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Interpretation of medical images with a computer-aided diagnosis (CAD)

system is arduous because of the complex structure of cancerous lesions

in different imaging modalities, high degree of resemblance between inter-

classes, presence of dissimilar characteristics in intra-classes, scarcity of

medical data, and presence of artifacts and noises. In this study, these

challenges are addressed by developing a shallow convolutional neural

network (CNN) model with optimal configuration performing ablation study

by altering layer structure and hyper-parameters and utilizing a suitable

augmentation technique. Eight medical datasets with different modalities

are investigated where the proposed model, named MNet-10, with low

computational complexity is able to yield optimal performance across all

datasets. The impact of photometric and geometric augmentation techniques

on different datasets is also evaluated. We selected the mammogram dataset

to proceed with the ablation study for being one of the most challenging

imaging modalities. Before generating the model, the dataset is augmented

using the two approaches. A base CNN model is constructed first and applied

to both the augmented and non-augmented mammogram datasets where

the highest accuracy is obtained with the photometric dataset. Therefore,

the architecture and hyper-parameters of the model are determined by

performing an ablation study on the base model using the mammogram

photometric dataset. Afterward, the robustness of the network and the impact
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of different augmentation techniques are assessed by training the model

with the rest of the seven datasets. We obtain a test accuracy of 97.34% on

the mammogram, 98.43% on the skin cancer, 99.54% on the brain tumor

magnetic resonance imaging (MRI), 97.29% on the COVID chest X-ray, 96.31%

on the tympanic membrane, 99.82% on the chest computed tomography (CT)

scan, and 98.75% on the breast cancer ultrasound datasets by photometric

augmentation and 96.76% on the breast cancer microscopic biopsy dataset by

geometric augmentation. Moreover, some elastic deformation augmentation

methods are explored with the proposed model using all the datasets to

evaluate their effectiveness. Finally, VGG16, InceptionV3, and ResNet50 were

trained on the best-performing augmented datasets, and their performance

consistency was compared with that of the MNet-10 model. The findings may

aid future researchers in medical data analysis involving ablation studies and

augmentation techniques.

KEYWORDS

medical image, ablation study, geometric augmentation, photometric augmentation,
shallow CNN, deep learning models

Introduction

In today’s world, cancer is an alarming threat to global
health. In 2020, around 19.3 million new cancer cases and
approximately 10 million new cancer deaths were recorded
worldwide (1). By 2040, global cancer cases are estimated to
be increased by 47%, resulting in 28.4 million new cancer
cases (1). Early detection of cancer and well-timed and effective
treatment increase chances of survival leading to reduced
mortality rates. If diagnosed in a primary stage, the only
treatment necessary may be a simple surgery (2, 3). In many
countries, however, the number of clinicians is not sufficient
for the number of patients (4). Due to the growing number of
patients, it can be unmanageable for a doctor or a specialist to
diagnose the disease in the early stage without any automated
system. As interpretation of many medical images can lead
to fatigue of clinical experts, computer-aided interventions
may assist them in reducing the strain associated with
high-performance interpretation (5). With the development
of CNN-based applications in medical image analysis (6),
clinical specialists benefit from CAD by utilizing outputs
of a computerized analysis to identify lesions, evaluate the
existence and extent of diseases, and improve the accuracy and
reliability of diagnosis by decreasing false negative rates. Hence,
incorporating CAD approaches into medical diagnostic systems
lessens the workload and pressure of doctors, thereby increasing
early detection (7). Currently, medical imaging procedures,
for instance, mammography, ultrasound, X-ray, dermoscopy,
CT scan, and MRI, are used for diagnosis and identification
of diseases (8). However, the information and semantics of a
picture can greatly vary with different images having different

visual characteristics and appearances based on the disease
and modality. In several cases, variability in shape, size,
characteristics, the intensity of lesions, and distinctive imaging
characteristics, even within the same modality, causes diagnostic
challenges even to medical experts. Often, the intensity range
of a cancerous region may be similar to surrounding healthy
tissues. Due to the presence of noise and artifacts and poor
resolution of images, simpler machine learning approaches tend
to yield poor performance with manually extracted features
(9). To overcome these challenges, deep learning models have
been employed in medical image classification, segmentation,
and lesion detection over the past few decades with noteworthy
advances (4). Rather than extracting and feeding features
manually to a network, deep learning deals directly with
an image dataset by discovering useful representations in an
automated manner. CNNs can acquire more complex features
by focusing on a potential irregular region (9).

These challenges are compounded by insufficient number
of training images or imbalance in the number of images
for different classes. As a solution, data augmentation is
a commonly used technique that aids in improving the
performance of CAD systems by generating new images.
However, even after applying data augmentation or other
techniques, overfitting may not always be prevented, resulting
in poor performance. A possible cause might be not applying the
most suitable augmentation techniques given the characteristic
of the dataset. The approaches employed for a particular
task cannot be expected to perform with optimal accuracy
on different datasets or modalities (10). Deep convolutional
neural networks (DCNNs) have made great progress in various
computer vision-related image classification tasks. However,
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because of having a complex network structure with a large
number of layers, DCNNs often require extensive computing
and memory resources and training time. Moreover, as the
total number of parameters of DCNNs is high, they require
a large number of training data to yield a good performance
without overfitting.

For this study, eight medical datasets for various diseases
and modalities are used, including a mammogram dataset,
a skin cancer dermoscopy dataset, a COVID chest X-ray
dataset, a brain tumor MRI dataset, a chest CT-scan dataset,
a breast cancer ultrasound image dataset, a breast cancer
microscopic image dataset, and a tympanic membrane dataset.
We propose a high-accuracy robust CNN model with a
shallow architecture and performing ablation study to achieve a
satisfactory performance across the eight medical datasets. The
model is named MNet-10, as the depth of the architecture is 10
weighted layers, and is constructed to classify medical images.
The performance of CNN models greatly varies with alteration
of layer architecture, the filter number, and size, as well as
different hyper-parameters. A particular model might perform
with high accuracy for a particular dataset while providing
poor performance and causing overfitting issues for another
dataset with a different imaging modality. Hence, developing
a specific model with high accuracy for several medical image
datasets with different imaging modalities is quite challenging.
Moreover, no image pre-processing step is employed on the
datasets before feeding them into the model. In interpretation of
raw images, abnormality detection is more difficult for a CNN
model because of complex hidden characteristics of a region
of interest (ROI).

Each of the datasets used for this research has a different
nature, characteristics, and challenges. We have studied all the
datasets and identified the main challenges and characteristics of
the images that need to be addressed. The challenges of medical
images with deep learning are

(1) In most cases, when overfitting occurs because of a limited
number of images, a network can learn and remember the
features of training instances but cannot apply this learning
to an unobserved dataset.

(2) For images where it is vital to preserve the geometrical
location and orientation of an irregular region,
classification accuracy might drop without employing
suitable augmentation techniques.

(3) Due to the presence of artifacts, detection of abnormality
using raw medical images is another substantial challenge
in developing a robust CNN classification model for
the medical domain.

(4) Deep learning requires an input dataset to be well balanced,
but datasets often contain a highly imbalanced number of
images in different classes. Because of this inconsistency,
the resulting model tends to perform well in classes with
more data and poor for classes with fewer data. Several

approaches can be carried out to address the data imbalance
issue depending on the problem to be solved. The
most widely used techniques include data augmentation,
generation of synthetic images with generative models
(11), and cutting of the number of images from classes
containing the highest number of pictures.

(5) In intra-class classification problems, intra-class
similarities, same class dissimilarities, limited color
intensity distribution, and intensity similarity between
cancerous lesions and surrounding tissues often occur and
lead to high misclassification rate.

(6) In some datasets, the size of images is unequal. As
deep learning requires an equal size for all images, the
images need to be resized to a particular size, and useful
information might be lost for some of the pictures.
Regarding resizing of images, the original size of the images
should be considered first while setting the parameter value
of resizing. If the image size of a dataset is found very large
or irregular, the parameter should be set in such a way that
the size is not reduced drastically and useful information
can be preserved.

As a result of these concerns, the optimal configuration of
the hyper-parameters of the architecture can only be set up after
an extensive assessment process that can deal with all of the
challenges described above. Our proposed network is developed
by determining suitable layer architecture, parameters, and
hyper-parameter values based on highest accuracy.

In studies on medical imaging, usually, a particular
augmentation approach aids to improve the model’s
performance for a particular imaging modality where it might
cause poor performance for the other modality. Therefore,
it is crucial to ascertain a suitable augmentation technique
based on the characteristics of a dataset. In this research, the
experiment is carried out using non-augmentation, photometric
augmentation, and geometric augmentation techniques for all
eight datasets to explore which approach yields the optimal
outcome for which dataset. It is found that the performance
varies depending on different augmentation approaches for the
different datasets.

The breast cancer mammography dataset we have used
in this study contains most of the challenges described above
including limited number of images, presence of unwanted
regions, hidden ROIs, interference of surrounding dense tissue,
similarities between different classes, and dissimilarities within
the same class. Figure 1 shows a mammography example of the
challenges of medical datasets.

To develop the proposed MNet-10 model employing an
ablation study, the breast cancer mammography dataset is
used as all the challenges of interpreting medical images are
found in the mammography dataset. We hypothesize that if
a model can address the challenges in the mammography
dataset, it might also provide good performance across other
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FIGURE 1

Challenges of medical datasets showing breast mammography. (A) Very small ROI and (B) presence of artifacts. (B) The dissimilarity between
the same class and (C) similarity between different classes.

datasets. The results suggest that for all the eight datasets,
the model is able to yield a good performance where in most
cases photometric augmentation yields better performance than
geometric augmentation.

Along with the photometric and geometric augmentation
methods, elastic deformation is also conducted as a data
augmentation technique to observe the performance. By elastic
deformation, the shape, geometry, and size of an object can be
altered even in a complex way (12).

To summarize, we examined, by extensive ablation study
and data augmentation, how an optimal model can be generated
using effective ablation study approaches and suitable data
augmentation techniques where the resulting model performs
with high accuracy even for different medical datasets with
different modalities. The findings and approaches of this study
might assist future medical researchers in understanding the
importance of choosing optimal augmentation techniques and
developing a robust model after an ablation study. This research
can be an effective approach for developing a robust model
having optimal configuration and data augmentation technique
with the purpose of interpreting medical images with different
imaging modalities.

