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Abstract: In this paper, we propose to study such
a model which deals with the aspects concerning
the control of the arrival process. The paper deals
with MY/G/I queucing svstem with twe types of
rE[X {6, E1B1 ]+ 0> E[B> 11 + AcE(V]}
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heterogeneous services and Bernoulli vacation

Elly]=

schedule under a controlled admissibility pelicy of

arriving batches. There is a single server who
provides two  bpes of parallel  general
heterogeneous services (one of which has to be
chosen by each customer} to the custorner on FCFS
basis. Before starting the service, each custemer
has option to choose first service with probabifity
B or the second service with probability &y. The

server's vacations arve based on Bernoulli schedule
under a single vacation policy where after
completion of service (of any phase), the server
either goes for a vacation of random length with
probability a or may continue to serve the next
customer with probability (1 — @), if any. Under a

controlled admissibility policy it is assumed that
not all baiches are allowed to join the system ar aif
times. We obtain explicit queue size distribution at
random epoch as well as ai the departure epoch
under the steady state conditions. In addition, some
performance measures such as expected queue size
and expected waiting time of a customer are also
obtained. The numerical results for variows
perforinance measures are summarized displaved
via graphs.
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1. Intreduction )

A wide class of policies for governing the
vacation mechanism has been discussed in
literature. The classical vacation scheme with
Bernoulli vacation discipline was introduced
and studied by Keilson and Servi [1]. Ke, J.C.,
Wu, C.H. and Pearn, W.L.. [2] estimated an
infinite-capacity M/M/c queueing system with
modified Bernoulli vacation under a single
vacation policy.

This model also belongs to a class of systems
where the service discipline involves more
than one service and which has been receiving
a ot of attention recently. Park, HM., Kim,
J.S. and Chae, K.C. [3] analyzed two phase
queueing system with fixed batch size policy.
The optimal control policy of a batch arrival
queue with two phases of service and
Bemnoulli vacation schedule is considered by
Choudhury and Tadj [4].

Some aspects of batch arrival Bernoulli
vacation models with restricted admissibility
in to the system were studied by Madan and
Abu-Dayyeh [5]. Recently Choudhury [6]
examined a M™/ G/l queue with setup time
under a restricted admissibility policy with
Bernoulli vacation schedule.

In the present paper, we consider a single
server queueing systern in which arrival occurs
according to compound Poisson Process with
batches of random size X . Single server
provides two kinds of parallcl general
heterogeneous service to the units one by one
on FCFS basis. Further it is assumed that not
all batches are allowed to join the system at all
time. The concept of Bernoulli vacation
schedule is also incorporated. The paper is
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organized as follows. In section 2, we define
the underlying assumptions and notations of
the system under study and also construct the
steady state equations. The analysis based on
supplementary  variables and  generating
function approach, is given in section 3. The
queue size distributions at random epoch and
departure epoch are obtained in sections 4.
Mean queue size at random epoch and
departure epoch are determined in sections 3.
Mean busy period is calculated in section 6.
Section 7 is meant for sensitivity analysis .In
the last section 8, the conclusions are drawn.

2. Description of the Model
We consider an M*/G/1 queueing system with
the following assumptions:

% The customers arrive at the system
according to a compound Poisson process
with random batch size denoted by
variable' X',

v

Arriving batch join the queue with
probability »0<r<D when server is in
busy state and arriving batch join the
queue with probability p(0<p<1) when
server is in vacation state. Let A be the
mean arrival rate of the customers.

» There is a single server who provides two
kinds of general heterogeneous services
to the customers on a first come first
served (FCFES) basis. Just before a service
starts a customer has option to choose
one of the two types of services.

#» Customer may choose first service with
probability @, or the second service with

probability ¢, .

» As soon as the service of a customer is
completed, the server may take a vacation
of random duration with probability & or
else with probability (1-a), he may
continue servicing the next customer, if
any. On completion of vacation period,
the server must be back to the system
even if there is no customer to serve.

