epitopes that induce IL-13. I used
Adysan to do Data balancing because the sequence numbers of the positive
(IL-13-inducing peptides) and negative cases were so drastically out of balance.

3.4 Feature Extraction

The process of turning raw or highly dimensional data into a condensed set of significant
and representative features is referred to as feature extraction. It entails choosing or
developing a subset of pertinent features that capture the crucial data needed for a
specific job or study. By concentrating on the most informative parts of the data, feature
extraction tries to streamline data representation, increase interpretability, decrease
dimensionality, and boost the efficiency of machine learning algorithms.

For feature extraction, the iLearnPlus Python library was utilized in this study. The
development of automated machine-learning pipelines for computational analysis and
predictions utilizing nucleic acid and protein sequences is made possible by iLearnPlus,
the first machine-learning platform with both a graphical and web-based user interface.
To the best of our knowledge, iLearnPlus integrates 21 machine-learning algorithms,
more than any other web server or standalone tool currently available for biological
sequence analysis. These algorithms include 12 traditional classification algorithms, two
ensemble-learning frameworks, and seven deep-learning approaches.

3.4.1 AAC(Amino Acids Composition)

The relative frequencies are referred to as an amino acid sequence's makeup. The
sequence contains varying quantities of the various amino acids. if the abundance of
each amino acid is determined and the findings are vectorial.

3.4.2 APAAC

APAAC, or Amphiphilic Pseudo-Amino Acid Composition, is a term used in
bioinformatics. Protein sequences are quantitatively represented using the feature
encoding technique known as APAAC for machine learning and computational analysis.

The physicochemical characteristics and information on the amino acid sequence order
of proteins are both captured by APAAC. It takes into account the arrangement of the
amino acids in the sequence as well as their hydrophobic and hydrophilic characteristics.
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In this method, a fixed-length feature vector contains both local and global sequence
information.

3.4.3 CKSAP

The feature encoding technique CKSAP (Composition of k-spaced Amino Acid Pairs) is
widely utilized in bioinformatics. In protein sequences, it captures the pairwise
connections between amino acids. When calculating the frequency of k-spaced amino
acid pairs, CKSAP takes into account the number of places in the sequence that
separate the two amino acids. With the use of this method, tasks like protein
categorization, structure prediction, and function prediction may be performed using a
representation that takes into account both the order and spacing of amino acids.

3.4.4 TPC

TPC (Tri-Peptide Composition) is a feature encoding approach for representing protein
sequences in the context of bioinformatics. Tri-peptides, which are repeated sequences
of three amino acids, are calculated using TPC to determine their frequency of
occurrence. This method helps to capture crucial structural and functional information in
proteins while capturing local sequence patterns. In machine learning methods for
applications like protein classification, protein-protein interaction prediction, and protein
structure prediction, TPC is frequently used as a feature representation.

3.4.5 CTDC

Protein sequences are represented by the feature encoding technique CTDC
(Composition Transition Distribution Complement) in bioinformatics. A protein
sequence's distribution of amino acid compositions and their transitions are captured by
CTDC. It takes into account both the structure of amino acids and their chronological
arrangement. A succinct representation that includes both local and global sequence
data is offered by CTDC. Machine learning algorithms frequently use this feature
encoding technique for applications including predicting protein subcellular localization,
identifying protein folds, and predicting protein function.

3.4.6 CTraid

Using the bioinformatics program CTraid, one may locate conserved areas in protein
sequences. It is based on the idea of hidden Markov models (HMMs), statistical models
that can be used to depict the likelihood that an amino acid sequence would occur.
CTraid makes use of a collection of HMMs that stand in for conserved areas in
well-known protein sequences. When a new protein sequence is uploaded to CTraid, the
program analyzes it against a library of HMMs to find any potentially conserved areas.
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3.4.7 DPC

DPC is an abbreviation for "dipeptide composition." Dipeptide composition is another
feature representation frequently employed in protein and peptide analysis, similar to
amino acid composition (AAC). The dipeptide makeup of the sequence is represented by
the generated DPC feature vector. The frequency or percentage of each dipeptide is
represented by a vector element.

3.4.8 Moran

The association between a variable's values at each site and those at neighboring
places is determined by the Moran's I formula. The spatial autocorrelation pattern of a
variable can be captured and features that reflect the spatial characteristics of the data
can be extracted using Moran's I.

3.4.9 PAAC

The acronym "PAAC" stands for "Pseudo Amino Acid Composition." This feature
representation is frequently used in protein and peptide analysis in the context of
bioinformatics and machine learning. The amino acid composition (AAC) is an extension
of the amino acid composition (PAAC), which captures additional information about the
peptide sequence by taking into account the physicochemical properties of amino acids.

3.5 Data Balance

Machine learning approaches used to balance out datasets that have an uneven
distribution of classes are known as data balancing. By either raising the minority class
samples (oversampling) or decreasing the majority class samples (undersampling), it
seeks to alter the class representation to improve model performance. As a result, bias
is reduced and effective learning from all classes is made possible.

The use of data balancing procedures is essential for verifying the validity and
importance of our findings given the study work's extremely unbalanced dataset. We can
reduce biases and improve the overall accuracy and dependability of our research
findings by resolving the class imbalance issue through appropriate data balancing
procedures. I started using Adasyn to balance the unbalanced data of this work.

3.5.1 Adasyn

An extensively used method for data balancing to address class imbalance in machine
learning is ADASYN (Adaptive Synthetic Sampling). By taking into account the density
distribution of the minority class, it is a version of the SMOTE algorithm that aims to
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improve the creation of synthetic samples. Based on the density distribution of the
minority class, ADASYN modifies the production of synthetic samples. It prioritizes
lower-density locations and generates more synthetic samples for samples that are more
difficult to accurately represent. This flexibility helps to improve the overall balance of the
dataset and decrease the impacts of class imbalance.

3.6 Feature Selection

The process of choosing a smaller subset of pertinent features from a larger collection of
available features in a dataset is known as feature selection in machine learning. Finding
the most discriminative and informative characteristics that significantly improve a
machine learning model's capacity for prediction is the aim of feature selection. By
concentrating on the most important features of the data, this technique reduces
dimensionality, increases model efficiency, reduces the danger of overfitting, and
enhances the model's interpretability.

Subsequently, SHAP (SHapley Additive exPlanations) was employed for feature
selection in this research. SHAP is a technique for selecting and interpreting features
that can be implemented in machine learning models. SHAP is predominantly utilized for
feature importance analysis and interpretation; however, it can indirectly aid in feature
selection by identifying the most influential features in a model's predictions.

There are many ways to predict interleukin 13, including experimental techniques like
ELISA assays and Flow cytometry, as well as some computational techniques like
Molecular Docking and Molecular Dynamics Simulations.

3.7 Experimental Methods

A popular experimental method for determining the amount of IL-13 in biological
materials such as blood, plasma, or cell culture supernatant is the enzyme-linked
immunosorbent assay (ELISA). Commercially accessible ELISA kits offer a rather easy
and affordable technique to measure IL-13 levels. The low sensitivity, constrained
dynamic range, and interference from other proteins in the sample are only a few of the
drawbacks of ELISA assays. Another experimental method for assessing IL-13 activity in
cells is Flow cytometry. In addition to measuring IL-13-induced alterations in downstream
signalling pathways, flow cytometry can be utilised to identify IL-13 expression on the
cell surface or intracellularly. However, because flow cytometry needs specific tools and
knowledge, it might not be practical for all laboratories.