Literature review

Over the past decades, astonishing progress in medical
imaging has occurred with discoveries of hidden features
of diseases and their progression. To the best of our
knowledge, no research similar to ours, using different medical
imaging modalities to classify diseases while exploring several
augmentation schemes, has been conducted so far.

Kumar et al. (10) proposed an ensemble technique to
categorize the modality of medical images using multiple fine-
tuned CNNs to extract optimized features of different imaging
modalities. They experimented with several hyper-parameters

and parameter values to find the optimal architecture and
achieved a satisfactory outcome. A data augmentation approach
was used with a 10-fold augmentation system, which included
cropping and flipping methods. Ashraf et al. (13) attempted
to classify different medical images for several body organs
by employing a fine-tuning scheme to a pre-trained deep
CNN model. The authors generated a combined dataset of
12 classes of human body organs (e.g., chest, breast, colon,
etc.) utilizing various available online medical image databases.
The average overall accuracy of the proposed approach was
around 98%. However, no augmentation scheme was used in
their research. Zhang et al. (14) used four medical datasets
of different categories such as skin lesions, MRI, and CT
to classify different modalities. They highlighted intra-class
similarities and dissimilarities for different abnormalities and
imaging modalities. Their model synergic deep learning (SDL)
was proposed by employing multiple DCNNs that are able to
learn from each other simultaneously.

As augmentation techniques, geometric and photometric
augmentation approaches are often described in medical
image research. Elgendi et al. (15) studied the influence
of geometric augmentations introduced in various current
research studies for identifying COVID-19. The performance
of 17 deep learning models on three COVID-19 chest x-ray
datasets was compared before and after applying different
geometric augmentation techniques. The results showed that the
elimination of geometrical augmentation methods increased the
Matthews correlation coefficient (MCC) for the 17 algorithms.
However, only geometric augmentation was explored in this
study. Another study (16) for detecting breast masses employed
the Digital Database for Screening Mammography (DDSM)
and explored eight augmentation schemes, such as Gaussian
noise, Gaussian blur, flipping, and rotation, and compared
the outcomes. After training the VGG16 model, their highest
accuracy, using a Gaussian filter and rotation methods, was
88%, and their lowest accuracy, after inducing noise, was
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66%. Taylor et al. (17) examined several common data
augmentation methods, including geometric and photometric,
to find which approaches are most suitable for a particular
dataset. They evaluated various data augmentation procedures
using a simple CNN architecture on the Caltech101 dataset
comprising a total of 9,144 images in 102 classes. They
achieved the highest accuracy, 79.10%, using a cropping
scheme. However, no description of the 102 classes is given
in the article, and no ablation study was carried out while
developing the CNN model. Mikołajczyk et al. (18) investigated
several ways of data transformations, namely, rotation, crop,
zoom, photometric schemes, histogram-based approaches, style
transfer, and generative adversarial networks for their image
classification tasks. Using a VGG16 model, the augmentation
methods were evaluated with three medical datasets: skin cancer
melanomas, breast histopathological images, and breast cancer
MRI scans. No clear description of the analysis and construction
of the proposed model was found in the article. Falconi et al.
(19) used the CBIS-DDSM mammography dataset to detect
abnormalities in the form of binary classification problems
by employing transfer learning and fine-tuning approaches.
They performed data augmentation by employing the geometric
method and the photometric method and applying histogram
equalization on images. Milton et al. (20) used the ISIC
skin cancer dermoscopy dataset to classify cancers using
the transfer learning approach. They introduced a variety
of data augmentation techniques combining geometric and
photometric methods. Sajjad et al. (21) classified brain tumor
MRIs using a fine-tuned VGG16 model and data augmentation
techniques including four geometric alterations and four noise
invariance schemes.

Dataset description

As stated previously, eight different medical imaging
modalities are experimented with in this research. The
ultrasound image dataset of breast cancer is a publicly available
dataset consisting of three classes from Kaggle (22), and the
dataset contains a total of 780 images where 133 are found in the
normal class, 440 in the benign class, and 207 in the malignant
class. The size of the images is 500 pixels× 500 pixels.

We employ the mammogram dataset provided by the
Curated Breast Imaging Subset of The Digital Database for
Screening Mammography (CBIS-DDSM) database from Kaggle
(23) and consist of four classes. The dataset contains a
total of 1,459 images, where 398 are found in the benign
calcification class, 417 in the benign mass class, 300 in the
malignant calcifications class, and the remaining 344 in the
malignant mass class. In this dataset, all the mammograms are
224 pixels× 224 pixels.

A collection of chest X-rays with four classes from the
COVID-19 Radiography Database available in Kaggle (24)

is also used. This dataset contains 3,616 images of patients
positive for COVID-19, with 1,345 viral pneumonia, 6,012 lung
opacity (non-COVID lung infection), and 10,192 normal cases
in a grayscale format. All of the images in this dataset are
299 pixels× 299 pixels.

A collection of skin cancer images are analyzed in this
research from the International Skin Imaging Collaboration
2020 (ISIC 2020) challenge, collected from Kaggle, separated
into two classes (25). In this dataset, the benign class contains
1,800 images, and the malignant class contains 1,497 images. All
of the images in this collection are 224 pixels × 224 pixels and
in an RGB format.

The tympanic membrane, from the Cardiotocography
(CTG) Analysis database (26) contains a total of 956 otoscopic
images. The dataset contains a total of nine classes, of which
four, the Normal class (535 images), Earwax (140 images), Acute
otitis media (119 images), and chronic suppurative otitis media
(63 images), are included in this study as they form the majority
of the images. The remaining five classes, Otitis external, Ear
ventilation, Foreign bodies in the ear, Pseudo membranes, and
tympanosclerosis, consist of a total of 99 images, with less than
50 images in each class. As they contain insufficient samples,
the five classes are not included in this study. All the images are
500 pixels× 500 pixels.

Three different classes of MRI scans are studied in this study
containing brain tumor samples along with data from healthy
patients that are collected from Kaggle (27). The dataset contains
four classes with 926 images consisting of glioma tumors, 937
images of meningioma tumors, 901 images of pituitary tumors,
and 500 images without tumors.

Microscopic biopsy images of benign and malignant breast
cancers from the Breast Cancer Histopathological Database
(BreakHis), collected from Kaggle (28), are also included in this
study. A total of 1,693 images in two classes are analyzed where
547 images of benign tumors and 1,146 images of malignant
tumors are considered.

The CT scan images from a chest cancer dataset collected
from Kaggle (29) are employed in this study containing a total of
613 CT scan images classified into four classes: adenocarcinoma
(195 images), large cell carcinoma (115 images), squamous cell
carcinoma (155 images), and, finally, normal (148 images).

Anyone can access and share the datasets and employ them
in their research study because all the datasets are publicly
available to contribute to research.

A sample of the eight modalities and their classes that are
used in this research are illustrated in Figure 2.

Proposed methodology

Challenges resulting from the nature of the datasets
described above are commonly addressed following three steps:
employing appropriate image pre-processing techniques, data
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FIGURE 2

Datasets used in this research.

augmentation, and a robust deep learning model with suitable
hyper-parameters. In medical image analysis, publicly available
datasets are often found to have a limited number of images
for training deep learning models. Besides, complex lesion
structure, useful hidden patterns, and pixel information make
the medical image analysis task challenging and error-prone.
Any technique, algorithm, or model should be selected based
on the characteristics of the dataset, and after investigating
the essential pixel information remains intact. As data
augmentation is commonly performed in computer vision tasks
especially in medical imaging, applying a suitable technique
might improve accuracy. Two augmentation approaches are
explored to show how a similar technique’s performance varies
for different datasets. A particular technique might not be
suitable for all datasets. However, as no image pre-processing
techniques are employed in this study, the network should
be developed in such a way that all the challenges described
above can be addressed resulting in a good performance
while using raw images. Figure 3 illustrates the complete
process of this study.

As described in Section “Dataset description,” images from
the different datasets have unequal pixel sizes. As a CNN
requires equal size images to train, pictures of all the datasets are

first resized to a 224 pixels × 224 pixels size. As upscaling the
size of an image might result in a blurry and distorted image,
the smallest image size among all the datasets is considered
the standard input size for the proposed CNN model. In this
regard, among the datasets that are used in this research,
224 pixels × 224 pixels are found to be the lowest pixel size.
Therefore, this has been chosen as the standard input image
size of the proposed CNN model. However, the image size of
all the datasets is not very large and closer to this size. Therefore,
resizing the images to 224 pixels × 224 pixels has proven to be
an efficient method that shows no signs of distortion. Hence,
the performance of the proposed model is not impacted by it.
Afterward, all the datasets are augmented using geometric and
photometric approaches where both approaches consisted of
four transformation techniques. We initially construct a base
CNN model to perform an ablation study where the breast
cancer mammogram dataset is chosen for this ablation study.
Afterward, the base model is trained with all augmented and
non-augmented mammogram datasets. The dataset with the
highest accuracy is used to train the base CNN. To develop
the architecture of MNet-10 with an optimal configuration,
an ablation study is performed. While experimenting with
different hyper-parameters and layer structures, characteristics
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FIGURE 3

Overview of the proposed methodology.

of other datasets are also considered. Later, the model
MNet-10 is applied to the other seven datasets both before
and after augmentation. Our CNN-based framework gives
good performance while having low computational complexity
without overfitting concerns across a variety of medical image
datasets with varying imaging modalities. The results suggest
that in most cases, photometric augmentation has the best
performance. Afterward, three often used deep learning models,
namely VGG16, InceptionV3, and ResNet50 are applied with
the best performing augmented datasets, and their performance
are compared with the proposed architecture for a rigorous
investigation of performance consistency across different
modalities. According to our findings, although for some
datasets an acceptable outcome is achieved, the performance
of the deep learning architectures is not stable across all the
eight datasets. A comprehensive discussion on why performance
varies with different augmentation techniques is presented at the
end of the article.