7 We assumc that the service time random

-th

variable §;(x) of the ;™ type of service
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follows a general probability law with
B;(s;) as the distribution function,
b;(s;) as probability density function
and Laplace Stieltjes transform (.57} of
§i(ois Bj(s) with finite & moment

E(Sf) ik ==y of the service time, j=1.2.

3 Next we assume that vacation random
variable V follows a general probability
distribution with distribution function
v(x) of the server follows a general
probability law with distribution function
v(x}, Laplace Stieltjes transform (£.57) is

v*(s) with finite moment £v¥5). (k=21.
Let N, be the queue size at time ‘. To
Markov
supplementary variables &7y and v

introduce

make it process  we

where B?(r) be the elapsed service time at

time ‘t’ and v%() be the elapsed vacation time
at time 't". Let the status of the server at time t

Q servefsidiairtimés
Vi L serversbusywitlfirstvpwf servicettimér
0= 2 servers busywitlseondyparf servicattiméf
3 servers onvacatiattimeé!

ts denoted by Y1) as

Define the limiting probabilities as:

fg = Limy_yo PriNg (D) =0, V(1) =0]

A p () dx=Liny 4o PTINGi =0 Y =Ly< BPUJ < v+dy]
Py p(t)dx=Lith_ya PN =1 V(1) =2, < B ) <5+l
O, (dx=Lim_y., PN =¥ =3.x <V () Sx+ay]

Hazard rales are given by;

dB ;(x) dV(x)

A ¥y = e i=12 3 Blx)dy=———
e E N TR
Steady State Equations
Now Chapman  Kolmogorov  cquations
governing the models are constructed as

foliows:
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_:; et A )P ()= A=1)F, (3

|
1A Py (0 x>0, 21 )

dixa_g(x)+(ﬁ+ﬂ2<x))a,2(x>=/1<1—r>P,,,2(x>
+rA Y @B, 2(x) x>0, n>1 (2}

=]

gx QHAATNO,)=A1—p)X, ()

m{EQH(x);mQ n>1 3
=1

gx QHAFND ) =A1-p)H(x)
s x>0 “

/1'!0 = ;L(l - r)!o + IQ(](,\’)’}(I) dx
0

+(lfa)“f’,.+;,|(x}ﬂ1 dx+ _[Rm,zfx)#zft)df}
O 0
(5)

These equations are to be solved subject to the
foliowing boundary conditions:

=]

Bot (@ =0~2)6 jﬂm,; (x) gy (x)edx
0

¢ [Bram sy 6, [o00, (dx
0 0
triba,iy; nzl (6)

=

P20 =(1-a) Bz[ IP;m, 1) (Nt IRH—!,Z(X) g d-‘l[
0 g .

+th -[I;(X)Qi{x)dxﬂﬁféa”.-'o; n=l 7
0

1

0,0 = P‘a[ me-m (%) 4 (X)ddwt _[F:H-l.?, (x) r (%) fi‘»’i (8)
0 0

The normalizing conditien yields:

iy +i io]HL i (Jc)dJc-!-iﬁ].Q,I (Hdx=1 9

= o=l 1wl g

Define the following generating functions:

Pixy=Y 2Py (0 j=12;
n=1

ij{);.ﬁ): ZI.”P“J(O), j: 1.2
a=I

=]

Glx )= Zz_”Q“ {0); Oy = Z MO
=0 n={

3, The Analysis
In this section, we obtain joint and marginal
generating functions of queue size as follows:

3.1 Joint Probability Generating Functions:
The joint probability generating functions
when the server is busy in providing first type
of service, when the server is busy in
providing second type of service and on
vacations respectively, are given by:

P(x.2) = P {0, 2) expl=rA(— X (2)x)(1- B ()} (10}

Py{x.2) = Py, 2yexp[—rA(l— X (2))x|

{1-B8y(x}} (1)
Q(x,2) = Q(0, gy expl{ —pAl - X(z}}x]
{1-V(x}} (12}
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3.2 Marginal Generating Functions

Multiply (6)-(8) by suitable powers of z, take
summation over all possible values of n and
simplify, we get:

{z ~(l~a@) 8, B (rA(l~ X(z)))}P,_U(z)

= (1-a) 8, B3 (rA(1— X (2))) Py (2)