3.8 Computational methods

Additionally, we can forecast Interleukin 13 using computational techniques like
Molecular Docking and Molecular Dynamics Simulations.A computational technique
called molecular docking makes predictions about the affinity of a ligand (like IL-13) for a
receptor (like the IL-13 receptor) based on the three-dimensional (3D) structures of both
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molecules. Potential therapeutic candidates that can inhibit or boost IL-13 activity can be
found through molecular docking. The precision of the protein-ligand interaction models
and the availability of high-resolution protein structures, however, are constraints for
molecular docking (Dhall.,et al 2021) . Protein conformational changes and the dynamics
of protein-ligand interactions over time can be predicted using molecular dynamics
simulations. In order to understand how IL-13 binds to its receptor and the subsequent
signalling pathways involved, molecular dynamics simulations can be performed.
However, setting up and analysing molecular dynamics simulations requires enormous
computer resources.

3.9 Machine learning Methods

Interleukin-13 (IL-13) activity can be predicted using a variety of machine learning
models, including

3.9.1 RF

For classification and regression tasks, a well-liked machine learning technique called
random forest is used. Multiple decision trees are combined in this ensemble learning
technique to produce predictions. The fundamental principle of random forest is to build
many decision trees, each trained on a random subset of the data and characteristics.
This improves the precision and robustness of the predictions while reducing overfitting.
The main steps in creating a random forest model are listed below.

Data preparation -> Random sampling -> Random feature selection -> Building
decisions trees -> Aggregating predictions

Using a collection of input features and the ensemble learning algorithm RF, IL-13
activity may be classified. In various research, including the prediction of IL-13 response
in atopic dermatitis patients, RF has been utilised to predict the activity of IL-13. In
comparison to other machine learning methods, random forest provides a number of
benefits, including high accuracy, robustness, non-parametric, and feature importance

3.9.2 LR

A statistical technique called logistic regression is used to examine the relationship
between a categorical dependent variable and one or more independent variables. It is a
sort of regression analysis frequently used for classification tasks, like determining
whether or not to forecast that a consumer would purchase a product or whether or not
to determine whether an email is spam. The fundamental goal of logistic regression is to
simulate the link between the independent factors and the dependent variable's
probability, which has only two possible values (for example, 0 or 1). The linear
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combination of the independent variables is transformed into a probability value between
0 and 1 using the logistic function, also referred to as the sigmoid function.

The Mathematical notations for Logistic regression given below

p(y = 1|x) = σ(β0 + β1*x1 + β2*x2 + ...)

σ(x) = 1 / (1 + exp(-x)) [ Logistic Function ]

Where,

p(y = 1|x) is the probability of the outcome being 1, given the values of the
predictors x

σ() = is the logistic function [ σ(x) = 1 / (1 + exp(-x)) ]

β0 = the intercept term

β1, β2 = are the coefficients for the predictors x1, x2

The building steps of a logistic regression model given below

Data preparation -> Model fitting -> Model evaluation -> Prediction

LR is a supervised algorithm that can be used to forecast interleukin-13 (IL-13) activity in
logistic regression. When attempting to predict whether a sample belongs to one of two
classes, such as IL-13 responsive or unresponsive, logistic regression is frequently
used. The logistic regression model is a linear one, therefore it might not be able to
capture intricate non-linear correlations between the input data and the output class.
Additionally, logistic regression makes two assumptions that may not always hold true in
practice: that the input features are independent, and that the relationship between the
characteristics and the output class is monotonic.

3.9.3 SVM

A strong and popular machine learning algorithm for both classification and regression
problems is called Support Vector Machine (SVM). It operates by identifying the
hyperplane in a high-dimensional space that best classifies the data into distinct groups
or accurately predicts the dependent variable in a regression issue. SVM is more robust,
effective in high-dimensional domains, memory-efficient, and versatile than other
machine learning methods.

The mathematical equations of SVM can be described by given below terms,

Hyperplane equation: In Support Vector Machines (SVMs), the hyperplane equation is
essential because it establishes the decision boundary that divides the data points into
various classifications.
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w^T * x + b = 0 [Hyperplane equation]

Here,

w = weight vector orthogonal to the hyperplane.

x = input feature vector.

b = bias term (intercept).

Margin: The margin is the separation between each class's closest data points and the
hyperplane. SVM aims to increase this margin as much as possible.

margin = y_i * (w^T * x_i + b)

Here,

x_i = A data point.

y_i = corresponding class label (-1 or 1).

Decision function: The decision function is applied to forecast a new data point's class
label. We can define decision function by given below format,

f(x) = sign(w^T * x + b)

Here,

f(x) = Decision function

Hyperplane equation = w^T * x + b

sign() = SVM transforms the continuous output (wT * x + b) into discrete class labels
using the sign function.

SVM is a supervised learning method that can categorize IL-13 activity based on input
properties like protein structures or gene expression levels. An SVM model can be
trained to predict the activity of interleukins, such as interleukin-13 activity, given a set of
features (such as physicochemical qualities or sequencing information). By transforming
the data into a higher-dimensional space where they are more easily separable, kernel
functions allow SVM to handle nonlinear correlations between the features and
interleukin activity. In a number of studies, including the prediction of IL-13 activity, SVM
has been applied.

Data preparation -> Feature selection -> Model training-> Model evaluation ->
Prediction
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3.9.4 XGBoost

Extreme Gradient Boosting, or XGBoost, is a well-liked and very efficient machine
learning technique that can be used for both classification and regression applications. It
is a variation of gradient boosting that makes predictions by combining a number of
different decision trees. The primary processes in creating an XGBoost model are listed
below.

The Objective function, gradient descent are all included in the XGBoost formulas.

1. Objective function:

O(θ) = L(θ) + Ω(θ)

Here,

L(θ) = loss function that measures the model's fit to the training data

Ω(θ) = regularization term

2. Gradient descent:

θ_new = θ_old - η∇L(θ_old)

Here,

η = learning rate

∇L(θ_old) = gradient of the loss function at θ_old

Data preparation -> Model fitting -> Regularization -> Model evaluation ->
Prediction

XGBoost is faster and more scalable than other machine learning algorithms, which are
only a few of its advantages. extremely accurate and comprehensible.In machine
learning, XGBoost is a potent method, especially for structured data and tabular
datasets. An effective machine learning algorithm for predicting interleukin-13 (IL-13)
activity is called XGBoost. The name "eXtreme Gradient Boosting" (XGBoost) refers to
an improved application of the gradient boosting algorithm.The effectiveness of the
XGBoost model will be influenced by the caliber and volume of the input data, the choice
of pertinent features, and the selection of hyperparameters. Because of this, it's crucial
to carefully preprocess and choose your data, as well as to use cross-validation
techniques to adjust the XGBoost model's hyperparameters.
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3.9.5 LGBM

A machine learning algorithm called LGBM (Light Gradient Boosting Machine) is
intended to outperform conventional gradient boosting techniques, especially for large
and complicated datasets. Similar to Random Forest in that it makes use of a decision
tree framework, LGBM is a form of gradient boosting technique that takes a different
approach to tree construction. The main steps of LGBM given below

Data preparation -> Decision tree framework -> Gradient boosting -> Light
optimization -> model evaluation -> Prediction

By developing a machine learning model that incorporates information on the molecular
characteristics and features of interleukin 13 and outputs a prediction of its activity,
LGBM can be used to predict interleukin 13 activity. A dataset of known interleukin 13
activity values and associated features can be used to train the model. In situations
where conventional experimental approaches may be time-consuming or unworkable,
LGBM can be a helpful tool for forecasting interleukin 13 activity.