Data augmentation

Data augmentation refers to the method of generating
new images similar to the training dataset and is considered
a regularization technique to prevent overfitting issues (30).
Regularization techniques prevent overfitting while training
models, whereas data augmentation addresses the issue at the
root of the task which is the training set. Augmented data

should be generated in such a way that they represent a
more comprehensive set of possible data points, consequently
reducing the difference between the training and validation
datasets as well as any unseen testing sets. Generating new data
should be conducted in such a way that pixel details remain
intact, which is essential to preserve medical information. Data
augmentation can be denoted as the mapping (31):

φ : S 7→ T (1)

where S represents the original dataset and T denotes the
augmented dataset of S. Therefore, the artificially inflated
training dataset can be stated as:

S
′

= S ∪ T (2)

where S ′ contains the original dataset and the corresponding
alterations are represented by T.

We have experimented with two augmentation
techniques, namely, geometric augmentation and photometric
augmentation, on each of the datasets to evaluate their
performance over different modalities. The two augmentation
approaches comprise four photometric methods and four
geometric methods. In both approaches, the number of
augmentation techniques is kept the same for the number of
augmented images to remain equivalent.

Geometric augmentation
This alteration method changes the geometry of a given

image by mapping distinct pixel values to new endpoints.
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The fundamental structure and details contained in an
original image are preserved but transformed to new points
and alignment. In our study, four geometric augmentation
techniques, namely, vertical flipping, horizontal flipping,
rotation 90◦, and rotation −90◦, have been used for the dataset.
Flipping, as a geometric augmentation technique, often appears
as a convenient tactic for natural images, and numerous research
studies have been conducted in this field (16). However, in
medical imaging study, flipping including both vertical and
horizontal are adopted widely across several modalities of
mammogram (32, 33), dermoscopy images (34, 35), chest CT
scan (36, 37), chest X-ray (15, 38), brain tumor MRI (21,
39), tympanic membrane (40, 41), breast cancer histopathology
image (42, 43), and breast cancer ultrasound images (44, 45)
which might be an obvious reason acquiring poor performance
as the alteration may not result in clinical possible images.
Though flipping a medical image such as an MRI scan would
cause a scan one would almost never see in the clinical setting,
it is often claimed to be an effective strategy (39, 46). Therefore,
both of the techniques are explored in this research as a segment
of the geometric approach to assess performance using different
datasets with different modalities so that an optimal scheme can
be suggested for future studies. Other classical geometric data
augmentation schemes such as cropping, zooming, shearing,
and scaling are not applied as some medically relevant pixel
regions might be eliminated.

Vertical flipping
Flipping reproduces an image around its horizontal or

vertical axis. In vertical flipping, an image is alternated upside
down in a way that the original x-axis is retained and the y-axis
is replaced. The equation can be stated as (31):[

fx
fy

]
=

[
1 0
0 −1

]
·

[
x
y

]
(3)

Here, x and y denote the pixel coordinates of the original
image, and fx and fy represent the transformed pixel coordinates
after flipping x and y along the vertical axis.

Horizontal flipping
In this method, the original pixel coordinates of rows and

columns of an image are changed horizontally based on the
formula below: [

fx
fy

]
=

[
−1 0
0 1

]
·

[
x
y

]
(4)

Rotation
The rotation process on an image is applied by rotating the

original pixel coordinates with a specific angle. The formula can
be represented as[

fx
fy

]
=

[
cosϕ −sinϕ

sinϕ cosϕ

]
·

[
x
y

]
(5)

where fx and fy are the altered new points after the rotation
process with an angle on original pixel coordinates x and y of
the raw image. In our experiment, the values of phi are 90 and
−90◦.

Photometric augmentation
In photometric transformations, the RGB channels of an

image are altered by mapping the original pixel value (r, g,
and b) to new pixel values (r’, g’, and b’), which changes pixel
color intensity. This changes pixel illumination, intensity, and
pigment while leaving the geometry unaffected. As described,
the ROI of medical images can be challenging to detect because
of complex structure and hidden characteristics; therefore,
any method that may affect pixel intensity should only be
selected after testing with datasets. An effective augmentation
technique should increase the number of images while
preserving important pixel details. Without carefully choosing
the technique, instead of increasing accuracy, augmentation
may lead to overfitting. However, the human eye often cannot
detect the loss of necessary pixels of images, especially for
medical datasets.

A solution is to derive peak signal-to-noise ratios (PSNR)
for all augmentation methods as an effective quality measure
comparing the original image and the transformed image. PSNR
value is assessed depending on pixel intensity between two
images where if intensities considerably contrast, a PSNR value
of less than 20 is achieved (47). This strategy is commonly
adopted in several image preprocessing tasks to find that
along with the preprocessing of images, what if the intensity
changes to a higher extent? In respect of the photometric
augmentation technique, for some methods, variations can be
drastic. For some datasets having complex, subtle, and hidden
characteristics, the intensity alteration could be so dire that the
processed images might not be considered clinically possible. It
is undeniably true that drastically different but clinically possible
augmented images would benefit a model, but the question
remains how someone recognizes certainly that radically altered
images are clinically possible. One might not claim assuredly
that although the alteration is drastic, the clinical setting of
images is not impaired as human eyes often make an error while
distinguishing intensity changes. In this regard, a statistical
measurement such as PSNR might be a convenient approach in
terms of perceiving the degree of transformation. Augmentation
techniques yielding considerably low PSNR values might result
in affecting the clinical setting. Ignoring these techniques can be
a superior approach when choosing augmentation methods. In
this study, the aim of introducing the experiment with PSNR
values is to eliminate the augmentation techniques with which
the lowest PSNR values are achieved indicating higher intensity
dissimilarity with the original images (48).

The photometric augmentation methods employed in this
study are chosen after investigating techniques named Gaussian
noise, HE, hue, saturation, altering brightness, and altering
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contrast. We find that for the methods of hue and saturation,
no changes occur in the images, which are in a grayscale
format. Therefore, for the datasets of mammogram, chest
x-ray, MRI, CT scan, and ultrasound, these methods cannot be
introduced as augmentation techniques. For the remaining three
datasets of skin cancer dermoscopy, otoscopic images (tympanic
membrane dataset), and histopathology images (breast cancer
microscopic biopsy images), these methods are applied, and
a PSNR value is derived. Finally, we have applied Gaussian
noise, HE, altering brightness, and altering contrast to each
of our datasets and selected the optimal ones based on the
highest PSNR value. Table 1 shows the average PSNR value
(dB) of 10 randomly chosen images for each dataset and
augmentation technique.

In Table 1, it can be observed that the highest PSNR
values are recorded for the augmentation techniques, brightness
high, brightness low, contrast high, and contrast low, which
indicates that a new diverse image is generated without
losing necessary pixel information. For the other augmentation
techniques, especially for noise and HE, comparatively poor
PSNR is achieved, which demonstrates high dissimilarity of
pixel intensity value between the original image and the
augmented image. A PSNR value < 20 is not acceptable
for images (47) as it indicates important pixel distortion
(49). Therefore, for these photometric augmentation methods,
our proposed CNN model might yield a poor performance.
Therefore, we have augmented the datasets by altering the
brightness and contrast of the raw images.

The term brightness of an image represents the overall
lightness or darkness of the picture. Conversely, contrast is
defined as the variance of intensity between the region of
interest (ROI) and background pixels existing in an image. The
mathematical formula for changing brightness can be stated as

b(x) = s(x)+ β (6)

Here, s(x) represents the input pixels and b(x) the output
pixels after changing the brightness level. Increasing or
decreasing the value of parameter β will add or subtract a
constant amount to each pixel. A positive value (β > 1) will
result in brightening the image, whereas a negative value (β< 1)
will cause darkening.

To alter the contrast level of the pixels, the difference in
brightness is raised by a multiple. The mathematical formula can
be stated as:

c(x) = α × s(x) (7)

Here, s(x) refers to the pixels of the source image and c(x) to
the output pixels after changing contrast.

For this photometric approach, we experimented with
several beta (β) and alpha (α) values and selected α values of 1.2
and 0.8 for increasing and decreasing brightness, respectively.
Likewise, the β values 1.2 and 0.8 are applied to increase and
decrease, respectively, the contrast of the images. Here, the T
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FIGURE 4

Geometric and photometric augmentation techniques.

parameter value α > 1 leads to increased contrast and α < 1
to decreased contrast. Based on the above formulas, each of the
datasets is augmented by employing four photometric methods:
increasing brightness, reducing brightness, increasing contrast,
and reducing contrast. Figure 4 shows the images after applying
four geometric and four photometric augmentation techniques.

A brief explanation of generating augmented
datasets applying different transformation
techniques

As shown in Table, there are eight different types of image
datasets considered to evaluate the performance of the model.
The original images of every dataset are augmented using four
photometric and four geometric techniques. We used different
augmentation techniques directly on datasets that had almost
the same number of images in each class. For the other datasets,
where the number of images is highly inconsistent, we have tried
to balance the number of images in each class. In this regard,
only the chest X-ray and ear infection datasets are balanced. For
this, a threshold for balancing the classes is determined based on
the class containing the lowest number of samples. Afterward,
images are cut from classes that have more samples than the
threshold and brought closer to the threshold number of images.
As CNNs tend to provide good results with completely balanced
datasets (same number of samples in all classes), the highly
imbalanced datasets are kept slightly imbalanced to perform a
rigorous evaluation of the proposed model. This is achieved by
starting from the threshold and gradually increasing the number
of samples by a factor for classes containing the second lowest
number of samples to the highest class. In this regard, classes
that have similar or slightly more images from the threshold
will be skipped and stay the same. In terms of the COVID-19
chest X-ray dataset, the lowest number of 1,345 images (Table 2)
is found in the viral pneumonia class and considered as the
threshold (1,300) for balancing the dataset, and the increasing
factor is determined as 100. The number of images in the
remaining classes COVID, Lung opacity, and Normal are 3,616,
6,012, and 10,192 images, respectively, which are quite greater
than the threshold. After balancing the dataset, the number of
images in the second lowest class (COVID) becomes 1,400, for
the third lowest class (Lung opacity) 6,012, and for the highest

class (Normal) 1,600. It is noticeable that in a balanced dataset,
the number of images in each class is gradually increased by
roughly 100 images and kept slightly inconsistent. In terms of
the Tympanic membrane dataset, the number of images for
classes AOM, CSOM, Earwax, and Normal is 119, 63, 140, and
533, respectively (Table 2). The fewest number of 63 images is
found in the CSOM class and considered as the threshold (50)
for balancing the dataset, and the increasing factor is determined
as 50. Here, most of the classes are quite balanced and quite near
the threshold besides the Normal class. Therefore, the number of
images in the highest class (Normal) is cut down to 250 images
while other classes are kept the same.

