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Abstract: In this paper, Shehu Transform
Homotopy Analysis Method (STHAM) is proposed
for the solution of nonlinear fractional order
ordinary and partial differential equations. The
interpretation of fractional order derivative is done
in Caputo sense, while the nonlinearity encountered
is overcome by exploiting the homotopy derivatives.
The approach reduces the volume of computations
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such exists in closed form.
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1. INTRODUCTION

The attention of researchers has majorly shifted to
finding reliable solutions to fractional order problems,
be it ordinary differential equations, partial differential
equations, integral or integro-differential equations.
The reason for such shift in direction premised on the
fact that modeling real situations in engineering,
mathematical physics [1], mathematical biology [2],
chemistry and other fields of sciences mostly resort to
fractional calculus [3], and the need to develop more
efficient methods cannot be overemphasized.

Since most physical phenomena are modeled into
nonlinear ordinary differential equations, partial
differential  equations and integro-differential
equations which are mostly defy solutions by known
analytical methods, therefore integral transforms and
analytical approximation methods are resorted into.
Prominent among such methods are those reported in
[4], [5], [6], [7], just to mention a few. Specific
attention to the solution of problems on fractional order
linear and nonlinear differential and integral equations
include those of [8] - [16] and the references in them.
[17] worked on the conversgence of one of the methods
proposed in the previous works, while [18] worked on
the generalization of the definition of the fractional
derivatives.

The present work therefore proposed a more efficient
method of solution that combines Laplace-type
integral transform with homotopy analysis method for
the solution of linear and nonlinear fractional order
ordinary and partial differential equations.

2. STATEMENT OF THE PROBLEM
The family of the problems that are solved using the
proposed method are as stated below.

2.1 Fractional Order Nonliear Ordinary Differential
Equation
D%u(x) + N(u(x)) + Qu(x) = f(x),
0<a<peN, (2.1)
where N(u(x)) is the nonlinear term, Qu(x) is the
remaining linear term and f(x) is the inhomogeneous
source term.

2.2 Fractional Order Nonlinear Partial Differential
Equation
D%u(x,t) + N(u(x,t)) + Qu(x, t) = f(x, ),
O<a<peN, (2.2)
where N (u(x, t)) is the nonlinear term, Qu(x, t) is the
remaining linear term and f(x,t) is the
inhomogeneous source term.

3. METHODOLOGY
In this section, we present the algorithm of our
proposed methods for the solutions of the problems
stated in (2.1) and (2.2) above.
Some basic definitions and details such as Shehu
transform, Homotopy analysis method, Riemann-
Liouville integral and derivatives are not stated here
since they are available in the already cited literatures.
Nonetheless, the definition of Caputo derivative is
stated for the reason discussed in the sequel.
Meanwhile, the choice of Shehu transform method was
informed by the fact that it generalizes the two earlier
transforms; the Laplace and Sumudu transforms. Its
application is equally not restricted to constant
coefficient problems, unlike Laplace transform [5].

Copyright © 2024 Daffodil International University. All rights reserved.


mailto:akmfhaque@diu.edu.bd

ANALYTICAL APPROXIMATE SOLUTION OF NONLINEAR FRACTIONAL ORDER DIFFERENTIAL EQUATIONS

3.1 Caputo Derivatives
The requirement of initial conditions by Riemann-
Liouville fractional derivatives restricts it application
to a wide range of practical problems as such
conditions are mostly not readily available. Therefore,
the most suitable definition for fractional derivatives is
the Caputo fractional order derivative which does not
make availability of initial conditions a prerequisite for
its applicability. See [6] and the references therein.
Definition
Letn € R, and § = [n]. The operator

Df(®) = J"DEf(8)

3

e [0 ()
rG-ml, de

for a <t < b, is the Caputo differential operator of

order 7.

This definition and the details of its proof are available

in [2] for interested readers.

3.2 Algorithm for Nonlinear ODE

Consider the fractional order ordinary differential
equation (ODE) in (2.1).