3.9.6 Stacking classifier

A form of ensemble learning method used in machine learning called stacking classifier
combines several base models to increase the prediction's overall accuracy. Additionally
called stacked generalization.

In a stacking classifier, multiple separate models are trained on the same data and their
predictions are combined to generate the final prediction, as opposed to merely utilising
one base model to make predictions. This is accomplished by developing a meta-model
that uses the predictions from the underlying models as input to generate the final
prediction. Numerous elements, including genetic, environmental, and lifestyle factors,
have an impact on interleukin 13 expression. It can be challenging to adequately predict
each of these variables with a single algorithm. A stacking classifier allows us to
combine the benefits of various algorithms to provide predictions that are more
precise.On our data, we may train a variety of basic models, including Random Forest,
Support Vector Machines, Gradient Boosting, LR, DT, and KNN. These models might
each perform admirably on certain aspects of the data while failing miserably on others.
We can lower the overall error and raise the precision of the final prediction by merging
the predictions of various models.

In order to find patterns and associations that can be used to predict IL-13 levels or
activity, machine learning models can be trained on vast databases of biological data,
including gene expression profiles, protein interactions, and clinical outcomes. To
increase the precision and robustness of the predictions, these models can use a variety
of features or inputs, including patient demographics, genetic variations, environmental
factors, and illness state. Machine learning can be a powerful tool to predict IL-13 levels
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or activity and improve our understanding of its role in a variety of biological processes
and diseases, in addition to providing early detection, personalised medicine, and drug
discovery.

On the other side, machine learning strategies can be utilised to get around some of
these restrictions and enhance the prediction of IL-13 interactions. Incorporating more
information, learning from sizable datasets, addressing flexibility and dynamics, and
enhancing speed and scalability are a few ways machine learning might improve the
accuracy of IL-13 predictions. To augment molecular docking and get around some of its
limitations in predicting IL-13 interactions, machine learning can be used.
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CHAPTER 4
RESULTS AND DISCUSSION

We used a variety of evaluation measures in this work to evaluate the effectiveness of
the classifiers. Here is a quick summary of each metric.

Accuracy: An indicator of accuracy is the percentage of accurately predicted instances
among all instances. It shows how well the classifier performed overall.

The Matthews Correlation Coefficient (MCC), which accounts for true positives, true
negatives, false positives, and false negatives, assesses the accuracy of binary
classifications. Its value falls between -1 and +1, with +1 denoting flawless predictions, 0
denoting random predictions, and -1 denoting complete discrepancy between predictions
and actual results.

AUC: The capacity of a classifier to discriminate between positive and negative classes
is measured by the area under the receiver operating characteristic (AUC) curve. Higher
numbers correspond to better performance, and the scale runs from 0 to 1.

Sensitivity: The proportion of accurately predicted positive instances among all actual
positive instances is known as the True Positive Rate (TPR), often referred to as Recall.

Specificity: Specificity, also referred to as the True Negative Rate (TNR), is the
percentage of all negative events that were accurately predicted.

TABLE 1 | Performance comparison of single features (AAC) on imbalanced
training dataset by using various Classifiers

Classifier Accuracy MCC AUC Sensitivity Specificity

LogisticRegression 0.902950311 0 0.5 1 0

RandomForestClassifier 0.913043478 0.306579757 0.557355116 0.998710232 0.116

SVC 0.904503106 0.120289956 0.508 1 0.016

XGBClassifier 0.907608696 0.270526262 0.572196045 0.988392089 0.156

DecisionTreeClassifier 0.864130435 0.256945067 0.633802236 0.919604471 0.348

KNeighborsClassifier 0.895962733 0.131955204 0.533616509 0.983233018 0.084

LGBMClassifier 0.913043478 0.359812866 0.616261393 0.984522786 0.248

StackingClassifier 0.920419255 0.420317533 0.63105589 0.99011178 0.272

The evaluation metrics for eight different classifiers (0 to 7) are shown in the table along
with the relevant values for accuracy, MCC, AUC, sensitivity, and specificity. The
classifiers include Decision Tree, K-Nearest Neighbors, LightGBM, Random Forest,
XGBoost, Logistic Regression, and Stacking Classifier. The Stacking Classifier
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outperforms the other classifiers in terms of accuracy (0.920) and MCC (0.420),
showing superior overall performance and predictive power. The Decision Tree Classifier
displays a comparatively high AUC (0.634), demonstrating good capacity to differentiate
between positive and negative classes. The classifiers with the lowest specificity values,
SVC and K-Nearest Neighbors, may have trouble accurately predicting the negative
class.

TABLE 2 | Performance comparison of single features (APAAC) on imbalanced
training dataset by using various Classifiers

Classifier Accuracy MCC AUC Sensitivity Specificity

LogisticRegression 0.906055901 0.180171915 0.526710232 0.997420464 0.056

RandomForestClassifier 0.906832298 0.190417353 0.52 1 0.04

SVC 0.909549689 0.248613191 0.534 1 0.068

XGBClassifier 0.906055901 0.17715641 0.524925193 0.997850387 0.052

DecisionTreeClassifier 0.847437888 0.164045657 0.585288048 0.910576096 0.26

KNeighborsClassifier 0.909549689 0.256038776 0.550065348 0.996130696 0.104

LGBMClassifier 0.906055901 0.189925838 0.532065348 0.996130696 0.068

StackingClassifier 0.916537267 0.357547089 0.582495271 0.996990542 0.168

According to the accuracy metric in the table, the classifiers' overall performance seems
to be rather strong, with accuracies ranging from roughly 84.7% to 91.7%. The
percentage of accurate predictions made by the classifier relative to all samples in the
dataset is known as accuracy. With the exception of the DecisionTreeClassifier, which
had an accuracy of roughly 84.7%, the classifiers all reached accuracy levels above
90%. This shows that a large chunk of the dataset can be correctly predicted by the
majority of the classifiers. The StackingClassifier outperformed all other classifiers in
terms of producing accurate predictions, achieving the maximum accuracy of 91.7%.
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TABLE 3 | Performance comparison of single features (CKSAAP) on imbalanced
training dataset by using various Classifiers

Classifier Accuracy MCC AUC Sensitivity Specificity

LogisticRegression 0.902950311 0 0.5 1 0

RandomForestClassifier 0.906444099 0.18382865 0.525140155 0.99828031 0.052

SVC 0.904891304 0.136161081 0.513570077 0.999140155 0.028

XGBClassifier 0.904114907 0.135240244 0.518495271 0.996990542 0.04

DecisionTreeClassifier 0.87189441 0.231100676 0.609540843 0.935081685 0.284

KNeighborsClassifier 0.29076087 0.095978494 0.566209802 0.224419604 0.908

LGBMClassifier 0.920419255 0.41324962 0.620345658 0.992691316 0.248

StackingClassifier 0.918090062 0.391792127 0.615485813 0.990971625 0.24

A feature extraction technique known as CKSAAP (Composition of k-Spaced Amino Acid
Pairs) is used in bioinformatics and machine learning to describe protein sequences for
classification tasks. The classifiers' accuracy levels ranged from about 29.1% to 92.0%.
The KNeighborsClassifier had the lowest accuracy, while the StackingClassifier and
LGBMClassifier excelled. The MCC values were between -0.095 to 0.413. The highest
MCC values were attained by the StackingClassifier and LGBMClassifier, suggesting
strong overall performance. The range of specificity was 2.8% to 90.8%. With the highest
specificity and the ability to correctly identify negative cases, the KNeighborsClassifier
stood out.