Proposed model

The recent progress in computer-aided technology in the
field of medical images, particularly in deep learning techniques,
has been quite useful to medical experts for recognizing
and categorizing diseases by understanding and extracting
meaningful hidden patterns (50). Deep learning can extract
and merge significant features related to the target abnormality
detection or classification process. CAD can provide a more
accurate assessment of disease progression by automated
medical imaging analysis. In CNN based medical image analysis,
meaningful features are learned in an automated way, which
identifies meaningful patterns automatically. As stated, the
main objective of this study is to develop a CNN model
that is able to interpret images with (i) a limited number of
training data, (ii) less computational resources and training time
without compromising its performance, (iii) several medical
image datasets in different domains and modalities, and (iv)
yield high classification accuracy on raw images. To deal with
a limited number of training data with low computational
complexity and training time, a shallow CNN architecture can
be an ideal approach.

Deep CNN models contain a lot of parameters that require
a substantial amount of training data to perform without
causing overfitting. In this regard, the scarcity of labeled medical
images often hinders the performance of traditional deep CNN
models (51). Conventional CNN models tend to have deeper
architectures resulting in too many parameters creating issues
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TABLE 2 Description of the original and augmented datasets.

Breast ultrasound image dataset

Class Original Balanced Photometric Geometric

Benign 440 – 1760 1760

Malignant 207 – 828 828

Normal 133 – 532 532

Total 780 – 3120 3120

COVID-19 chest X-ray image dataset

Class Original Balanced Photometric Geometric

COVID 3616 1400 5600 5600

Lung opacity 6012 1500 6000 6000

Normal 10192 1600 6400 6400

Viral pneumonia 1345 1345 5380 5380

Total 21165 5845 23380 23380

Breast cancer mammogram image dataset

Class Original Balanced Photometric Geometric

Benign calc 398 – 1592 1592

Benign mass 417 – 1668 1668

Malignant calc 300 – 1200 1200

Malignant mass 344 – 1376 1376

Total 1459 – 5836 5836

Skin cancer dermoscopy image dataset

Class Original Balanced Photometric Geometric

Benign 1800 – 7200 7200

Malignant 1497 – 5988 5988

Total 3297 – 13188 13188

Tympanic membrane dataset

Class Original Balanced Photometric Geometric

AOM 119 – 476 595

CSOM 63 – 252 315

Earwax 140 – 560 700

Normal 533 250 1000 800

Total 855 527 2288 2288

Brain tumor MRI image dataset

Class Original Balanced Photometric Geometric

Glioma tumor 926 – 3704 3704

Meningioma tumor 937 – 3748 3748

No tumor 500 – 2000 2000

Pituitary tumor 901 – 3604 3604

Total 3263 – 13056 13056

(Continued)
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TABLE 2 Continued

Breast cancer microscopic biopsy image dataset

Class Original Balanced Photometric Geometric

Benign 547 – 2188 2188

Malignant 1146 – 4584 4584

Total 1693 – 6772 6772

Breast cancer CT scan image dataset

Class Original Balanced Photometric Geometric

Left lower lobe of adenocarcinoma 195 – 780 780

Large cell carcinoma of left hilum 115 – 460 460

Normal 148 – 592 592

Squamous cell carcinoma of left hilum 155 – 620 620

Total 613 – 2452 2452

regarding overall performance and increasing time complexity
(52). This issue can be addressed by increasing the volume
of the dataset utilizing image data augmentation techniques.
However, too much augmentation can occasionally degrade
performance in terms of parameter number (53). For small
datasets containing limited samples, even with the application
of the data augmentation technique four to five times, the
dataset is still not sufficient enough to train a huge number
of parameters of a state-of-the-art DCNN model. Furthermore,
for small datasets, although the number of images is increased
extensively by employing a number of augmentation techniques
to meet the minimum requirement of DCNN, an optimal
performance could not be achieved, as the number of original
samples is still inadequate. On the other hand, reducing the
number of parameters by developing a compact CNN (shallow
CNN) can lower the requirement for larger datasets (54). For
having lower parameters, moderate-sized datasets will much
benefit from a shallow CNN model rather than a DCNN model,
as containing a lower number of parameters results in better
learning, which eventually produces better results. Therefore,
regarding both small and large datasets, a shallow CNN is able
to churn out better results utilizing a convenient number of
data augmentation techniques as the number of original samples
appears to be quite sufficient for training a lightweight CNN.
Also, shallow CNNs tend to be faster and more efficient than
deep CNNs (55), which can contribute in time complexity.

Base convolutional neural network model
We have started our experiment with a base CNN

model having five convolutional layers each followed by a
maxpool layer. Initially, the network had 3 × 3 convolutional
kernels, and the number of kernels was set to 64 for all
the convolutional layers, with a dropout value of 05. “Relu”
is selected as the activation function, “softmax” as the final
layer activation function, and “categorical_cross entropy” as

the loss function, with optimizer Adam with a learning rate of
.001 and a batch size of 64. The base model is illustrated in
Figure 5.

The model is run for 100 epochs with the breast cancer
mammography dataset. The input shape of the images is
denoted as 224 × 224 × 3, where 224 × 224 denotes the
height × width, and 3 refers to the number of channels in each
image (color channel in RGB format). In a convolutional layer, a
dot operation of input and weight is performed that outputs the
feature map using the following equation:

hk
= f

(
Wk
∗ x+ bk

)
(8)

Here, hk denotes the output feature maps, bk refers to
the bias, Wk refer to the weights, and x is the input image
(56). For input X in a convolutional layer, the process can be
mathematically represented as (57):

con = f

∑
i,j∈M

Xij = Wm−i,n−j + b

 (9)

where M is the convolutional area, x is the element in area M,
w denotes the element of the convolutional kernel, m, n is the
size of the kernel, b refers to the offset, and f (.) refers to the
activation function of the convolutional layer. For the pooling
layer process, the mathematical expression is (57):

pool = down
(
max

(
yi,j
))
, i, j ∈ p (10)

where p represents the pool area, y denotes the element in the
area p, and down () refers to the down sampling method, which
preserves the maximum value from p.

Ablation study
In order to determine the optimal layer architecture and

configuration of a CNN model, the nature and characteristics
of a task and possible related challenges should be considered
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FIGURE 5

The architecture of the base model.

(58). The aim of the ablation study is to acquire a clear
understanding of the model’s performance by analyzing the
consequence of altering some components (59). With the
alteration of different components or hyper-parameters of a
model, a change in performance is observed (60). This method
can ascertain any potential decrease in the performance of
the model, which can later be fixed by updating and tuning
the network. Therefore, we have trained our base CNN model
several times by altering layer numbers, filer sizes, filer numbers,
hyper-parameters, and parameter values to obtain an optimal
performance with low computational complexity. All the
experiments are performed on the breast cancer mammogram
dataset as this is a challenging dataset that contains artifacts,
noise, a limited number of images, similarities between intra-
classes, and intensity similarity between suspicious regions
and surrounding healthy tissues. If a model can address all
these challenges, it can be assumed that it might also provide
good outcomes for the rest of the datasets. The results of the
ablation study can be found in Section “Results of the ablation
study.”

Dataset split and training strategy
All the datasets are split using a 70:20:10 ratio for

training, validation, and testing, respectively, of the datasets.
“Categorical cross-entropy,” specified as “categorical_cross
entropy” (61) is a multi-class cross entropy found in Keras
and is utilized as the loss function while compiling the model.
The cross-entropy loss function is typically applied to a feature
discrimination network. The relevant equations are as follows
(62):

Loss (d, v) = −
∑m

j = 0

∑n

i = 0

(
dij ∗ log

(
v̂ij
))

(11)

where d represents true label and predicted label is represented
with v. The batch size of the dataset is denoted by m, with n
being the number of classes. v̂ij is the probability predicted by
the model at ith observation on jth category. Since the training
of neural networks is computationally intensive, especially with
a large dataset, it is crucial to utilize graphical processing
units (GPUs). Three computers equipped with Intel Core
i5-8400 Processor, NVidia GeForce GTX 1660 GPU, 16 GB
of memory, and 256 GB DDR4 SSD for storage are used
for this research.

MNet-10
As deep networks tend to consume more computational

resources and time, the approach of employing shallow
architecture is applied to address time and computational
complexity. Our proposed architecture contains several
modules and layers, including the input layer, convolutional
layers, activation function, pooling layers, a fully connected
layer, dropout, and an output dense layer.

The proposed model MNet-10 (Figure 6) contains a
total of 10 layers including four convolutional layers, four
max-pooling layers, and two dense layers. The ten layers
are determined after carrying out extensive experiments on
the dataset performing an ablation study. Among them, the
four convolutional layers and the last two dense layers are
considered as weighted layers. A flatten layer is introduced
before the dense layers. A total of four blocks are present
in this architecture where each block contains a 3 × 3
kernel-sized convolutional layers followed by a max-pooling
layer of kernel size 2 × 2. All the convolutional layers are
equipped with the PReLU non-linear activation function and
have a stride size of 1 × 1. The filters or kernels in the 2D
convolutional layers are made up of a set of weights that
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determines what features to detect from the input image (63).
The weights can be considered as parameters that get updated
after every epoch (64). The first two convolutional layers are
used to extract textural features (edges and corners) from
the input image while the other layers are used for a more
abstract representation of the input data containing complex
shapes and deep textural features (65). MNet-10 has a total
of 10,768,292 trainable parameters. While training the model,
the initial weights extract features from the input data, and
the error rate of the network is calculated through the loss
function. Afterward, after every training epoch, the weights of
all the kernels are modified based on error rate. This way,
the kernels are altered after every epoch and optimal features
can be extracted.

