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Abstract: In lattice theory there are different classes
of lattices known as variety of lattices. Distributive
pseudocomplemented lattice s one of the large
variety. Throughowt this paper we  discuss
pseudocomplemented  lattice.  Pseudocomplemented
lattice were introduced by H. Lakser [2f, [4],
KBlLee [6]. In this paper we have studied
psendocomplemented fattices and generalized Stone
lattice.
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1. Preliminaries

Let I be a bounded

distributive lattice, let g€ L anelement ¢ € L
is called a pseudocomplement of a in L if the

1.1 Pseudecomplement:

following conditions holds: {i} a A a =0 (i)
VxeL,aax=0 impliesthat x<a'.

Figure-1

1.2 Psendocomplemented Lattice: A bounded
Jattice L is called a pseudocomplemented lattice

if its every element has a pseudocomplement.
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Example 1.
1=0%
e
c*=b c=a*=b
c*=a
0=1*
Figure-2

The lattice L = {0, a, b, c,1}
pseudocomplemented.

shown in fig (2) is

1.3 Lattice with pseudocomplementation: An
algebra, < L,A,v,%0,1> where A,v are binary
operation * is a unary operation and O\l are
nullary operations is called lattice with
pseudocomplemention if < LAV, *01> is
bounded lattice, i.e. ¥ ¢€ L there exists a*
such that a A a* =0 and a A x =0 implies that
xra*=x,¥ xe L.

1.4 Pseudocomplemented Distributive Lattice:

A bounded distributive lattice L is called a
pseudocomplemented distributive lattice if its
every element has pseudo complemented.

Example 2. ]
a
c b
0
Fi_gure-S
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Consider the finite distributive lattice of fig. (1).
As a distributive lattice it has twenty five
sublattices and eight congruences; as a lattice
with pscomplementation has three sub-algebras

and five congruences.

Boolean Lattice: A complemented distributive
lattice is called Boolean lattice.

Stone  Lattice: A distributive
pseudocomplemented Tlattice L is called stone
lattice if for ae I, a*va**=1

Example 3. Every Boolean lattice is stone
lattice but converse is not true.

Stone algebra: A complemented distributive
lattice is called a Stonc algebra if for each

atvag¥r=]

Generalized Stone Laitice: A lattice £ with
(0 is called generalized Stone lattice if
(x]*v(x]**=L foreach x& L.

Sectionally psendocomplemented Lattices: A
lattice L with  Ois called sectionaily
pseudocomplemented if interval [0, x] for each

x e L is pseudocomplemented.

Note:  Every finite distributive lattice is
sectionally pseudocplemented.

Following example of a distributive lattice with
0 which is not sectionally pscudecomplemented.

In R* consider the set:

E={(0,»)/0< y<5hu{(2,5)/
0<y<50U{(3,5),4,5),(3.6))

Define the partial ordering < on FE
by{x,y)<{x,y) if and ifx<x
andy <y here E
lattice. This is not a lattice as the supremum of

(3,6) and (4,5) does not exist. Consider the
interval {0, p] observe that in this interval (2,0)

only

is clearly a distributive

has no relative pscudocomplemented. So (E,<)
Is not sectionally pseudocomplemented.

2. Normal Lattice: A distributive lattice L
with O is called normal lattice if each prime
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ideal of L contains a unique minimal prime
ideal. Equivalently. L is called normal if each
prime f{ilter of L is contained in a unique
ultrafilter (maximal and proper ol L ).

Dense Lattice: A lattice L with 0 is called
Dense lattice if {x]” = (0] forcach x 2 0in L.

Lemma 1. Let L be a distributive lattice with

0. Let 0<xe Land the interval [0, x].is
compiemented. If v¥* s the reladve
complemented of y in[0,x], then

(y*] = (p]* A(x](x]

and {(y**]=(y} A (x]. C

Lemma 2. Let [, be a distributive and I be
any ideal ({(r]AI1*A{l]=1%Alr]. o

Theorem 1. A distributive lattice L with 0 isa
generalized Stone lattice il and only if each
mterval [0,x], O<xe L, L is Stone laltice

with(. Forany re L

Proof: Let I with O be a generalized stone
and let Pe [0, x].

Then (P]*v(P)1**=L. So xe (P]*v(P]**
implies x=rv ],

forsome re (P]*,ie (P]**

Nowre (P]* impliecs raP=0, also
O<r<xSuppose r€[0,x] such that
tAP=0then te(P]* implies tAl=0
Therefore,

tax=ta(rvIy=(tanryviral
={tAar)vO=ztvr
implics t =¢ A7 implies t < r

So, ris the relative complement of P in
{0,x], ie., r=P.