TABLE 4 | Performance comparison of single features (TPC) on imbalanced
training dataset by using various Classifiers

Classifier Accuracy MCC AUC Sensitivity Specificity

LogisticRegression 0.902950311 0 0.5 1 0

RandomForestClassifier 0.911102484 0.275757862 0.549140155 0.99828031 0.1

SVC 0.904503106 0.123111498 0.511570077 0.999140155 0.024

XGBClassifier 0.904114907 0.108840175 0.509570077 0.999140155 0.02

DecisionTreeClassifier 0.88431677 0.274627098 0.623559759 0.947119518 0.3

KNeighborsClassifier 0.224767081 0.098117757 0.55644196 0.144883921 0.968

LGBMClassifier 0.903726708 0.085024792 0.504 1 0.008

StackingClassifier 0.92197205 0.423865844 0.61228031 0.996560619 0.228
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The classifiers' accuracy levels ranged from about 22.5% to 92.2%. The
KNeighborsClassifier had the lowest accuracy, while the StackingClassifier did the
best.The AUC values were between 0.504 and 0.623. The highest AUC, indicating
higher discriminative power, was attained by the DecisionTreeClassifier. Overall, various
measures for the StackingClassifier and RandomForestClassifier exhibited promising
results, indicating their potential applicability for the specified classification task. The
StackingClassifier's excellent accuracy shows that it can successfully aggregate the
predictions of various base classifiers. This is a noteworthy finding since it shows that
the StackingClassifier can build on each base classifier's advantages to provide
predictions that are more accurate than those made by any one classifier alone.

TABLE 5 | Performance comparison of single features (CTDC) on imbalanced
training dataset by using various Classifiers

Classifier Accuracy MCC AUC Sensitivity Specificity

LogisticRegression 0.9029503106 0 0.5 1 0

RandomForestClassifier 0.9079968944 0.2198134944 0.5349251935 0.99785038 0.072

SVC 0.9029503106 0 0.5 1 0

XGBClassifier 0.9079968944 0.2653836557 0.5670558899 0.99011177 0.144

DecisionTreeClassifier 0.8486024845 0.1775953388 0.5930730868 0.91014617 0.276

KNeighborsClassifier 0.900621118 0.1391343671 0.5290558899 0.99011177 0.068

LGBMClassifier 0.9126552795 0.3312473985 0.5928409286 0.98968185 0.196

StackingClassifier 0.9114906832 0.3247145761 0.5939810834 0.98796216 0.2

The accuracy, specificity, and sensitivity of various classifiers for a particular
classification task are displayed in the table. The CTDC (Continuous Time Dynamical
Composition) feature extraction approach is used to assess the classifiers. The
LogisticRegression() classifier has the lowest accuracy, specificity, and sensitivity, as
seen in the table. The classifiers' accuracy levels ranged from about 84.9% to 91.3%.
The DecisionTreeClassifier had the lowest accuracy while the LGBMClassifier fared the
best.Overall, the RandomForestClassifier() classifier comes in second place to the
StackingClassifier() classifier in terms of performance. According to CTDC, each
classifier performed their duties admirably.
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TABLE 6 | Performance comparison of single features (CTraid) on imbalanced
training dataset by using various Classifiers

Classifier Accuracy MCC AUC Sensitivity Specificity

LogisticRegression 0.8994565217 0.120442606 0.524840928 0.989681857 0.06

RandomForestClassifier 0.9048913043 0.151436379 0.520710232 0.997420464 0.044

SVC 0.9029503106 0 0.5 1 0

XGBClassifier 0.9033385093 0.060109931 0.502 1 0.004

DecisionTreeClassifier 0.849378882 0.115405060 0.556017196 0.920034393 0.192

KNeighborsClassifier 0.9017857143 0.101530659 0.515420464 0.994840928 0.036

LGBMClassifier 0.9048913043 0.206526640 0.545700773 0.991401547 0.1

StackingClassifier 0.9076086957 0.221097560 0.540065348 0.996130696 0.084

The CTraid (Composition of Traid) feature extraction outcomes and several classifier
performance metrics are shown in the table. The classifiers' accuracy levels ranged from
about 84.9% to 90.8%. The DecisionTreeClassifier had the lowest accuracy, while the
StackingClassifier did the best. The range of sensitivity values was roughly 92.0% to
100%. High sensitivity was shown by the SVC, XGBClassifier, and
DecisionTreeClassifier, demonstrating their capacity to recognize positive cases. Finally,
we can state that the LGBMClassifier and StackingClassifier both displayed encouraging
results across a number of measures, indicating a potential fit for the specified
classification objective.

TABLE 7 | Performance comparison of single features (DPC) on imbalanced
training dataset by using various Classifiers

Classifier Accuracy MCC AUC Sensitivity Specificity

LogisticRegression 0.9029503106 0 0.5 1 0

RandomForestClassifier 0.9072204969 0.2136098087 0.53806534 0.99613069 0.08

SVC 0.9033385093 0.07492556795 0.50557007 0.99914015 0.012

XGBClassifier 0.9048913043 0.1432100892 0.51714015 0.99828030 0.036

DecisionTreeClassifier 0.8792701863 0.2661535215 0.62433533 0.94067067 0.308

KNeighborsClassifier 0.6541149068 0.2019874519 0.66566638 0.65133276 0.68

LGBMClassifier 0.9142080745 0.3767585392 0.62583147 0.98366294 0.268

StackingClassifier 0.9184782609 0.4062782291 0.62998108 0.98796216 0.272

According to the accuracy metric in the table, the classifiers' overall performance varies
amongst the models. The classifiers' accuracy levels ranged from about 65.4% to
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91.8%. The KNeighborsClassifier had the lowest accuracy, only 65.4%, while the
StackingClassifier did the best, at 91.8%. When selecting the most effective classifier for
the task at hand, it is crucial to take additional performance indicators and special
requirements into account. The maximum accuracy (91.4% and 91.8%, respectively) and
comparatively high MCC and AUC values are displayed by these two classifiers. Their
sensitivity and specificity scores, however, are considerably dissimilar from one another,
indicating that they have varying degrees of accuracy in differentiating between positive
and negative samples. Understanding the causes of this variation can offer important
insights.

TABLE 8 | Performance comparison of single features (Moran) on imbalanced
training dataset by using various Classifiers

Classifier Accuracy MCC AUC Sensitivity Specificity

Classifier 0.90295031 0 0.5 1 0

LogisticRegression 0.89596273 -0.0019252298 0.4997007739 0.9914015477 0.008

RandomForestClassifier 0.90295031 0 0.5 1 0

SVC 0.90256211 -0.0064606547 0.4997850387 0.9995700774 0

XGBClassifier 0.82996894 0.040130875 0.5202785899 0.9045571797 0.136

DecisionTreeClassifier 0.89479813 -0.0057016722 0.4990558899 0.9901117799 0.008

KNeighborsClassifier 0.89402173 -0.019078272 0.4968409286 0.9896818573 0.004

LGBMClassifier 0.90295031 0 0.5 1 0

The classifiers' overall performance indicators are often lower for MORAN. While the
accuracy of classifiers based on DPC ranges from around 65.4% to 91.8%, that of
classifiers based on MORAN ranges from approximately 82.9% to 90.3%. In comparison
to DPC-based classifiers, MORAN-based classifiers typically have lower MCC, AUC,
sensitivity, and specificity values. The lower MORAN performance ratings imply that the
feature extraction method may not be properly capturing the discriminative patterns in
the data as DPC.