The input layer is fed to Block-1 where the first
convolutional layer has 16 filters containing a total of 788,992
trainable parameters that extract trivial features from the
input RGB images. As the first layer works with the input
images, in extracting only relevant patterns such as edges
and corners from mammograms, it is important to extract
only relevant data in this layer to lessen the number of
unwanted features for other convolutional layers to help with
better generalization of the ROI region, and lower number
of feature maps lessens computational complexity. In this
regard, the Block-1 convolutional layer is comprised of a low
number of 16 filters that maintain structural details while
keeping distinguishing textural characteristics of the input
mammograms. This produces a total of 16 feature maps for
every input data, which afterward get rectified with PReLU
keeping only the non-negative values of the feature maps.
Afterward, a 2 × 2 max-pool layer scales down the resulted
feature maps from the first convolutional layer into half its
size. This layer picks the highest pixel values from every 2-
× -2 area of the 222- × -222-sized rectified feature maps
and constructs smaller 111- × -111-pixel-sized pooled feature
maps with the highest pixel values. The max-pool layers of
the following Blocks have the same working principle. As the
dimensions of the feature maps are reduced, the following
convolutional layer has much smaller data to analyze, which
in turn plays a big role in lessening computational complexity.
The pooled feature maps are passed as input data for Block-
2.

Block-2 and Block-3 comprise a 3- × -3-kernel-sized
convolutional layer of 32 filters with 384,832 and 95,776
trainable parameters, respectively, and are equipped with a
PReLU activation function. Moreover, each convolutional layer
of Block-2 and Block-3 is followed by a max-pool layer
of 2 × 2. Block-2 and Block-3 extract more features from
the feature maps produced by Block-1 and scale down the
resulting feature maps to half their size. A CNN network’s
ability to extract more abstractions from visual inputs increases
with the number of filters of convolutional layers. In this
regard, the convolutional layer filter number is increased to

32 filters for Block-2 and Block-3 to extract more distinct
textural feature maps. The increase in filter size is subtle
(32 filters) keeping time complexity and ROI generalization
capabilities in mind. Just like the functionalities of Block-
1, a convolutional layer of Block-2 extracts a total of 32
feature maps of 109 pixels × 109 pixels that get rectified
by PReLU and pooled by a max-pool layer resulting in 32
feature maps of 54 pixels × 54 pixels. The feature maps are
later passed to Block-3 that produces additional 32 feature
maps of 26 pixels × 26 pixels. The resulting feature maps
of this Block contain a more abstract representation of the
input data containing various shapes and objects of the
images that are complex. The feature maps are used as
input for Block-4.

Block-4 includes the 3- × -3-kernel-sized convolutional
layer with 64 filters with a total of 55,360 trainable parameters
and a max-pooling layer with a 2- × -2-sized kernel.
PReLU is equipped in this layer to produce rectified feature
maps as seen in the previous Blocks. In order to extract
a greater number of abstractions from the input data,
the filter size of this layer is increased to 64, which
is considered as a subsequent amount of feature maps
for generalizing the input data while maintaining lower
computational complexity. The feature maps contain more
deep features of input data. The resulting feature maps
of the convolutional layer of Block-4 have a dimension of
24 × 24. Afterward, the max-pool layer scales down the
feature maps to 12 pixels × 12 pixels, hence reducing
computational complexity while conserving important features
of the input image. A total of 64 feature maps are produced
by Block-4 that contains additional deep features of the
input data with more complex shapes and objects than the
previous Blocks.

The resultant multidimensional feature maps of Block-4
are flattened into a 1D vector containing 9,216 values for
each mammogram. The flatten layer is followed by a fully
connected (FC) layer that contains 1,024 neurons equipped
with the PreLU activation function. Each value of the resulting
1D array serves as input neuron for the first FC layer where
each input neuron is connected to each neuron present in
the first FC layer. This connection of input neurons to
FC neurons is called weights that can be updated after
each epoch by backpropagation. Weights are responsible for
generalizing the extracted features of convolutional layers
by associating features to a particular class. The first FC
layer is followed by a dropout layer with a value of 0.5.
Afterward, a second FC layer, which is considered a classification
layer containing four neurons and equipped with a softmax
activation function (66), is utilized for classifying the input
mammograms into four classes. Each resulting neuron of the
dropout layer is connected to each neuron of the second
FC layer. This layer further generalizes the features, and
the softmax activation function gives prediction scores for
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FIGURE 6

The architecture of the proposed MNet-10 model after ablation study.

all four classes (BC, BM, MC, and MM). The error rate
is calculated through the categorical loss function, and the
weights of the fully connected layer and convolutional layers
are updated after every epoch depending on the error rate.

softmax (zi) =
ezi

6jezj
(12)

The mathematical expression of the Softmax
function is described in equation (28), where zi

refers to the outputs of the output neurons and
inputs of the Softmax function. Exp () is a non-
linear exponential function that is applied to each
value ofzi. The bottom part of equation (28)
(6jexp (zi) ) normalizes the exponential values
(exp (zi) ) by dividing them with the summation of
exp (zi) .

Results and discussion

This section solely focuses on the presentation and
discussion of the results and key findings of this research. This
includes the results of the ablation study and performance
analysis of the proposed model on multiple medical
image datasets. Furthermore, comparisons of various data
augmentation techniques and their impact on a particular
medical image dataset are also discussed in this section.

Evaluation matrices

To evaluate the performance of all the experiments
including the ablation study, different augmentation techniques

and three deep learning models, several evaluation metrics,
namely, precision, recall, F1-score, accuracy (ACC), sensitivity,
the area under the curve (AUC), and specificity, are used.
A confusion matrix is generated for each experiment
from which the values of true positive (TP), true negative
(TN), false positive (FP), and false negative (FN) cases
are derived. AUC value is the resultant of the receiver
operating characteristic (ROC) curve that plots the true
positive rate (TPR) against the false positive rate (FPR) at
various threshold values. TPR is an alternative term for Recall.
The necessary formula can be stated as follows (65, 67):

ACC =
TP+TN

TP+TN+FP+FN
(13)

Recall =
TP

TP+FN
(14)

Specificity =
TN

TN+FP
(15)

Precision =
TP

TP+FP
(16)

F1 = 2
precision ∗ recall
precision+recall

(17)

Results of the ablation study

All components of the base CNN architecture
are altered, and the results are recorded. For
each case study, we show the time complexity
(68), training time per epoch, and test accuracy.
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Theoretical time complexity can be defined as (69):

O =
{∑k

j = 1
nj−1 · sw · sh · nj ·mw ·mh

}
(18)

where j refers to the index number of each convolutional layer
and k denotes the total number of convolutional layers, nj−1 is
the total number of the kernel or input channels in the j – 1st
convolutional layer, nj denotes the total number of kernels or
output channels in the jth layer, sw and sh denote the width and
height of the kernels individually, and mw and mh refer to the
width and height, respectively, of the generated feature map.

The results of the entire ablation study are
presented in Tables 3, 4. Table 3 contains all the
results related to the model’s layer configurations
and activation functions, and Table 4 presents the
results of tuning hyper-parameters, the loss function,
and flatten layer.

Case study 1: Changing convolutional and
max-pool layers

In this case study, the configuration mentioned above
is kept as it is, while the number of convolutional and
max-pool layers is changed. Initially, we start with five
convolution layers followed by five max-pool layers. Table 3
shows the performance of different configurations of the
model architecture with the total number of parameters
and training time. The best performance is achieved by
configuration 2 (Table 3) with an accuracy of 93.36%.
We get the highest accuracy for this configuration
within 75 epochs, and the training time per epoch was
54 s, which is the lowest training time. Configuration
2 consists of four pairs of convolutional and max-pool
layers. This configuration was selected for the rest of the
ablation case studies.

Case study 2: Changing filter size
In this case study, we have experimented with

different kernel sizes of 3 × 3, 2 × 2, and 5 × 5 to
observe performance (70). It is observed that changing
filter size does not much affect the overall performance
(Table 3). However, the highest accuracy, 93.47%, is
achieved when employing the kernel size 5 × 5 with the
training time per epoch requiring 55 s. Filter 3 × 3 had
the second highest accuracy of 93.36% with an epoch
time of 54 s. Filter size 3 × 3 reached its top accuracy
in 72 epochs and the 5 × 5 kernel in 82 epochs where
3 × 3 had a lower per epoch training time of 54 s. Filter
size 3 × 3 had a lower time complexity (64 million)
than filter size 5 × 5 (178 million). As filter size 3 × 3
recorded nearly the highest accuracy while maintaining
low time complexity as well as low epoch numbers and
training time, this configuration is chosen for further
ablation case studies.

Case study 3: Changing the number of filters
Initially, we started with a constant number of kernels (58)

for all the four convolutional layers (64 → 64 → 64 → 64).
Later, the number of features is reduced to 32, and no
improvement in performance is found. However, we
anticipated that gradually increasing might be a better
approach. This is represented in configurations 3 and 4
(Table 3). It is evident that configuration 4 with filter
numbers 16, 32, 32, and 64 for the four convolutional
layers achieved the highest performance with a test
accuracy of 94.75% and the lowest time complexity and
model training time. Therefore, we move forward with
configuration 4.

Case study 4: Changing the type of pooling
layer

Two pooling layers, max pool and average pool, are
evaluated (68), with both pooling layers gaining the same
highest accuracy of 94.75% (Table 3). It is observed that the max
pooling layer required a lower epoch number of 66 to achieve
the highest accuracy while maintaining a low training time per
epoch of 51 s. The max pooling layer is therefore chosen for
further ablation studies.

Case study 5: Changing the activation function
As different activation functions can impact the

performance of a neural network model, choosing an optimal
activation function is gaining a relevant research question. Five
activation functions, PReLU, ReLU, Leaky ReLU, Tanh, and
Exponential Linear Units (ELUs) (71) are experimented with.
PRelu performs best with a test accuracy of 96.52% (Table 3).
This activation function was chosen for further ablation studies.

Case study 6: Changing batch size
Batch size denotes the number of images used during

each epoch to train the model. A larger batch size may result
in the model taking a long time to accomplish convergence
while a smaller batch size can cause poor performance.
Moreover, performance varies for different batch sizes of
medical datasets because of the complex structure of medical
images (29). We have experimented with four batch sizes
and found that both the batch sizes of 16 and 32 achieved
the highest accuracy of 96.8% (Table 4). However, the batch
size of 32 results in better overall performance, maintaining
lower epoch numbers and training times than the batch size
of 16. Therefore, a batch size of 32 is chosen for further
ablation studies.