We apply Shehu transform to both sides of (2.1) to get
S{Du(0)} + S{N(u()} + s{Qu(x)} = S{f(x)},

3.1)
But
a-1 ¢ a—-1-i i
e = (D) v -y G 0O
S{D%u(x (u)Usu ;u 3.2

Using (3.2) in (3.1) yields

a-1

(E)a U(s,u) - Z (%)H_i u®@(0) + S{N(u(x))}

T stum) - S} =0
U(s,u)

a a-1 a-1-i a
_ (g) Z (%) u®(0) + (g) S{N(u(®))}
a a
+(5) steuw - (5) sr@i=0@3.3)
The jth order deformation equation is given as
L[U]-((s, u); 71) - XjUj—l((s: u); 71)]
= ij—l[N[‘l’(x; 7])]]; 3.4)
Where n is the embedding parameter, & is the control
parameter, D;_q is the (j —1)th order homotopy

. _(0,j<0
derivative and y; = {1’ i>0
The general nonlinear operator is derived from (3.3) as
g p
N[¢(x;m)]
=U(s,u)
a-1 .
U\ s\a-1-i . TN
- ® _
-3 z G wP@+(5) sw))
i=0

+(3) stouy - () strey 3.5)
Also, the auxiliary linear operator gives
L[U;(s,u);n] = Uj(s,w)
Using (3.5) and (3.6) in (3.5) gives
Uj(s,u) — x;U;_1(s,u)

(3.6)

=¢Dj 4 (U(S; u)

-

i=

+ (g)" S{Qu(x)} (;)a S{f(x)}>

a-1

Qo () stru)

Uj(s,w) = xUj-a(sw) = ¢ (U,--1(S, w - (1-
a s a-1-i i
x-10) (%) [S{f(x)} +3ed () u@) ] +

(2)"s{oy-2 M)} + () s, se1con)

s

(3.7)
Let § = —1, (3.7) becomes

U]'(S, u) = —(1 - Xj)Uj—l(S; u)U]-_l(s' u) + (1 _
N (s a-1-i )
x-10) (%) [S{f(x)} 3t (G) (0)] _

u u

a a
(3) s{pyalN @)} - (%) stDQI@) (3.9)
0,j—1<1

1,j-1=>1

The initial approximation uy(x) is derived from the
initial condition, while the other terms u, (x), u,(x),
etc are obtained through (3.8) with the inverse Shehu

transform taken at the required points.

where x;_q = {

3.3 Algorithm for Nonlinear PDE
Consider the fractional order partial differential
equation (PDE) in (2.2).
Shehu transform is applied to (2.2) as follows

S{D u(x, )} + S{N(u(x,t))} + S{Qu(x, t)}

=S{f(xt)} (3.9)

The first term on the left-hand side of (3.9), using the
Shehu transform for derivative, is obtained as

s{D%u(x,t)} = (i)u U((s,u),t) —
a-1 (i)“‘l“ 'u(0,0) (3.10)

i=0 u xt

Using (3.10) in (3.9), we have
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]
H

a

a-1-i giy (0, t)
axi

S{N(u(x, 1))}
S{Qu(x, t)}

a

- (;) S{fx,)}=0, (3.11)
where U((s,u),t) is the Shehu transform of the
function u(x,t) with reference to the independent
variable x.
The jth order deformation equation which is derived
from the zeroth order deformation equation after
differentiating it j times with respect to the embedding
parameter i and setting n to zero, is given as

L[Uj((s' u), t; 71) - ){jUj_l((S, u), t; 1])]
=&D; 4[Nlp(x. t;m]], (3.12)

U((s,u),t) — (;)

~
Il
(=]

N N
24124 2IN]
Q/\

S|

N—

+
]

—+

. 0, j<1
where § is the control parameter, and x; = {1' i>1
But LIU((s,w), &m)] =
U;((s,w),t), (3.13)

and the general nonlinear operator is obtained from
(3.11) as

N[U((s,w), t;m)]
=U((s,w),t)