21 © Daffodil International University



TABLE 9 | Performance comparison of single features (PAAC) on imbalanced
training dataset by using various Classifiers

Classifier Accuracy MCC AUC Sensitivity Specificity

LogisticRegression 0.90566770 0.1851623858 0.5318503869 0.9957007739 0.068

RandomForestClassifier 0.90799689 0.2172362133 0.526 1 0.052

SVC 0.90916149 0.2401279721 0.5337850387 0.9995700774 0.068

XGBClassifier 0.90838509 0.2275525354 0.5369251935 0.9978503869 0.076

DecisionTreeClassifier 0.8365683 0.1374225494 0.5739140155 0.899828031 0.248

KNeighborsClassifier 0.90760869 0.2290806022 0.5454204643 0.9948409286 0.096

LGBMClassifier 0.90644409 0.1980390746 0.5340653482 0.9961306965 0.072

StackingClassifier 0.9149844 0.3383471289 0.5780653482 0.9961306965 0.16

The classifiers' accuracy levels ranged from about 83.7% to 91.5%. Indicating moderate
to significant agreement between predicted and actual classes, MCC values range from
0.137 to 0.338. AUC values between 0.526 and 0.578 imply a strong ability to distinguish
between positive and negative samples. The StackingClassifier, which has an accuracy
of 91.5% in the PAAC table, is the best-performing classifier in terms of accuracy. The
StackingClassifier was the best-performing classifier according to these criteria,
achieving the greatest Matthews Correlation Coefficient (MCC) of 0.338 and Area Under
the Curve (AUC) of 0.578. The DecisionTreeClassifier, on the other hand, performed the
worst out of all the classifiers in the table.

TABLE 10 | Performance comparison of single features (PseKRAAC) on
imbalanced training dataset by using various Classifiers

Classifier Accuracy MCC AUC Sensitivity Specificity

LogisticRegression 0.9087732919 0.2334402239 0.53 1 0.06

RandomForestClassifier 0.9056677019 0.3114552514 0.606822012 0.9776440241 0.236

SVC 0.9095496894 0.2486131914 0.534 1 0.068

XGBClassifier 0.9091614907 0.2424034698 0.5409251935 0.9978503869 0.084

DecisionTreeClassifier 0.9091614907 0.3301876296 0.6087566638 0.9815133276 0.236

KNeighborsClassifier 0.9064440994 0.2418801928 0.5590558899 0.9901117799 0.128

LGBMClassifier 0.9087732919 0.2842320457 0.576411006 0.988822012 0.164

StackingClassifier 0.9145962733 0.3352469332 0.5796354256 0.9952708512 0.164
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The StackingClassifier seems to be the most appropriate classifier for the given dataset
and research problem, according to the results. In comparison to other classifiers, it
obtained the greatest accuracy, MCC, and AUC values, demonstrating its overall strong
performance in accurately identifying the data. The classifiers attained accuracy levels
between 90.5% and 91.5%. The RandomForestClassifier had the lowest accuracy, while
the StackingClassifier did the best. Each classifier's sensitivity is also essentially the
same.

4.1 Best Performance of Different Classifiers on imbalanced training dataset

The data set includes 2908 experimentally proven non-IL-13 producing
peptides/epitopes in addition to 313 experimentally validated peptides/epitopes that
induce IL-13. We used ten feature extraction approaches due to the dataset's extreme
imbalance. Among these methods, the performance of CKSAAP, CTDC, CTraid, and
DPC was particularly impressive. Our findings in Tables 3, 4, 5, 6, and 7 show that the
StackingClassifier performed better than other classifiers. The accuracy of the
StackingClassifier was 91.80%, and its remarkable sensitivity value was 0.99. Similar
results were obtained in Table 5 with a sensitivity value of 0.987 and an accuracy of
91.11%. These outcomes demonstrate the StackingClassifier's outstanding performance
when paired with the CKSAAP, CTDC, CTraid, and DPC feature extraction methods.
Notable classifiers that also displayed excellent performance included
LogisticRegression, RandomForestClassifier, and LGBMClassifier, with accuracy levels
of about 92%.

Table 11 | Performance of various classifiers utilizing ( AAC ) features on Balanced
training dataset.

Classifier Accuracy MCC AUC Sensitivity Specificity

LogisticRegression 0.6384876805 0.2776835137 0.637764388 0.57695614 0.6985726

RandomForestClassifier 0.9615548003 0.9230988603 0.9615367261 0.96001719 0.9630562

SVC 0.9022939677 0.815492252 0.9012946771 0.81728288 0.9853064

XGBClassifier 0.958368734 0.9167749844 0.958418433 0.9625967 0.954240
DecisionTreeClassifier 0.90144435 0.8034343492 0.9011878282 0.87962166 0.9227539

KNeighborsClassifier 0.7994902294 0.6523173389 0.7970765262 0.59415305 1

LGBMClassifier 0.9590059473 0.9180196811 0.9590329954 0.96130696 0.9567590

StackingClassifier 0.9668649108 0.9337609616 0.9667995781 0.96130696 0.9722921

The table shows the performance metrics for various classifiers that extract features
based on amino acid composition (AAC). The accuracy, Matthews Correlation
Coefficient (MCC), Area Under the Curve (AUC), sensitivity (true positive rate), and
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specificity (true negative rate) of the classifiers were examined using a dataset to assess
their performance. The classifier with the best accuracy, 96.69%, and MCC, 0.93376,
was stackingClassifier. Additionally, it has great sensitivity (96.13% true positive rate)
and specificity (97.23% true negative rate). The StackingClassifier is a prominent
contender for consideration because it appears to perform well overall.

Table 12 | Performance of various classifiers utilizing ( APAAC ) features on
Balanced training dataset.

Classifier Accuracy MCC AUC Sensitivity Specificity

LogisticRegression 0.63877909 0.27739478 0.63872047 0.64144454 0.63599640

RandomForestClassifier 0.97035573 0.94155664 0.96986458 0.99269131 0.94703770

SVC 0.89811155 0.80300945 0.89941649 0.83877901 0.96005386

XGBClassifier 0.95696091 0.91536464 0.95630742 0.98667239 0.92594254

DecisionTreeClassifier 0.88954765 0.77942283 0.88979434 0.87833190 0.90125673

KNeighborsClassifier 0.83772507 0.71578472 0.84114352 0.68228718 1

LGBMClassifier 0.95718050 0.91612028 0.95646572 0.98968185 0.92324955

StackingClassifier 0.97716293 0.95431278 0.97709569 0.98022355 0.97396768

The accuracy levels of the classifiers differ widely, from roughly 63.9% to 97.7%. This
demonstrates a significant range in their capacity to anticipate the provided data set
correctly. Among all the classifiers examined, the StackingClassifier had the best
accuracy (97.7%) and the highest Matthews Correlation Coefficient (MCC), which was
0.954. A balanced trade-off between sensitivity (98.0%) and specificity (97.4%) was also
shown. The StackingClassifier is successful in making accurate predictions and keeping
a decent balance between true positive and true negative classifications, according to
the high accuracy and MCC values. On the provided dataset, it exhibits strong
discriminatory power and reliable performance.
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Table 13 | Performance of various classifiers utilizing ( CKSAAP ) features on
Balanced training dataset.