Case study 7: Changing flatten layer
A flatten layer takes the multidimensional output of

previous layers and produces a one-dimensional tensor. We
experimented with Global Max pooling and Global Average
pooling instead and found that the previously used flatten layer
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TABLE 3 Ablation study on layer configurations and activation functions.

Case study 1: changing convolution and maxpool layer

Configuration no. No. of
convolution

layer

No. of pooling
layer

Time
complexity

Epoch × training time Test accuracy
(%)

Finding

1 5 5 66M 79× 54s 89.55 Modest accuracy

2 4 4 64M 75× 54s 93.36 Highest accuracy

3 3 3 62M 79× 54s 86.27 Lowest accuracy

4 6 6 64M 84× 56s 91.15 Modest accuracy

5 7 7 – – – Error

Case study 2: changing filter size

Configuration no. Filter size Time
complexity

Epoch × training time Test accuracy (%) Finding

1 3× 3 64M 72× 54s 93.36 Near highest
accuracy

2 2× 2 28M 78× 55s 93.07 Highest accuracy

3 5× 5 178M 82× 55s 93.47 Highest accuracy

Case study 3: changing the number of filter

Configuration no. No. of kernel Time
complexity

Epoch × training time Test accuracy (%) Finding

1 64→ 64→ 64→ 64 28M 75× 54s 93.36 Modest accuracy

2 32→ 32→ 32→ 32 14M 83× 53s 91.22 Accuracy dropped

3 32→ 32→ 64→ 64 16M 79× 53s 94.51 Accuracy improved

4 16→ 32→ 32→ 64 10M 71× 51s 94.75 Highest accuracy

Case study 4: changing type of pooling layer

Configuration no. Type of pooling
layer

Time
complexity

Epoch × training time Test accuracy (%) Finding

1 Max 10M 66× 51s 94.75 Highest accuracy

2 Average 10M 71× 52s 94.75 Highest accuracy

Case study 5: changing activation function

Configuration no. Activation
function

No. of
parameter

Epoch × training time Test accuracy (%) Finding

1 PReLU 10M 71× 55s 96.52 Highest accuracy

2 Relu 10M 66× 51s 94.75 Previous accuracy

3 Leaky ReLu 10M 78× 59s 95.66 Accuracy improved

4 Tanh 10M 78× 60s 94.2 Accuracy dropped

5 ELU 10M 78× 57s 96.17 Accuracy improved

yielded the highest test accuracy of 96.83% (Table 4) while
maintaining the lowest training time.

Case study 8: Changing loss functions
Experimentation with different loss functions including

Binary Crossentropy, Categorical Crossentropy, Mean Squared

Error, Mean Absolute Error, Mean Squared Logarithmic
Error, and Kullback Leibler Divergence was carried out to
select the appropriate loss function for our network. While
equipped with Categorical Crossentropy, the model had a
96.83% (Table 4) test accuracy, which is the best result.
Hence this is chosen.
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TABLE 4 Ablation study on model hyper-parameters, loss function, and flatten layer.

Case study 6: changing batch size

Configuration no. Batch size Time complexity Epoch × training time Test accuracy (%) Finding

1 16 10M 71× 59s 95.84 Accuracy dropped

2 32 10M 68× 56s 96.83 Highest accuracy

3 64 10M 71× 55s 96.52 Previous accuracy

4 128 10M 78× 51s 96.28 Accuracy dropped

Case study 7: changing flatten layer

Configuration no. Flatten layer type Time complexity Epoch × training time Test accuracy (%) Finding

1 Flatten 10M 68× 56s 96.83 Highest accuracy

2 Global max pooling 10M 75× 56s 96.47 Accuracy dropped

3 Global average pooling 10M 83× 58s 96.38 Accuracy dropped

Case study 8: changing loss functions

Configuration no. Loss function Time complexity Epoch × training time Test accuracy (%) Finding

1 Binary crossentropy 10M 82× 56s 88.57 Accuracy dropped

2 Categorical crossentropy 10M 68× 56s 96.83 Highest accuracy

3 Mean squared error 10M 73× 55s 87.62 Accuracy dropped

4 Mean absolute error 10M 92× 56s 74.80 Accuracy dropped

5 Mean squared logarithmic error 10M 68× 56s 95.81 Accuracy dropped

6 Kullback Leibler divergence 10M 78× 56s 96.04 Accuracy dropped

Case study 9: changing optimizer

Configuration no. Optimizer Time complexity Epoch × training time Test accuracy (%) Finding

1 Adam 10M 68× 56s 96.83 Accuracy dropped

2 Nadam 10M 74× 56s 97.15 Highest accuracy

3 SGD 10M 87× 61s 92.68 Accuracy dropped

4 Adamax 10M 89× 58s 95.75 Accuracy dropped

5 RMSprop 10M 91× 59s 90.82 Accuracy dropped

Case study 10: changing learning rate

Configuration no. Learning rate Time complexity Epoch × training time Test accuracy (%) Finding

1 0.01 10M 92× 55s 91.46 Accuracy dropped

2 0.007 10M 87× 56s 95.85 Accuracy dropped

3 0.001 10M 74× 56s 97.15 Previous accuracy

4 0.0007 10M 65× 57s 97.34 Highest accuracy

5 0.0001 10M 68× 57s 97.28 Accuracy improved

Case study 9: Changing optimizer
Experimentation with different optimizers including

Adam, Nadam, SGD, Adamax, and RMSprop was
carried out to identify the optimal optimizer. In this
case, the learning rate was set to 0.001. The best test
accuracy of 97.15% (Table 4) was recorded with the
Nadam optimizer. We select the Nadam optimizer for
further ablation study.

Case study 10: Changing learning rate
An experimentation with different learning rates of 0.01,

0.005, 0.001, 0.0005, and 0.0001 was conducted. The best test
accuracy of 97.34% (Table 4) was recorded with a learning rate
of 0.0005 and the Nadam optimizer.

Visual representation of gradual performance boost with
different ablation study cases and gradual decrease in time
complexity is shown in Figure 7 for better understanding.
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FIGURE 7

Visualization of resulting time complexity (measured in millions and scaled into range 0–100) and test accuracy (measured in percentage) of all
the ablation case studies.

Results of different datasets for
different augmentation techniques

After the ablation study, the optimal model configuration is
used for further analysis. The model is trained with each of the
datasets described before and after conducting augmentation.
As mentioned, two augmentation approaches were performed
for each dataset, leading to three sets of results, including the
result of the dataset before augmentation as shown in Table 5.
Afterward, to further assess our model’s robustness, three deep
learning algorithms, VGG16, InceptionV3, and ResNet50, are
trained on each of the datasets. In this regard, the augmented
dataset for which the best performance is achieved is used to
train the deep learning models. In this section, the results are
explained along with a discussion at the end of the section.

Table 5 presents the computed results of our proposed
model, MNet-10, evaluated on all the eight medical image
datasets, both augmented and non-augmented. While testing
the proposed model on the Breast mammogram, Breast cancer
ultrasound, and tympanic membrane datasets, the highest
test accuracies of 97.34, 98.75, and 96.31% were achieved
utilizing the photometric augmentation technique. Similarly,
testing the proposed model on the skin cancer dermoscopy,
COVID chest X- dataset, chest CT scan, and Brain tumor
MRI datasets, the findings indicate that the photometric
augmentation technique prevails with accuracies of 98.43,
97.29, 99.82, and 99.54%, respectively. On the other hand, the
geometric augmentation technique recorded a higher accuracy

in terms of the breast cancer microscopic biopsy image dataset
with an accuracy of 96.76%.

Figure 8 shows the accuracy curves for proposed MNet-10
on the best performing augmented datasets of all the medical
image datasets. It is observed from all the eight accuracy curves
that the training curve converges smoothly from the first to
the last epoch showing approximately no bumps. The difference
between the training accuracy and validation accuracy curve is
minimal. In conclusion, after analyzing the training, no evidence
of overfitting is found.

A brief discussion of the augmentation
results

Regarding image augmentation techniques, various
outcomes can be observed from the eight different modalities.
In most cases, the photometric image augmentation technique
yields a better outcome in terms of test accuracies than the
geometric augmentation technique (Table 5). For mammogram
images, photometric augmentation provided the highest test
accuracy of 97.34% (Table 5), whereas the accuracy is drastically
reduced for geometric augmentation (90.32%). We assume that
the reason behind this is the changing of the position of the
cancer region (ROI) in the mammograms with the geometric
augmentation technique. Breast cancer mammograms contain
cancerous ROIs that are often hard to distinguish from dense
tissues as they appear bright. Hence, because of the nature of the
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TABLE 5 Results of datasets breast mammogram, skin cancer, chest X-ray, tympanic membrane, brain tumor MRI, chest cancer CT-scan, breast
cancer microscopic biopsy image, and breast cancer ultrasound image.