W a5 a-1-i @iy (0, t)
- (E) ; (ﬂ) T axt
¥ (E)ZS{N(u(x, 0)}
+ (g) S{Qu(x,t)}

- (g)aS{f(x, )} (3.14)
Now, we use (3.13) and (3.14) in (3.12) to get
Ui((s,w),t) — x;U;_1((s,w), t) =

e0,-4 (vl - () 218 () 550
()" sV (ux,0)} + (4)” stQuex )} -
()" stree)) 3.15)

Equation (3.15) now gives

Uj((S, u)' t) - XjUj—l((S. u), t)
= <Uj_1((S, u), t)

~1-x) () [S{f(x. 0)

a1 allal(()t)
>

i=0

+ g) 1 [S{N(u(x, )

—+

+ S{Qu(x, t)}]) ,(3.16)

(0, j—-1<

where Xj-1= {1' ].

parameter.

If § = —1, (3.16) becomes
Ui((s,w),t) = —(1 — x)U;_1((s,w), t)

+(1- Xj—l) (E)a [S{f(x, )}

a-1
allal 0,t
)

i=0

u
- (%) pyalsiv(utx, )
+ 5{Qu(x,0)}], (3.17)
Taking inverse Shehu transform of both sides of (3.17)
for various values of j will give the solution when these
individual results are summed up.

1 .
_1>12ad ¢ is the control

4. EXAMPLES ON ODE AND PDE

In this section, we present examples on the two
algorithms discussed in the preceding sections.

4.1 Examples on Ordinary Differential Equations

Problem 1 [3]

Consider the nonlinear fractional order ODE below

using Shehu transform homotopy analysis method
Du(x) =1+ u?(x), u(0)=0

0<a<1(i

Solution

Taking the Shehu transform of both sides of (i), we

have

S{Du(x)} = S{1} + s{u?(x)} (i)
But

S a S a-1
S{D u(x)} = (Z> U(s,u) — (Z) u(0),  (iii)

which reduces, upon implementation of the initial
condition, to

S{D u(x)} = (%)a U(s,u) (iv)
Using (iv) in (ii), we get

uy @+1 TN )
usw-(5) +(5) sermi=o @
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From (v), the general nonlinear term is obtained as

a+1
N[U]-((s,u);n] =U(s,u) — (%)
+ (g) S{u?(x)} (vi)
Consider the jth order deformation equation
L[U;((s,wim) = xUj-1((s,w);m)]
= 0,4 [N[U;((s,wim)]| wi)
where 7 is the embedding parameter, § is the control

parameter, and y; = {0’ j.S 1
: iTu, j>1-
But L[U;((s,u); )] = U;(s, ). (viii)
Using (vi) and (viii) in (vii), we have
Ui(s,u) — x;U;_1(s,u)
a+1

=§&D;_4 <U(s, u) — (g)
— (g) Suz(x))
Uj(s,u) — xjUj_1(s,u)
= f(Uj—1(S. u)

— (1 - xj-1) (;)
_ (g)as{u,-_l{uq})
With & = —1, we have

Ui(s,w) = -1 — x)U;_1(s,w)

+(1- Xi—?) (g)

s[5,

i=0
(0, j—1<1
where x;_4 = {1’ ji-1>1
The initial approximation uy(x) is obtained from the
given boundary condition as

uy(x) = 0.
a+1
Us(s.w) = =1 = x)Uo(s,) + (1~ x0) ()
+ (g) S{ugug}

u a+1
Uisw = (3)
Taking the inverse Shehu transform of both sides, we

have
a+1
SUU, (s, w)} = 5 {(g) }

a

a+1l

a+1

uq (X) = m

Forj = 2:

us @+1
Uy(s,u) = —(1 — x2)Us(s,w) + (1 — xq) (;)

+ (E)a S{2uquy}

+1 s a

u\“* u\* X
Taking the inverse Shehu transform of both sides
yields
u,(x) = 0.