Classifier Accuracy MCC AUC Sensitivity Specificity

LogisticRegression 0.909188956 0.8183813732 0.9091930855 0.907996560 0.91038961

RandomForestClassifier 0.9594477998 0.9216574565 0.9593133149 0.998280309 0.92034632

SVC 0.9741156169 0.9489080811 0.9740497966 0.993121238 0.9549783

XGBClassifier 0.9559965487 0.9131609865 0.955908179 0.981513327 0.93030303

DecisionTreeClassifier 0.9344262295 0.8688508969 0.9344254484 0.934651762 0.93419913

KNeighborsClassifier 0.5383951682 0.2037406097 0.5399828031 0.079965606 1

LGBMClassifier 0.9594477998 0.9204645192 0.959346071 0.988822012 0.92987012

StackingClassifier 0.9751941329 0.9506709871 0.9751514035 0.987532244 0.96277056

CKSAAP decreases the dimensionality of the data by converting the variable-length
protein sequences into a fixed-length representation. Classifiers may operate with a
consistent input size thanks to this fixed-length format, which makes it simpler for them
to learn from the data and generalize to new samples. This new representation helps the
classifiers function better and allows them to predict protein class with more accuracy
and better discrimination. According to the results and on the assumption that accuracy
is the main parameter of interest, the StackingClassifier outperformed all other
classifiers, achieving the highest accuracy of 97.5% and the highest Matthews
Correlation Coefficient (MCC) of 0.951. It additionally showed a superb harmony
between sensitivity (98.8%) and specificity (96.3%).

Table 14 | Performance of various classifiers utilizing ( CTDC ) features on
Balanced training dataset.

Classifier Accuracy MCC AUC Sensitivity Specificity

LogisticRegression 0.6120430108 0.224290928 0.61205181 0.5915735168 0.6325301205

RandomForestClassifier 0.9623655914 0.924861835 0.96236919 0.9539982803 0.9707401033

SVC 0.7772043011 0.569560127 0.77725346 0.6629406707 0.8915662651

XGBClassifier 0.9582795699 0.916709356 0.95828344 0.9492691316 0.9672977625

DecisionTreeClassifier 0.8909677419 0.782390397 0.89097502 0.8740326741 0.9079173838

KNeighborsClassifier 0.8133333333 0.675052228 0.81341321 0.6276870163 0.9991394148

LGBMClassifier 0.9552688172 0.910766294 0.95527361 0.9441100602 0.9664371773

StackingClassifier 0.9705376344 0.941113876 0.97053957 0.9660361135 0.9750430293
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The StackingClassifier appears to consistently perform well and achieve high accuracy
based on the results shown in the tables for various feature extraction methods. The
StackingClassifier exhibits excellent performance with an accuracy of 97.05%, indicating
high accuracy in predicting class labels. The classifier appears to be effective in
classifying cases, with high sensitivity (96.60%) and specificity (97.50%), as indicated by
the MCC of 0.941 and AUC of 97.05% in CTDC performance table.

Table 15 | Performance of various classifiers utilizing ( CTraid ) feature on
Balanced training dataset.

Classifier Accuracy MCC AUC Sensitivity Specificity

LogisticRegression 0.76518046 0.53424827 0.76432901 0.69518486 0.8334731

RandomForestClassifier 0.96857749 0.93852976 0.96890220 0.99527085 0.9425335

SVC 0.96857749 0.93858006 0.96822756 0.9398108 0.9966442

XGBClassifier 0.95074309 0.90323349 0.95111217 0.9810834 0.9211409

DecisionTreeClassifier 0.89978768 0.79974190 0.89961559 0.88564058 0.9135906

KNeighborsClassifier 0.79936305 0.65206097 0.79686156 0.59372312 1

LGBMClassifier 0.95265392 0.90703600 0.95302067 0.98280309 0.9232382

StackingClassifier 0.98365180 0.9673157 0.9836101 0.98022355 0.9869966

The classifiers' overall performance exhibits a wide range of accuracies, from roughly
76.52% to 98.37%, according to the accuracy metric in the table of CTraid. Area Under
the Curve (AUC): The classifiers' AUC values fall between about 76.43% and 98.39%.
With a 98.37% accuracy score, the StackingClassifier performs admirably, making a high
percentage of accurate predictions.

Table 16 | Performance of various classifiers utilizing ( DPC ) features on Balanced
training dataset.

Classifier Accuracy MCC AUC Sensitivity Specificity

LogisticRegression 0.783599574 0.56843481 0.7832419649 0.74419604 0.822287885

RandomForestClassifie
r 0.96996805 0.94138252 0.9702171971 0.99742046 0.943013929

SVC 0.98828541 0.97657061 0.9882746728 0.98710232 0.989447024

XGBClassifier 0.955697550 0.91164750 0.9557991824 0.96689595 0.944702406

DecisionTreeClassifier 0.928860489 0.85772907 0.9288155042 0.92390369 0.933727311

KNeighborsClassifier 0.561874334 0.24879870 0.5578245916 0.11564918 1

LGBMClassifier 0.962513312 0.92552752 0.9626584353 0.97850386 0.946813001

StackingClassifier 0.985942492 0.97188275 0.985937411 0.98538263 0.986492190
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The performance of the classifiers based on the DPC (Dipeptide Composition) feature
extraction in terms of accurately classifying cases varied. The classifiers' accuracy
ranged from roughly 56.2% to 98.6%. Additionally, the classifiers' sensitivity, which
gauges how well they can detect positive cases, varied from roughly 11.6% to 99.7%,
demonstrating disparities in how well they can recognize actual positive examples. In
every performance indicator, the SVC and StackingClassifier outperformed the
competition in a close race for the supplied dataset. Both classifiers showed great
prediction abilities and were appropriate for the task at hand thanks to their high
accuracy, MCC, AUC, sensitivity, and specificity scores.

Table 17 | Performance of various classifiers utilizing ( Moran ) feature on
Balanced training dataset.

Classifier Accuracy MCC AUC Sensitivity Specificity

LogisticRegression 0.5058746736 0.0084698175 0.5040380529 0.65477214 0.35330398

RandomForestClassifier 0.7680591819 0.5375278601 0.7684171651 0.739036973 0.79779735

SVC 0.568537859 0.1482907412 0.570449165 0.413585554 0.72731277

XGBClassifier 0.728024369 0.4571604341 0.7283445896 0.702063628 0.75462555

DecisionTreeClassifier 0.7338990426 0.4683872106 0.7341114238 0.716680997 0.75154185

KNeighborsClassifier 0.7563098346 0.5236093145 0.7574562218 0.663370593 0.85154185

LGBMClassifier 0.7343342037 0.4705207819 0.7347693759 0.699054170 0.77048458

StackingClassifier 0.7785030461 0.5603414635 0.7790853065 0.731298366 0.82687224

The effectiveness of the classifiers based on the Moran feature extraction varied greatly
across several measures. The accuracy ranged between about 50.6% and 77.9%, while
the Matthews Correlation Coefficient (MCC) showed a variety of findings, from about
0.008 to 0.560. Similar variations were seen in the AUC (Area Under the Curve) statistic,
which ranged from roughly 50.4% to 77.9%. All classifiers performed poorly, as shown
by the AUC, MCC, and accuracy ranges for the Moran feature extraction. The accuracy
of the classifiers ranged from 50.6% to 77.9%, their MCC scores ranged from 0.008 to
0.560, and their AUC values ranged from 50.4% to 77.9%, respectively. This shows that
none of the classifiers showed particularly significant prediction ability on the balanced
dataset. As a result, for the given job, the overall performance of the classifiers based on
Moran feature extraction is deemed inadequate.
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Table 18 | Performance of various classifiers utilizing ( PAAC ) feature on Balanced
training dataset.