(1) Breast mammogram dataset

Experiment T_acc T_loss Val_acc V_loss Te_acc Te_loss Precision Recall Specificity F1_score AUC

Before augmentation 76.13 0.48 69.07 0.49 66.84 0.46 66.76 66.83 79.13 70.26 66.95

Geometric 95.35 0.12 94.08 0.23 90.32 0.24 90.79 90.39 96.37 90.59 90.43

Photometric 93.90 0.16 96.91 0.08 97.34 0.08 97.34 97.10 98.95 97.12 97.47

(2) Skin cancer dermoscopy dataset

Experiment T_acc T_loss Val_acc V_loss Te_acc Te_loss Precision Recall Specificity F1_score AUC

Before augmentation 90.13 0.28 89.37 0.54 88.86 0.28 88.34 88.64 93.25 88.49 88.92

Geometric 97.68 0.18 97.40 0.48 97.82 0.1872 97.71 97.76 99.06 97.73 97.91

Photometric 96.43 0.016 94.04 0.02 98.43 0.016 98.24 98.56 99.32 98.40 98.65

(3) COVID chest X-ray dataset

Experiment T_acc T_loss Val_acc V_loss Te_acc Te_loss Precision Recall Specificity F1_score AUC

Before augmentation 76.15 0.10 75.02 0.32 73.66 0.10 73.36 73.65 84.56 73.47 73.77

Geometric 98.39 0.09 98.16 0.23 94.81 0.09 94.53 94.54 97.05 95.53 94.95

Photometric 94.86 0.15 97.48 0.07 97.29 0.07 97.32 97.31 99.09 97.31 97.42

(4) Tympanic membrane dataset

Experiment T_acc T_loss Val_acc V_loss Te_acc Te_loss Precision Recall Specificity F1_score AUC

Before augmentation 65.15 0.82 64.52 0.08 64.37 0.08 63.82 64.06 75.48 63.94 64.41

Geometric 98.02 0.07 88.85 0.54 92.10 0.04 86.99 89.10 96.55 88.04 92.23

Photometric 97.50 0.08 96.81 0.15 96.31 0.12 96.28 96.40 98.74 96.34 96.48

(5) Brain tumor MRI dataset

Experiment T_acc T_loss Val_acc V_loss Te_acc Te_loss Precision Recall Specificity F1_score AUC

Before augmentation 90.13 0.28 84.07 0.49 82.36 0.366 82.27 82.56 89.13 82.41 82.44

Geometric 98.18 0.06 98.62 0.06 98.93 0.05 98.93 99.0 99.63 98.97 99.04

Photometric 98.82 0.04 99.42 0.03 99.54 0.04 99.54 99.59 99.84 99.56 99.71

(6) Chest cancer CT-scan dataset

Experiment T_acc T_loss Val_acc V_loss Te_acc Te_loss Precision Recall Specificity F1_score AUC

Before augmentation 65.15 0.82 64.52 0.08 64.37 0.08 63.82 64.26 81.45 64.03 64.41

Geometric 98.78 0.03 97.75 0.10 97.56 0.10 97.63 97.63 99.16 97.63 97.84

Photometric 98.89 0.03 99.59 0.04 99.82 0.31 99.82 99.85 99.91 99.84 99.90

(7) Breast cancer microscopic biopsy image dataset

Experiment T_acc T_loss Val_acc V_loss Te_acc Te_loss Precision Recall Specificity F1_score AUC

Before augmentation 91.15 0.40 85.02 0.42 83.66 0.10 83.36 83.65 84.56 83.65 83.80

Geometric 97.93 0.06 97.63 0.08 96.76 0.06 96.40 96.18 98.53 96.29 96.84

Photometric 95.06 0.06 93.87 0.22 93.50 0.15 92.06 93.08 95.86 92.57 93.63

(Continued)
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TABLE 5 Continued

(8) Breast cancer ultrasound image dataset

Experiment T_acc T_loss Val_acc V_loss Te_acc Te_loss Precision Recall Specificity F1_score AUC

Before augmentation 76.15 0.10 75.02 0.32 73.66 0.10 73.36 73.65 84.56 73.47 73.81

Geometric 98.39 0.12 98.16 0.23 95.38 0.09 95.53 95.54 97.05 95.53 95.55

Photometric 98.95 0.06 98.63 0.05 97.45 0.06 97.49 97.72 99.18 97.61 97.59

The results include training accuracy (T_acc), training loss (T_loss), validation accuracy (V_acc), validation loss (V_loss), test accuracy (Te_acc), test loss (Te_loss), precision, recall,
specificity, F1 score, and area under the curve value (AUC).

FIGURE 8

Accuracy curves for all the eight medical image datasets trained on proposed MNet-10.

datasets, to successfully classify mammograms, it is important
to preserve the ROI structure and position of the images as
much as possible while augmenting them. With geometric
augmentation techniques for complex datasets, the ROIs of
resultant augmented images change position to an extent that
less resembles real-world mammograms. Moreover, with the
geometric augmentation technique, the position and details
of ROIs in a complex medical image can be heavily altered,
resulting in the loss of ROI information. It can be said that,
along with other features, the geometric position is a crucial
feature for these datasets and impacts greatly the performance of
a model. While training a model with such augmented images,
some features learned by the model may not even be related to
features of a real-word test dataset. As a consequence, when a
geometric axis is altered, the model tends to obtain results with
higher false negative rates when differentiating classes.

Therefore, for images where the ROI is complex, hidden
and geometrical information is important; applying geometric
augmentation might not be a good approach. On the other hand,
with the photometric augmentation technique, the position of
the cancer region is not affected; rather, the intensity of the
ROI changes, resulting in augmented images that are not highly
dissimilar to the original images. With this approach, as the
geometric perspective is not altered, the structural information
of the ROI is preserved quite accurately so the resulting image

is close to real-world datasets. Deep learning models trained
with augmented images show better performance in terms of
prediction rates on test datasets. This improves the model’s
understanding of cancer regions and their positions and gives
better predictions on test datasets.

In our study, the photometric augmentation technique
provided the highest performance for the Chest CT scan,
COVID chest X-ray, Tympanic membrane, and breast cancer
ultrasound image datasets, with test accuracies of 99.82,
97.29, 96.31, and 98.75%, respectively. With the geometric
augmented technique, the datasets showed a 3–5% decrease in
test accuracies. The ROIs contained in the four datasets are
less complex, and the ROI region is more defined than the
surrounding regions. Hence, the differences between classes
are more easily distinguishable than mammograms. For these
datasets, a 2–5% accuracy drop is observed while training
with the geometric augmentation technique over photometric
augmentation technique, whereas for a complex dataset like that
of a mammogram, the accuracy fell drastically (>7%).

We obtained near-identical accuracies, with an accuracy
difference of around 1% between both of the augmentation
techniques on the Skin cancer dermoscopy and Brain tumor
MRI datasets. In the skin cancer dermoscopy images, the
achieved test accuracies are 98.43 and 97.82%; also, in the
Brain tumor MRI images, 99.54 and 98.93% were achieved,
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respectively, for the photometric and geometric augmentation
techniques. It is found that the ROIs of the datasets are quite
straightforward, clearly visible, and less complex. In this case,
the geometric augmentation technique does not much affect the
structural information of the ROI to a large extent. For this
reason, the types of datasets can be expected to perform quite
well with both augmentation techniques as geometric alteration
has less effect on distinguishing the ROI.

In terms of the breast cancer microscopic image dataset, the
geometric augmentation technique acquired a test accuracy of
96.76%, which is about 3% higher than that of the photometric
augmentation technique (93.5%). We assume that the reason
behind the success of the geometric technique in this regard
lies in the characteristics of the images in this dataset. The
histopathological images of the breast cancer microscopic
dataset are in a very high-quality RGB format where the contrast
and brightness levels of the images are well-adjusted. The ROI
regions in histopathological images are very straightforward
and very distinguishable from the background pixels where
geometric alteration does not change any necessary information.
While applying the photometric augmentation technique to
such images, the ROI regions might get overexposed with an
increase in brightness or get underexposed with a reduction in
brightness. Overexposed and underexposed images can result in
the loss of ROI information in a histopathological image. On the
other hand, with the geometric augmentation technique, pixel
intensity is not affected. Consequently, for a high-quality image
dataset such as the breast cancer microscopic image dataset, the
geometric augmentation technique can perform a bit better. In
general, the photometric augmentation technique clearly seems
to achieve better performance, but the geometric augmentation
technique performs moderately in some cases while in other
cases a drastic decrease in performance is observed. As various
medical datasets contain different characteristics, rigorous
observations with multiple augmentation techniques should be
carried out to find the best-performing augmentation technique
for a particular dataset.

Alongside the photometric and geometric augmentation
methods, the elastic deformation data augmentation technique
is also utilized to observe how it performs on the eight
datasets. This is considered one of the most complex kinds of
augmentation, as it can heavily alter an image. It is quite similar
to stretching an image, but overdoing elastic deformation can
lead to distorted training images.

In elastic deformation, deformation intensity is denoted
with sigma (σ). With sigma values higher than 20, the resulting
augmented images become quite distorted. Hence, all the eight
datasets are augmented four times with four different σ values
of 5, 10, 15, and 20. Afterward, the proposed model is tested
again with the augmented datasets, and the results are recorded.
For the datasets of Breast mammogram, COVID chest X-ray,
and chest cancer CT scan, the obtained test accuracies of
MNet-10 are 84.45, 87.31, and 91.55%, respectively, with the

elastic deformation augmentation technique. This performance
is quite lower than the accuracies obtained from both the
photometric and geometric augmentation techniques, while the
highest accuracy in the range of 97%-99% was gained with
the photometric augmentation technique. On the contrary, the
Skin cancer dermoscopy, Tympanic membrane, breast cancer
microscopic biopsy image, breast cancer ultrasound image,
and Brain tumor MRI datasets augmented with the elastic
deformation technique showed accuracies of 97.41, 91.85, 95.83,
94.96, and 94.17%, which are quite close to the accuracies
obtained with the geometric augmented datasets. In this
regard, the traditional photometric and geometric augmentation
techniques seemed to outperform the elastic augmentation
technique in most cases.

Performance comparison with
state-of-the-art deep learning models

In this section, the proposed MNet-10 model is further
evaluated by comparing it with some state-of-the-art transfer
learning models, namely, VGG16, ResNet50, and Inception V3,
on the best performing augmented datasets. In this regard, we
have chosen the three models based on various research studies
conducted on similar medical datasets in recent times. The
growth of smart medicine is strongly supported by various CNN
models such as VGG16 and ResNet (72), which are considered
the most popular transfer learning models for analyzing medical
images (73). Furthermore, these models can be used in datasets
similar to ours (40, 41, 72, 74, 75). Also, InceptionV3 has been
used on datasets (76–78) similar to ours. Although these models
are a bit old, they are well-established and have been proven
to be quite effective in numerous research studies. As these
models represent three very different types of CNN architectures
offering different numbers of parameters (ranging from 23 to
143 million), they tend to perform differently with various
small and big medical datasets. Being three very different types
of state-of-the-art models, they can give an insight into their
raw performance on the eight medical datasets and pose a
fair performance comparison with the MNet-10 model. For
these reasons, VGG16, ResNet50, and InceptionV3 have been
chosen for comparison.