Sincc I € (P]**. und re (P]*, sol Ar=0.
Let g€[0,x] such that gAr=0 Then as
x=rvil so gax={gar)vigal)

Implies g =g <] implies ¢ <[
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Hence. [ is the relative complement of r =P *
in [0,x]),ie. I=P** implies
y=rvi=pPFvpt=

fattice.

Thus[0, x],is a stone

Conversely, supposc [0,x], O0<xe L
is a stone lattice. Let Pe L,

Then P A xe |0, P] Since [, P]is
i stone lattice, then
(PAXY*S(pax)®E=P

where (P AX)™ is the relative
complement of (P A x} in [O, P]
Therefore
Pel((pln(pax]dv ((pIM(P Ax]HH)
So.wecantake P=rvl,

for re (PAax]*, le(pAax]®*

Now, re (P A x]*

implies rA PAx=0

implies ¥ A x =0 implies

re(x}** and le (P Ax]**

Now PAx<x

implies (P A x]*¥C (x]**

Andso le (x]**

Therefore P=rvle (x]*v(x]**
andso L C(x]*v{x]**

But (x]*v{x]**C L is obvious.

Henee (x]*vi(x]*¥* =L

and S on L 1s generalized Stone, 1
[ollowing theorem is a generalization of |4,
Proposition 3.5{b)]

Theorem 2 Suppose L be a distributive
lattice with 0. If L is generalized

Stone, then it 1s normal.

Proof: Let P and @ be two minimal prime
ideals of L. Then 7,0 are uncrdered.

Let xe P, Then (x]A (x1*=(0]C @
mmplics (x]*C Q. Since P is minimal,

so (x]**C P. Aguain,us L is

generalized stone, so {x]*v(x]**=1L.
This implies P v O = L and so L i1snormal. o
Theorem 3. A sectionally
Pscudocomplementetd distributive lattice L
is generalize Stone if and only if uny two
minimal prime ideals are comaximal.
Proof: Suppose L is generalized Stone.
Sc any two minimal prime ideals are
comaximal. To prove the converse, let

P.Q be two minimal prime ideals of L.
We need to show that [0, x] is stone,
Foreachxe L Let B,Q, betwo

minimal prime ideals in[0,x}. Using
Lemma 2. there exists minimal prime Ideals

P, in L such that

B =Pn[0,x],0, =00, x].
Therefore

P,v 0, = (PN[0,x])v (QA[0,x])
=[PvOINi0,xi=LnN[0,x]=[0,x].
Therefore [0, x] is stone. So I is gencralized
stone. O

Corollary 1. A distributive lattice L

is generalized Stone if and only if it is
sectionally complemented and normal.
Figure 1. the lattice L. isinfacta
generalized Stone lattice, as it is both

sectionally complemented and normal.
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Corollary 2. A distributive lattice L with Ois
generalized Stone if and only if it is normal and
sectionalty complemented. The following
theorem is generalization of [3]

Theorem 3. If L is a distributive sectionally
pseudocomplemented lattice, then L

distributive pseudocomplemented lattice.

is a

Proof: Suppose L is sectionally

pseudocomplemented. Since L,
is a distributive lattice. Let [x]€ L,.,

Then [0]C{x]C F.Now O0<xA f<f, for
all fe F.

Let y be the pseudocomplemented of
xA fin [0, f] then yAaxa f=0
implies [y A f1A[x}=[0],

that is [¥]A[x1=[0].

Suppose [z] A{x]=[0],

for some [z]€ L, then zAx=0(y,).

This implies zA XA f'=0...cccenen. (&)

For some f'"e F.

Since z=z A fFW;),

s0zA f'=za f=af".. (i)

for some f''e€ F.

From (i) and (ii) we get x Ax A f'Af"=0
and x A f'Af"szAaxA fIALT

Setting g = f'Af" we have
zAgAn=2Ag A [, which

implies zAg< fand zAgA f =0

So 0fzAag<fand zAg<SYy.

Hence, [z A g]C[v] But[z]=]zA gl
as g& F .Therefore, [z]C[¥],and

so L, is a pseudocomplemented

ON DISTRIBUTIVE PSELGIXCOMPLEMENTER LATTICE

distributive lattice. O

Theorem 4. Suppose 1. be a relatively
pseudocomplemented lattice.