Classifier Accuracy MCC AUC Sensitivity Specificity

LogisticRegression 0.6313284293 0.2627818701 0.6313803062 0.6233877902 0.63937282

RandomForestClassifier 0.9647338814 0.9307183944 0.9645624676 0.9909716251 0.93815331

SVC 0.9110774556 0.8305492162 0.9115301275 0.8417884781 0.98127177

XGBClassifier 0.9539160537 0.9093474539 0.953724523 0.9832330181 0.92421602

DecisionTreeClassifier 0.8885763739 0.7773048163 0.8886320671 0.8800515907 0.89721254

KNeighborsClassifier 0.8418433579 0.7211991727 0.8428632846 0.6857265692 1

LGBMClassifier 0.9562959758 0.9144815659 0.9560834799 0.988822012 0.92334494

StackingClassifier 0.976633492 0.9532659181 0.9766268901 0.9776440241 0.97560975

The performance of the classifiers based on the PAAC (Pseudo-Amino Acid
Composition) feature extraction showed a great deal of variation. The classifiers' levels
of accuracy, which ranged from roughly 63.1% to 97.7%, showed different percentages
of accurate predictions. Similar disparities in the models' capacity to effectively capture
actual positive occurrences can be seen in the sensitivity, which measures the ability to
correctly detect positive examples. This ranged from roughly 62.3% to 99.1%. These
findings emphasize the significance of model choice, since certain classifiers showed
noticeably higher accuracy and sensitivity in comparison to others. The
"StackingClassifier" seems to be the best classifier for the given dataset and research
challenge based on the findings offered and the performance metrics provided. It had a
maximum accuracy of almost 97.7%, while other measures showed positive results.

Table 19 | Performance of various classifiers utilizing ( PseKRAAC ) feature on
Balanced training dataset.

Classifier Accuracy MCC AUC Sensitivity Specificity

LogisticRegression 0.5318464508 0.0640991971 0.5316642512 0.4544282029 0.6089002

RandomForestClassifier 0.7205661591 0.4481659497 0.7207694934 0.8069647463 0.6345724

SVC 0.6527986275 0.3196538342 0.6531371657 0.7966466036 0.5096277

XGBClassifier 0.7126313532 0.4307492382 0.7128139015 0.7901977644 0.6354300

DecisionTreeClassifier 0.7190649796 0.4457950824 0.7192779177 0.809544282 0.6290115

KNeighborsClassifier 0.6214883122 0.3259437651 0.6222688324 0.9531384351 0.2913992

LGBMClassifier 0.7083422689 0.4218342638 0.7085207461 0.7841788478 0.6328626

StackingClassifier 0.7186360712 0.4444927185 0.718842936 0.8065348237 0.6311510
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We may analyze the performance of the classifiers based on the presented findings of
various classifiers utilizing PseKRAAC (Pseudo K-tuple Reduced Amino Acid
Composition) feature extraction, Classifiers utilizing PseKRAAC feature extraction have
an accuracy range of roughly 53.2% to 72.1%. The Area Under the Curve (AUC) varies
between approximately 0.532 and 0.721, while the Matthews Correlation Coefficient
(MCC) ranges from 0.064 to 0.448. With an accuracy of 71.9%, an MCC of 0.444, and
an AUC of 0.719, the StackingClassifier displayed the best overall performance. Its
sensitivity and specificity of 63.1% and 80.7%, respectively, made it the best-performing
classifier among the models that were tested.

Table 20 | Performance of various classifiers utilizing ( TPC ) features on Balanced
training dataset.

Classifier Accuracy MCC AUC Sensitivity Specificity

LogisticRegression 0.9170773516 0.8420244516 0.9172948079 0.984952708 0.84963690

RandomForestClassifier 0.9558602957 0.9149089251 0.9559934445 0.997420464 0.91456642

SVC 0.9631454896 0.9280729561 0.9632442794 0.993981083 0.93250747

XGBClassifier 0.9511463467 0.9048916466 0.9512670504 0.98882201 0.91371208

DecisionTreeClassifier 0.9367902293 0.8735998131 0.9367999066 0.93981083 0.93378897

KNeighborsClassifier 0.5198200129 0.1366399744 0.5182717111 0.036543422 1

LGBMClassifier 0.948146561 0.8983231651 0.94825346 0.981513327 0.91499359

StackingClassifier 0.9700021427 0.9407425218 0.9700651918 0.989681857 0.95044852

There is a significant variation in the accuracy of the classifiers based on the TPC
feature extraction, ranging from about 51.9% to 97.0%. The Matthews Correlation
Coefficient (MCC) also shows a wide variety of class separation abilities among the
classifiers, falling between 0.137 and 0.941. The "StackingClassifier," which attained an
accuracy of about 97.0% and an MCC of about 0.941, is the best classifier for the
specified dataset and research challenge based on the results and performance metrics
supplied. Among the evaluated models, this classifier has the best overall performance.
However, the "KNeighborsClassifier" did the poorest, with an MCC of about 0.137 and
an accuracy of about 51.9%.
4.2 Performance of Different Classifiers on balanced training data set

I demonstrated how severely unbalanced the data set is in the section 3.5 Data Balance.
To balance the uneven data in this job, I began utilizing Adasyn. An unbalanced dataset
can have a considerably negative effect on predicting IL-13 and may result in bias in
favor of the majority class, inaccurate predictions of the majority class, and erroneous
assessment metrics. To balance the uneven data in this job, I began utilizing Adasyn.
An oversampling method called ADASYN (Adaptive Synthetic Sampling) is used to
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balance unbalanced datasets. By creating artificial samples for the minority class, it
directly addresses the problem of class inequality.

Following the Adasyn data balancing Method, we applied ten feature extraction
strategies. Among these techniques, the effectiveness of CKSAAP, CTDC, CTraid, and
DPC stood out. Tables 13, 14, 15, and 16 present our findings, which demonstrate that
the StackingClassifier outperformed other classifiers. The StackingClassifier's amazing
sensitivity value in CKSAAP was 0.987, and its accuracy was 97.80%. With a sensitivity
value of 0.983 and an accuracy of 98.00%, Table 15's findings were similar. These
results highlight the exceptional performance of the StackingClassifier in combination
with the CKSAAP, CTDC, CTraid, and DPC feature extraction techniques. With accuracy
levels of about 95%, notable classifiers including LogisticRegression,
RandomForestClassifier, and LGBMClassifier also demonstrated remarkable
performance.

The findings show that the accuracy, AUC, sensitivity, and specificity of several
classifiers were all significantly improved when balanced data were used.