These models are trained for 100 epochs using the optimizer
Nadam, a learning rate of 0.0007, and a batch size of 32 as this
is the optimal hyper-parameter configuration for our proposed
MNet-10 model. The results of this comparison are presented in
Table 6. Across all the medical datasets, our proposed Mnet-10 is
found to outperform the other three models in the comparison.
A common observation for the VGG16, Inception V3, and
ResNet50 models is that for some datasets, the performance is
quite satisfactory while for others the performance is noticeably
reduced. However, the VGG16 model performed better than
the ResNet50 and InceptionV3 models on datasets that contain
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TABLE 6 Results of VGG16, ResNet50, InceptionV3, and MNet-10 on breast mammogram, skin cancer, chest X-ray, tympanic membrane, brain
tumor MRI, chest cancer CT scan, and breast cancer ultrasound image with photometric augmentation techniques and breast cancer microscopic
biopsy image with geometric augmentation techniques.

Datasets Statistical tests VGG16 ResNet50 InceptionV3 Proposed model

Breast Mammogram dataset Test accuracy 90.10 63.82 88.24 97.34

F1 score 89.47 59.92 88.15 97.12

AUC 91.38 63.97 89.32 97.47

Specificity 93.61 68.45 93.49 98.95

Skin cancer dermoscopy dataset Test accuracy 90.68 82.71 92.19 98.43

F1 score 87.18 81.35 90.26 98.40

AUC 92.04 82.11 93.84 98.65

Specificity 94.12 86.09 96.17 99.32

COVID chest X-ray dataset Test accuracy 93.74 78.80 89.87 97.29

F1 score 92.36 75.63 86.95 97.31

AUC 95.27 76.29 90.32 97.42

Specificity 95.41 83.93 92.40 99.09

Tympanic membrane dataset Test accuracy 89.99 55.78 94.26 96.31

F1 score 89.57 54.83 93.81 96.34

AUC 91.68 55.91 95.07 96.48

Specificity 92.16 65.74 95.43 98.74

Brain tumor MRI dataset Test accuracy 97.63 78.93 92.49 99.54

F1 score 96.25 76.20 91.83 99.56

AUC 97.84 79.58 94.28 99.71

Specificity 97.14 83.45 95.03 99.84

Chest cancer CT-scan dataset Test accuracy 98.78 81.71 96.74 99.82

F1 score 98.05 80.34 93.72 99.84

AUC 99.47 81.92 98.03 99.90

Specificity 99.12 88.24 97.91 99.91

Breast cancer microscopic biopsy image dataset Test accuracy 91.85 80.35 92.47 96.76

F1 score 89.30 80.11 90.34 96.29

AUC 93.53 82.45 93.70 96.84

Specificity 93.41 86.26 94.18 98.53

Breast cancer ultrasound image dataset Test accuracy 96.43 85.61 93.43 98.75

F1 score 96.18 83.57 93.18 97.61

AUC 97.10 87.04 94.35 97.59

Specificity 98.75 91.73 96.83 99.18

The results include test accuracy, specificity, F1 score, and area under the curve (AUC) statistical values.

small and quite complex ROIs such as the mammogram image,
COVID chest X-ray, brain tumor MRI, and chest CT scan
datasets (Table 6). On the other hand, the InceptionV3 model
outperformed VGG16 in terms of datasets containing big and
obvious ROIs such as skin cancer, tympanic membrane, and
breast cancer microscopic biopsy datasets. ResNet50 performed
noticeably poorly in the comparison, with the majority of the
accuracies dropping below 80% (Table 6). Furthermore, various
statistical measures (79) besides test accuracy are also calculated
for all the models including F1 score, specificity, and AUC
values (Table 6) where MNet-10 seems to outperform all the
models. Unlike test accuracy, the three CNN models (VGG16,
Inception V3, and ResNet50) were unable to produce consistent
performance across all datasets in terms of F1 score, specificity,

and AUC. ResNet50 also seemed to fall behind both VGG16 and
InceptionV3 in this regard. This further adds to the robustness
of the proposed model. Moreover, a Wilcoxon signed-rank test
(80) is also conducted to highlight the statistical significance
between the results produced by the proposed network and the
other models shown in Table 6. In this regard, a P-value of less
than 0.05 is considered a significant level (81). Table 7 showcases
the findings of the Wilcoxon signed-rank test conducted with
F1 scores (Table 6). The outcome of this test shows an achieved
P-value of 0.003 in all the cases (Table 7) and concludes that the
performance difference between the proposed MNet-10 and the
other DL models is quite statistically significant.

MNet-10 is constructed and consists of a total of 10
layers and six weighted layers, and it is considered a shallow
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TABLE 7 Results of Wilcoxon signed-ranked test.

Pairwise model comparison P-value Test outcome

Proposed model MNet-10 vs. VGG16 0.003 Significant

Proposed model MNet-10 vs. ResNet50 0.003 Significant

Proposed model MNet-10 vs. InceptionV3 0.003 Significant

CNN model having about 10 million parameters; 143, 23,
and 25 million parameters can be found in the state-of-the-
art models VGG16, InceptionV3, and ResNet50, respectively,
which are quite high for accommodating real-world data.
Additionally, the ResNet-50 model shows a tendency to
overfit on smaller datasets (82). Furthermore, models with
a large number of trainable parameters take up a lot of
time and resources in the training phase than shallow CNNs.
Keeping all this in mind, the number of layers of the model
is kept to a minimum to lessen the number of trainable
parameters for better generalization even on a small dataset.
With ablation studies, the lowest number of convolutional
layers (four layers) is determined while maintaining optimal
performance. Moreover, PReLU is utilized in MNet-10 rather
than the traditional ReLU activation function for fast converge
capabilities (83) and shows better overall performance. Faster
convergence not only boosts the performance of a classifier
but also contributes to minimizing computational complexity.
Furthermore, small-sized convolutional kernels can extract
more low-level textural information and small details resulting
in better feature extraction from datasets containing tiny details.
Hence, datasets with complex ROI (mammogram, chest X-ray,
chest CT scan, Brain tumor MRI) benefit from the filter size
of 3 × 3 of MNet-10. With this, overall performance boost is
observed not only in small ROI datasets but also in datasets
containing large ROI (Tympanic membrane and Skin cancer
dataset), which adds to the generalization capabilities of the
model across multiple datasets. In MNet-10, only one FC layer
is used as multiple FC layers can introduce overfitting (84)
for having dense connections (85). Furthermore, to address
any potential overfitting issue, a dropout layer is added to
randomly eliminate some connections of the FC layer (85) that
are commonly used for feature generalization purposes.

Lastly, with our proposed MNet-10 model, stable
performance can be observed across all the eight types of
medical imaging modalities, with accuracies ranging between
96 and 99.6%, which adds to the effectiveness, consistency, and
stability of the model.

Discussion

Developing an optimal CNN classification model for
medical image datasets of multiple diseases is the main goal
of this research, and it has proven to be quite a challenging

task. In this study, a robust shallow CNN model that can
perform with optimal accuracy for all eight datasets even with
the same parameters is developed. We consider that the most
efficient way to achieve this is to develop the architecture
using the mammogram dataset, which is regarded as one of
the most challenging imaging modalities (86). For this goal,
a number of ablation studies were conducted to generate the
proposed MNet-10 model. The Ablation study has proven to
be very effective, as it improved the classification capabilities
of the proposed model from 89.55 to 97.34% (Figure 7) for
the mammogram dataset. After developing the model with an
optimal architecture, it is trained with the seven remaining
datasets. It is also found that for the other datasets, the model
is able to achieve a test accuracy above 96%. Therefore, our
primary hypotheses become true that even without fine-tuning
the parameters with other datasets, optimal performance can be
achieved for all the datasets employing extensive experiments
of ablation study using the most challenging imaging modality.
Conducting intensive ablation studies on a complicated dataset
such as those of mammograms made it possible for the model to
learn even the smallest, complex, and hidden details, which led
to better performance on datasets containing less complicated
regions of interest (ear infection and skin cancer datasets).

As can be concluded from the literature review in
Section “Dataset description,” although several experiments
are conducted to build a model or preprocess a dataset, not
enough experimentation regarding augmentation techniques
is carried out. No study has explored a wide range of
benchmark datasets of different diseases and imaging domains
to evaluate the performance of a CNN model. Furthermore,
which augmentation technique is more applicable for which
imaging modality is a vital concern that needs more attention.
As stated in Section “Data augmentation,” while working with
grayscale images, hue and saturation cannot be applied as
augmentation techniques despite being widely used. According
to the PSNR values shown in Table 1, in RGB images, these
techniques might drastically change significant pixel details and
may produce a poor outcome. Moreover, the PSNR values
indicate that new augmented images that are created using
our chosen augmentation techniques do not change the pixel
intensity level of the original image drastically compared to
other photometric augmentation techniques.

To summarize, dealing with a limited number of training
data with low computational complexity and training time,
and a shallow CNN architecture can be an ideal approach.
In this regard, a model should be developed in an effective
way by employing an ablation study to set the parameters.
However, in most cases, the annotated medical dataset is found
to be too small to train a CNN model even with a shallow
architecture. In these cases, data augmentation is performed to
increase the volume of images introducing variations. According
to our findings, regarding image augmentation techniques,
various outcomes can be observed using the eight different

Frontiers in Medicine 24 frontiersin.org

https://doi.org/10.3389/fmed.2022.924979
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org/


fmed-09-924979 August 10, 2022 Time: 15:2 # 25

Montaha et al. 10.3389/fmed.2022.924979

datasets. In regard to the interpretation of medical images,
applying an inappropriate algorithm for a particular dataset
might lead to poor performance. Therefore, while dealing
with medical images, before introducing any method including
data augmentation, experimentation with the dataset should
be carried out to identify the optimal approach. This study
attempts to inaugurate the point that a shallow CNN model
together with a suitable data augmentation technique can be
the most ideal way to achieve optimal performance in medical
image analysis. The result suggests that after developing the
shallow architecture from the base model, the accuracy increases
from 89.55 to 97.34% and that the number of parameters
decreased from 66 to 10 million. With respect to the data
augmentation technique, for all the modalities, the performance
obtained from augmented datasets outperforms that from the
non-augmented datasets. For all the non-augmented datasets,
the accuracy was in the range of 66–88%. Depending on the
optimal augmentation method on a particular dataset, the
performance touches the peak across all the datasets resulting in
a range of 96–99% accuracies. Moreover, an accuracy fluctuation
of 3–7% is also observed across the modalities depending on
the type of data augmentation technique. It can be concluded
that data augmentation and a shallow network together aid
in dealing with a limited number of images while shallow
architecture impacts greatly on lowering the training time and
time complexity.
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