Forj =3:

Us(s,u) = (g)aS{up u} = (g)“s{%}

aT(2a + 1) juy2a+l
Us(s,w) = (g) rZ(Z 1) (g)

ra+1) u\3a+1
Us(s,w) = r2(a+1) (s)
Taking the inverse Shehu transform of both sides,
gives

ra+1) x3¢

u) =G D TGat 1)
Forj = 4:
us(x) = 0.
Forj=>5:
2I2a + 1Ir(4a + 1) x>«
us(x) =

FNa+1Dr2(a+1r@a+ 1) rGa+1)
Solution to the given problem is therefore obtained as
u(x) = ug(x) + uqy(x) + uz(x) + uz(x)

+u(x)+. ..
u(x)
_04 " _poqf@ary) T,
- Ma+1) r2(a+1)r@a+1)
2I2a + Ir(4a + 1) x>«

Ta+ D@+ DrGa+ DTGa+ 1) T
u(x)

I ra+1) 3¢
"T(a+1) TI2(a+1)TrBa+1)
2I2a+ Dr(da+1) x>«

Ta+ D@+ DIGa+ DTGa+ 1 T
Fora = 1:

) = x N r(3)x3
Y = T2 T T2 (2)r@)
2r(3)r(s)x°
r(2)rz2)r(4re) -
R
WX =XT3 775
Problem 2 [3]
Solve the nonlinear fractional order ordinary

differential equation below by STHAM
Du(t) = t + u?(x),
1<a<2u(0)=0u(0)

=1()
Solution
Taking the Shehu transform of both sides of (i) gives
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S{D*u(t)} = S{t}

. + S{u;_(lx)} ., @
(E) U(s,u) — (%) u(0) — (%) u'(0)
- (%)2 + S(u())

u 2 u a+2 u a
_ (= _ (= _ (= 2
U(S' u) (s) (s) (s) S{u (t)}
=0 (iii)
From (iii), the general nonlinear term is obtained as

N[U;((s,w);m)] = U(s,u) — (3)2 - (E)MZ _

s s

()" stz (iv)
Also

L[U;((s,w);m)]

= Uj(s,w). @)
Thus, the jth order deformation equation

LIU;((s,w);m) — xjU;-1((s,w);m)]
= &0, [N[U; (s wim)]| i)
becomes
Ui(s,u) — xjU;j_1(s,u)
U *+2

=0, (v~ () - ()
_ (g)“ S{u? (x)})
Uj(s,u) — xjU;j_1(s,u)

(vii)

=§&| Uja(s,u)

- (1-xj-1) <(§)2 * (%)MZ)

j-1
u a
- (;) S Zuj_l_iu,-
i=0
where y; and x;_, have their usual meaning.
Let & = —1, so that
Uj(s,u) = —(1— x;)Uj_1(s,w)

+(1- Xi—?) ((92 + (g)a”)

j—-1
uU\* .
+(;) S Zu]-_1_,-ui (lx)
i=0

The initial approximation is

uy(®) =u(0)+tu'(t) =t x)
For subsequent approximations, (x) is used in (ix) for
various values of j.
Forj=1,2,3,..

(viii)

ta+1 2ta+2

Ta+2) Ta+3)

u, (t) =

I'(a + 3)t?%*?2 4T (a + 4)2t%*+3
lNa+2)IT2a+3) T(a+3)I2a+4)
4T (a + 3)F2a + 4)t3*+3

INa+2)T2a+ 3)r3a + 4)
8I'(a + 3)I(2a + 5)t3*+*

INa+3)I2a+4)r(3a+5)
I2a + 3)t3*+2

I2(a+2)r(3a + 3)
N 4T (2a + 4)t3+3
INa+2)I(a+3)lBa+4)
4T (2a + 5)t3*+4
rZ(a+3)r(3a +5)
ta+1 2ta+2
Fa+2) Ta+3)
I'(a + 3)t?e+2

I'a+2)I'2a + 3)

4T (a + 4)2¢20+3
lFNa+3)I2a+4)

4T (a + 3)I2a + 4)t3*+3

T(a+2)[(2a + 3)TBa + 4)
8I'(a + 3)I(2a + 5)t3%+4

INa+3)I2a+ 4)r(3a+5)
I (2a + 3)t3%+2

I'(a+2)r(3a+3)
AT (2a + 4)¢30+3

T+ 2@+ 3)r@a+ 4
4T (2a + 5)t3+4

2@+3)rGats

u,(t) =

uz(t) =

u(t) =t+

When a = 2:
t3 4 t6 t7 t3
=t+—+-—+—
u(®) +6+1z+30+252+2016

+—1440+...