TABLE 21 | Performance comparison of single features (CKSAAP) on independent
Test dataset by using various Classifiers

Classifier Accuracy MCC AUC Sensitivity Specificity

LogisticRegression 0.9023255814 0 0.5 1 0

RandomForestClassifier 0.9069767442 0.2077707134 0.5238095238 1 0.0476190

SVC 0.9054263566 0.1695121097 0.5158730159 0.0317460

XGBClassifier 0.903875969 0.2515426701 0.5716331206 0.98453608 0.1587301

DecisionTreeClassifier 0.8604651163 0.0943936544 0.5405007364 0.93814432 0.1428571

KNeighborsClassifier 0.3023255814 0.1225584093 0.5850924562 0.23367697 0.9365079

LGBMClassifier 0.9023255814 0.2161425465 0.5566192113 0.98625429 0.1269841

StackingClassifier 0.9054263566 0.3042973657 0.6008018328 0.97938144 0.2222222

The classifiers employing feature extraction from CKSAAP_ILTest_Metrics display a
variety of performance indicators. The accuracy lies between about 30.2% and 90.7%,
the Matthews Correlation Coefficient (MCC) between about 0 and 0.30, and the Area
Under the Curve (AUC) between about 0.50 and 0.60. The classifiers exhibit a wide
variety of accuracy, MCC, and AUC values, indicating that some models outperform
others greatly on this particular dataset and research challenge.
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TABLE 22 | Performance comparison of single features (CTDC) on independent
Test dataset by using various Classifiers

Classifier Accuracy MCC AUC Sensitivity Specificity

LogisticRegression 0.9023255814 0 0.5 1 0

RandomForestClassifier 0.9007751938 0.05426314164 0.5062182949 0.99656359 0.0158730

SVC 0.9023255814 0 0.5 1 0

XGBClassifier 0.9007751938 0.2066717234 0.5557601047 0.98453605 0.1269841

DecisionTreeClassifier 0.8387596899 0.08525609557 0.5426280478 0.9106521 0.1746031

KNeighborsClassifier 0.8914728682 0.06429870294 0.5152184585 0.98281784 0.0476190

LGBMClassifier 0.9085271318 0.2930335401 0.5812878416 0.98797256 0.1746031

StackingClassifier 0.9007751938 0.191787609 0.5486827033 0.98625425 0.1111111

There are many performance metrics displayed by the classifiers utilizing
CTDC_ILTest_Metrics feature extraction. The Area Under the Curve (AUC) spans from
roughly 0.506 to 0.581, and the accuracy falls between 83.9% and 90.9%. According on
the variety of performance criteria, some classifiers are superior to others at predicting
the classes for the given dataset. With its high accuracy, MCC, and AUC, the
LGBMClassifier stands out as the best-performing model, giving it a great contender for
precise predictions and potential real-world applications.

TABLE 23 | Performance comparison of single features (CTraid) on independent
Test dataset by using various Classifiers

Classifier Accuracy MCC AUC Sensitivity Specificity

LogisticRegression 0.8961240 0.1301852628 0.5319505809 0.98453608 0.07936507

RandomForestClassifier 0.9054263 0.1695121097 0.5158730159 1 0.03174603

SVC 0.9023255 0 0.5 1 0

XGBClassifier 0.8961240 0.05750108894 0.5107183767 0.98969072 0.03174603

DecisionTreeClassifier 0.8573643 0.1551533656 0.5741695304 0.92611683 0.22222222

KNeighborsClassifier 0.9007751 0.1167506941 0.5203730977 0.99312714 0.04761904

LGBMClassifier 0.9054263 0.1990591132 0.5371052201 0.99484536 0.07936507

StackingClassifier 0.9085271 0.2462451213 0.5459008346 0.99656357 0.09523809

There are many performance metrics displayed by the classifiers utilizing
CTraid_ILTest_Metrics feature extraction. The accuracy varies between about 85.7% and
90.9%. The maximum MCC, 0.246, and 0.546 AUC were all attained by the
StackingClassifier, which also had the highest accuracy of 90.9%. This shows that the

31 © Daffodil International University



StackingClassifier outperforms the other tested classifiers and produces reliable
predictions. Contrarily, the DecisionTreeClassifier, with an accuracy of 85.7%, an MCC of
0.155, and an AUC of 0.574, performed the worst of the classifiers.

TABLE 24 | Performance comparison of single features (DPC) on independent Test
dataset by using various Classifiers

Classifier Accuracy MCC AUC Sensitivity Specificity

LogisticRegression 0.9023255814 0 0.5 1 0

RandomForestClassifier 0.9085271318 0.2401000213 0.5317460317 1 0.06349206349

SVC 0.903875969 0.1197700646 0.5079365079 1 0.01587301587

XGBClassifier 0.9131782946 0.3442011637 0.598019964 0.9896907216 0.2063492063

DecisionTreeClassifier 0.880620155 0.2449828286 0.6082883325 0.9467353952 0.2698412698

KNeighborsClassifier 0.6449612403 0.1967975813 0.6617165767 0.6408934708 0.6825396825

LGBMClassifier 0.9178294574 0.3840278336 0.6005972836 0.9948453608 0.2063492063

StackingClassifier 0.9178294574 0.3810544312 0.5935198822 0.9965635739 0.1904761905

A variety of performance indicators are displayed by the classifiers utilizing feature
extraction from DPC_ILTest_Metrics. The accuracy varies between 64.5% and 91.8%,
while the Matthews Correlation Coefficient (MCC) is between 0 and 0.384. The highest
MCC of 0.381, the highest AUC of 0.59, and the highest accuracy of 91.8% were all
attained by StackingClassifier.

4.3 Performance of Different Classifiers on Independent Test data

We use both balanced and unbalanced data to train our model, then test it using a test
set of data. In Table 21, StackingClassifier's accuracy is 90.05% and its sensitivity is
0.97. The LGBMClassifier likewise did well in CKSAAP; its accuracy is 90.02% and
sensitivity is 0.98.

According to Table 23, the accuracy ranges between approximately 85.7% and 90.9%.
The StackingClassifier, which also had the best accuracy of 90.9%, achieved the highest
MCC, 0.246, and 0.546 AUC.

Table 24 contrasts this with accuracy that ranges from 64.5% to 91.8% and a Matthews
Correlation Coefficient (MCC) that ranges from 0 to 0.384. StackingClassifier, which has
an accuracy rating of 91.7%, is the best classifier.
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CHAPTER 5
CONCLUSION

We have contrasted the Balance & Imbalance data set with the Results in this paper. To
compare the performance metrics with the conventional ML Model, we take into account
ensemble approach based stacking models. Modern feature engineering techniques
(Recursive Shapley Value) were employed. We used the Best Peptide Sequence
extractor and displayed the outcomes of applying various algorithms separately. To
achieve accurate IL-13 projection, the appraisal of entire performance is taken into
account. We ultimately developed an effective StackIL13 model for the prediction of
IL-13 inducing peptides after conducting several experiments. We have established that
the StackIL13 prediction model we provide can actually identify IL-13, which is superior
to existing IL-13 prediction models, by executing a large number of trials on the training
dataset. In the identification of IL-13 peptides, machine learning approaches, including
conventional algorithms, have yielded encouraging results. The selection of the dataset,
feature extraction methods, and used algorithms have a big impact on the models'
performance.

It is important to note that the research conducted utilizing a balanced training dataset
supports the conclusions made in this paper. Additionally, cross-validation and
generalization analyses should be performed to judge the stability and dependability of
the suggested models in order to evaluate the performance of the classifiers on
unbalanced datasets typically seen in real-world applications. In the context of the
specific problem domain, this work enhances knowledge of feature selection and
classifier performance. The findings demonstrate that when using our StackingClassifier
(RandomForestClassifier, XGBClassifier, DecisionTreeClassifier, SVM,
KNeighborsClassifier, LogisticRegression, LGBMClassifier), certain feature sets, such as
CKSAAP, DPC, CTDC, and CTraid, may be employed to accurately classify data. These
findings provide useful information for academics and professionals working in the
categorization and feature selection domains. It is crucial to use new research feature
representation techniques that can encode peptide sequences in an adaptable manner.
a further optimization is to discover the IL-13 peptide using computational intelligence
approaches and models.
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