+26, V" (pAl-X{2)) 0(0,2)

+zr A (X (2)-1} (13)

{e- (1-a)0, B(rA( - x (o) 1Py o(2)
= (1- )8 Bl (rA(01 = X (2)) Fip(z)

+ 28,V (pAll = X (2)) 2(0.2)
+zrddy(X ()~ iy (14}

zQ(0,z)= (I{PI(O, z) }{Br(rﬂ(l - XM
+ Py(0,2) By (rA(L— X (20) | (15)

where

BY (rA(l= X (z)) = Je 7 AUTX DT g, ()
]

BylrA(l- X{(z) = je"”““‘x“’”daz(x)
0

v (pA(l- X (z) = j‘e‘f"{“‘x CNX gy (x)
0

Solve (13) & (14) for A(0.) and P0.2), we

have

.l"/.|'¢38| (I—X{Z))J(O
£(a)

A= {16}

rAzO(1-X () fy
£(2)

Py0.2) = a7

Using (16) and (17) in (15), we get

A8 Bl AL X(2)) 1+, B{rAl- X))
¢z
x(1—X(z0 I (18

0.2)=
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Where
e’(z)z{(l—a)+av‘{p,1(1— X(:)}}}
{gl Bf{rﬂ(l—){(;))}+62 B;{M(l— X{:))l}— z

By using Equation (16)-(18) we obtain the
marginal generating functions when the server
is busy in providing first type of service, when
the server is busy in providing second type of
service and on vacations respectively, as
follow:

= 39—::L')1—XE_ !

H(zFIPr(x,z}dr: ‘{l oA X (19
{(z)

1]

- 20, - B A - Xy
) = kX, X= = 2
P{z) ‘[Pd(x 2dx 0 (20)

0
xz)= IQ{_x, Tyelx

0
) a{al By {rA(l—X(2)) 465 By [rA(l- X(2)) }}

12

x{i—v*(p),(l—xu)))}!o (29

Where
{(:)z{(l—a)+av*{p£(l—X(:))}}
{91 Bl (+A(1~ X (2))}+6, BylrAil- X(:JH}—:

3.3 Steady State Probabilities:
To determinefy, we use normalizing

condition equivalent 0

Ig+ A+ P(2)+0()=1 and get the steady

state probability that the server is in idle state.

as

lp=1-¢ (22)

where g = AF[XEIB 1+ rELB3 |+ peElV [f<1 1S

the utilization factor of this system and £1X| is

mean size of an arriving batch.

Consequently,

Pr[The

service]=

Lim, _P(zy=rA E(I)iﬁ}] E{B |+ L[5, 1l
23

server is busy with first kind
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Pr[The server is
servicel=

busy with second kind

Lim ._, P (z) = r2 E(O|8) EIB| 1+ 85 E[B, ]
(24)

Pr [The server is on  vacation]=

Lim_ ,0()=a pA E(x) E[V] (25)

4. Queue Size Distribution

Let £y{z) denote the steady state PGF of the

quete size distribution at randem epoch of
MYG/l queueing system with two types of
heterogeneous services and Bernoulli vacation

schedule under @ controlled admissibility
policy of arriving batches , where
Pola) =1y + B2+ Py(2) + 20(2) {26}

Therefore

(1—:}(1—_@}{(1—cr)+czv"(p/1(1—Xf:,)n}
{(1—a)+a«v*(p/1(l—X(s.)))}—:
y {9[ By {rA = X {20} + 8y Ba{rAll- xm)}}
{/}l By {rA(l= X (D) + O B;{r,{(]—X(:J}}}

PQ {2y =

(27}
4,1 Queue size distribution at departure
epoch
Following an argument of PASTA. we state
that a departing customer will see ‘&'
customers in the queue if and only if therc
were (k +1) customers in the queue just before
his departure. Let a,; k20 is the probability
that there are & customers in the queue at
departure epoch. Then we have

l—W RE =)
ay, =b0(1—€)lj,u, (X) Py ()t jﬂz (X} sy 2la)dx
¢ 0

o

+by J?}{x){_)k(x).fir, k=0 (28)
0
a(z) Z”k“k (29}
k=0
where by 1S a normalizing constant. Let
a(z)be the PGF of 4. 4>0, then using

equation (16}-(18), we have

| byrAlg (1= X (L -y + eV " (pAdd - X(zm}

{(I—ﬂ)+rxv:;tp/1(l—)((:)}}} _
{al RUrAQ =X ()} + 05 B {rﬂ(l—X{zJ}}}
{’)1 {rAfl-X(z) )}+UEBL{ri(I-‘X(Z]}}}—:

(30)
By using normalizing condilion a(ly=1, we get

I-¢

= (31
F/il.“) E[Xi }

therefore

_d-o- xenhi-an s oy (paa- Xon}
BX| e+ oV (pAtl - X ()
{91 Bl {rA(L= X ()} + 86, BylrA(l - X(Z)J}}
6, B A= X (2)) 1+ 6 By{rdll = X (D))~ =
(32)

5. Operating Characteristics

In this section, we derive the average queue
length and average waiting time of a customer
in the queue.

Let L, be the mean queuc size at random

epoch, then

ez -

=o+ A% (EX)°
. fizEZI_X Il (6, BB |+ 0,83 )]
201-¢)
+20 prE\V (0, ELB) | + 6, LBy IN+6 p BV 7]
2(l-¢)

L EIXx -

— (33)
2EFX

Let Ly be the mean queue size at departure
cpoch, then

£t

de ()

Lo =|—= ]
\

A=l
g, HXX D) )
: 2E[X ]
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6. Mean Busy Period
In this section we obtain the mean busy
period for our model

M/ (Gy, Go¥ 1/ G (BSYV,

queue under controlled admissibility policy.
We define the busy period as the length of
time during which the server remains busy and
this continues till the instant when the server
becomes free again. This busy period 1S
equivalent to ordinary busy period, vacation
period plus an idle period.

Thus we define

(a) L; =length of generalized idle period
(vacation plus idle period)

(b) L, =Length of busy period

L; and L, generate an alternating renewal
process, therefore we may write

E(ly)  Prify)

ELy)  1-Prli]

PriLy]= A (D + Py (1) = rAELX NO1 ELBy 1+ 02E[B2 1}
{+ Aaf]V]

and E[L;]:%%-QE[V]: 3

rEIX 1{6) ELB; | + 82 E1B2 11 + AE[V]}

1= rAELX 16 B\ By ) + 62 EL By It
Fraction of time when the server remains in
idle and on vacation (i.e. generalized idle
state} is given by 7y, where

HLj]
HLj]+ELp)
1+AcFV]

EiL,]=

In=

) 1+Aa£m+r}315[X]{91E[Bﬂ+BzE{Bz]}

7. Sensitivity Analysis

In this section, we validate our analytical
results by taking numerical examples. The
sensitivity analysis is performed to visnalize
the effect of differcnt parameters on the
average queue length.

In figures 1-2, we observed that as A increases,
there is temarkablc increasc in the queue
length; the impact is more prominent for

QUEUE UNDER CONTROLLED ADMISSIBILITY POLICY

higher values of A& in comparison 1o lower
vatues of %. From fig. 1 we notice that higher
service rales have a significant impact on the
queue length as it teads to considerably
decrement in the queuc length. For higher
values of vacation rate, the lower values of
average queue length can be seen in fig. 2.

e e — e - e e

Figure 1: Queue length vs A

Figure. 2: Queue length vs A

8. Conclusions

Tn this investigation, we have obtained explicit
queue size distributions for M¥G/1 queue
with Bernoulli vacation schedule under
restricted admissibility policy with two types
of heterogeneous services. In many congestion
situations just before a service starts, the
customer has the option to choose one of two
types of scrvices. Further our model assumes
that (he server vacations are based on
Bemoulli schedule which means that just after
completing a service selected by the customer,
the server may take vacation of random length
or may continue staying in the system. The
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concepts of Bernoulli schedule vacation, batch
arrival and restricted admissibility policy have
been incorporated together in our queueing
model which has potential applicability in
manufacturing, computer and communication
systems, elc..
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