4.2 EXAMPLES NONLINEAR PDE

Problem 1 [14]
Consider the nonlinear fractional order PDE

“u  du N du 3u N u ou d*u
ot ox?at ' ox Lo ' “ox " oxox?
=0 )

subject to u(x, 0) = gei, t>0, 0<ac<1.

Solution
Taking the Shehu transform of (i), we have

S R R L R

s{35:5a) =
0 (ii)
But
a a a-1
S{th} = (%) U(x, (s,u)) — (%) u(x,0)
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S ) v

84 (E)H (i)
3 u
Using (iii) in (ii), we get

ots )~ ()~ (' s
« (@ « ( 9°
SCRCROERD
« (9

+(5) sl5d
_(E)“S{g"’_“"z_“}
s dx 0x?
=0 (iv)

From (iv), the general nonlinear operator is obtained as
N[(x, (s,w);m)] = U(x, (s,w) — gei (E) -
u\ % 3u u\% ou u\% 3u
(;)a $ (oot} *+ (;2 {5} N (5) sfulst+
u ou u ou 0“u
() sfusd- () st @)
Also, the linear operator
L{U;(x, (s, u);m)]
= U;(x, (s,w)) (vi)
The jth order deformation equation is
L{U;(x, (s,w); ) — xjU;_1(x, (s, w); )]

= ij-1[N[¢(x, (s,w); 71)]] (vii)
Using (v) and (vi) in (vii), we get
Uj(x,(s,w) — x;Uj—1(x, (s,0) =

00 (05 0) 21 (2)- () s (2
o)'s{2)- () sl () sl
¢)'sh)

Uj(x, (s,w) — x;Uj-1(x, (s,0))

8 =x
=&| Ujoa(x (sw) — (1 - Xi—l)g‘37 (E)

S
@ (u; « (du;
() S{a;}a:}J’G) S{ :;]xl}

3%u;_ Y
-@sfu T @ s

i=0

j-1

U\ . ou; 0%u;_q_

—(;) $<3 % 9x2 (viii)
0

Setting the control parameter, § = —1, (viii) becomes
Ui(x,(s,w) = —(1 — x;)Uj_4(x, (s,w) + (1 -

a3l 6+ 6 s - s+

u\% a3uj_1 u\* Jj—1 auj_l_i

() sfuat) - () s{mimu g +

u\* j—1 du; azuj_l_i .

(;) 5{3 Zi=05 x? } (ix)
The initial approximation is derived from the initial
condition as

8 x
uy(x, t) = u(x,0) = §ez.

The Shehu transform of the initial approximation is

8 «x
S{uo(x,0)} = Uy(x, (s,w) = S{gei}

_ 8 xu .
= §ez (E) (xi)
Using (xi) in (ix) for j = 1,2,3, ..., we get
Ul(x' (s, u)) =-(1- X1)U0(x‘ (s, u))
8 x u
+@1 —){o)ge2 (;)

a a3
* (1;1) S{ax:t;t}

w| e
®
N R
~—

vl
N—
+

Wl
o
N R
|
N—
+
/\

Gl
N——

]

N
o
—

Us(x, (s,w) = —

+ |
AN N N

w|ifu|gwu|g

wls
B
+
[N

)

Ui(x, (s,u) = —(

4_ x U a+1
Us(x,(s,u) = -3 (;)
Taking inverse Shehu transform of both sides, we get
4 x t*
=——eZ———.
wmb = -3¢
Forj = 2:
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Uz(x, (s,w) = —(1 — x2)Uy(x, (s,u))
8 x,u
+@1 —X1)§6’2 (;)

we (du,
+(5) S {axzat}
u “S{aul}
ox

@ 3u,
Siu FYe

a du du
S{ 1 o}

+ |
—~

|
A~
—_ T

Mo gx T Mo
{auo *u,

Q

AR EIE R

+
—~~
N—

w

dx 0x?