Let x<y<z inL and { bethe
relative pseudocomplement of ¥

in [x,z]. Then [or any r & L‘

{ A r is the relative pscudocomplement
of yArin {xAr,zAarT]

Proof: Suppose ¢ A 7 is the relative
pseudocomplement of y A7 in

[x A F,zAF] Since { is the relative
pseudocomplement of v in [x,z],
sofAy=x.
Thus, {AF)A(YAT)=XAT
This implies [Ar <t A ¥
Again, X <i{v (f Ar)< z and
yA{v(tAr)
=(yADVIyAr)altar)
=xVI(XAF)

implies {v (t A<l

[x Ar,zarl<] ig,l=1v(IATD)
Hence tar <], andsotAr<iar.
This implies t AFr =1 A7
Therefore { A v is the relative

pseudocomplement of y Ar in[xar,zar],

O

[4] extended the notion of
pseudocomplementation for meet
semilattices, following theorem generalizes.

Theorem S. [f L is a distributive rclatively

pseudocomplemented lattice, then L, is a
distributive  rclatively

lattice.

pseudocomplemented
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Proof: Since L is a distributive lattice.
Let {x].[y].z]e L; with [x]C{y]<[z]

Then [x]=[xA y] and {y}I=[yAz]
Thus, y=x A y(r;) and y=x A ¥, )

This implies xA f =xA yA f

and vag=vyaznrng for some f,geF
then yaAfag=yanznanfng,

and yAa fAag=ynanznfnag, andso
nfargEyafargSanfag,

thatis xAh<yah<zag

where fAge F

Suppose 7 is the relative
pseudocomplement of y A A

in [xAah,zAh]l. Then tAyAh=xAh,
and so [f]a[yAh]l=[xAh].

Thatis, [f]1A[¥]= [Jt]

as y=yAh(e) y=yahly,)

andx = x A k() Moreover,
[[Inlz]=lr]nlzAaR]=[tAzAR}=]1]
implies [x] S [t]C[z]

We claim that [#] is the relative
pseudocomplement of [ y]

int[xL{z]] in L,

Suppose [I]A[y]=[x] for

some {/1€ [[x],[z]]. Then I A y = x(,.)
andso [A VA f'=xnA [ for some

f'e F Again ] C{z] implies
{=inz(y, ), andsolAng'=Inzag

for some g'e I

Then IAaya fiag'=xn fiag’

and IA fiag'=lnza fiag'

Thus, Iank=lAxak and

Ink=lAnzAk where k= f'ag'c F

This implies x AAAKSIARAkSzAMAK

and (Ahak)A(yAnhrkSznhnak

Thent ahnk <rak]

Hence [l1=ll AhakiC[t Ak]=][t]

And so t is the relative pseudocomplement

of {y] in [[x].[¥]].

Therefore, L, is relative pseudocomplemented.
g

The following theorem is extension

of [ 6, theorem 4.1]

Theorem 6. For a distributive sectionally
pseudocomplemented lattice L, the following
statements are hold:
(i) If L is generalized stone then L is Stone for
any filter ¥ of L.

(i1) L1is generalized Stone if and only if for each
prime filter F of L, L. isdense lattice

Proof: (i) Letyy(x),i;(y)e L.be such that
W} Aaw,(y)=0 xny=00y,),
which  implies that xAyaA f=0 for
some f € F . Since L is generalized stone, then

Then,

L isnormal, so (x]*v(y A f]*= L Hence
(e (D vY - (0]7

=Y, ] v(Ye (v A f1¥

=Y (DI vy A 1=y (D)=L,
Thus, L. isnormal.

Again, since L is sectionally

pseudocomplemented, then L, is
pseudocomplemented,
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Hence L. is stone.

(ity  Suppose  Lis  generalized Stone.

Lety . (x) # 0and i . (g) € (W (x)] *
Theny (g} A (x)=0.Then F is
contained in a unique ultra filter of L.

Thus L, has a unique ultra filter; and so L, has
a unique minimal prime ideal,

But the zero ideal of L, (as 0€ £ )is the
intersection of all the minimal prime

ideals of L,.. Hence, by uniqueness, it is

of L,
¥(q)=0 showing that 1 isdense.

(minimal) prime ideal Hence

Conversely, let L, be dense for each prime filter
FofL.

Suppose X,y € Lare such that
xAy=0Then ¥ (xAy)=y,(0)=0

That is ¥, (x) A (¥) =0 which implies that
Ye(x)=0 orir (¥)=0 as L, is dense.

Hence, either (i, (x)]* =L,
or r(MI*= Ly.
Thus ¥e ((x)1v (y] #)= LF =¥ (L)
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and so (x]* v(y]* = L)
Therefore £. is normal.

Again, since L is scctionally
pseudocomplemented, so L is
Stone. 0

generalized

3. Conclusions

We have shown that a distributive lattice L with
0 is generalized Stone if and only if it is both
normal and sectionally pseudocomplemented. In
fact a gencralized Stone lattice, as it is both
sectionally complemented and normal.
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