QD
Q

= |5
QD
D =
RNcg
——

2 x t“}

Uz(x' (S’U)) =- (g)aS{——

5
3 T@+1

u “s 1 x at*1
+ (E) 3T@+
+ (u)“s 8 . t*
s {_6"’ I'la + 1)}
u “s 32 t*
(E) { 9 ¢ Tlart 1)}
() st3¢ )
s 3 € INa+1)
w2 xI'(a+1) u\ot1
Ua(x60) = (3) 3% F 7 ()
u\*1 zT(a+ 1) u\*
-G) 3¢ t@ )
u 2a+1 2 x u 2a 1 x
U,(x,(s,w)) = (;) 3¢ (;) 32
Taking inverse Shehu transform of both sides, we get
2 x tZa 1 x tZa—l

= —e2—  — — 2 —M,
WL =3 D 39 TR

The solution is
u(x, t) = up(x, t) + u (x, t) + uy(x, t) + -

8 x 4 x t* 2 x i@

,t =—e2—-——e2————+—e2———
ux ) =ze -z T 3% T2a 1)
1 tha—l
3 + e

3% T2a)

Problem 2 [6]

Consider the one-dimensional linear fractional
diffusion equation
0“v(x,t)  *v(x,t) fo(x D) .

- ata _- - -axz - -v x; ) (l)

subject to the initial condition
v(x, 0) = cos(mx), 0<ac<l

Solution
Applying Shehu transform to both sides of (i), we have

3%v(x, %v(x, .
S{ at(u t)} = S{ aiz t)} + S{v(x, t)} (iQ)

But
s~ () Vs - () w0
s =) v

a-1
cos(mx)

-()
With this, (ii) becomes
a 2
V(x, (s,v)) - (z) cos(mx) — (z) s {%}

- (z) SwExO)=0 (i
From (iii), the general nonlinear term is

N[$(x, (s, v)im)] = V(x, (5,9) - (%) cos(mx) -

() s{5a - () st ) (iv)
while the linear term is
L[V;(x, (s, v);m)] = V(x, (s,v)) (v)

The jth order deformation equation is given as
L[Vj(x' (S, 'U); 71) - X]'V]'—l(x! (S, 'U); 77)]
= &D;_4[N[p(x, (s, v); p)]] (vi)
Using (iv) and (v) in (vi), we have
Vj(x, (s, v)) — )(]-Vj_l(x, (s, v))

=¢Dj 4 (V(X, (s,v)) — (E) cos(mx)
« (9*v(x,t)

SUNLTD

_ (z)a S{w(x, 1)) >

Vi(x,(s,v)) — Vi1 (x (s,v)) =
4 (V]-_l(x, (s,1)— (1 —xj-1) (g) cos(mx) —

(%) s {%} = ()" sV (x 5. »))) wii)

s s
Xj and x;_q have the usual meaning.
Suppose the control parameter § = —1, (viii) becomes

Vi(x, (s,v) = -(1 —Xj)Vj—1(J§; (s,v))
+(1—-x-1) (E) cos(mx)

o) s[5l

+ (E)us{"iﬂ(% (s,1))} (ix)

s
The initial approximation

vo(x, t) = v(x,0) = cos(mx).
Other terms are obtained from (ix) for various values
of j as follows:
Forj=1:

(vii)

v a+1
3 [-m?cos(mx) + cos(mx)]

Vi(x, (s,v)) = ( )
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7


8 ANALYTICAL APPROXIMATE SOLUTION OF NONLINEAR FRACTIONAL ORDER DIFFERENTIAL EQUATIONS

Taking the inverse Shehu transform of both sides, we

have
a

vi(x,8) = [cos(mx) — m*cos(m)] pogs

Forj = 2:
Va(x, (s,v)) = (§)2a+1 [-2m2cos(mx) +
cos(mx) + n*cos(mx)]

Taking the inverse Shehu transform yields
v,(x, t) = [-2m%cos(mx) + cos(mx)

tZa
4
+ m*cos(mx)] Teat D
Forj = 3:
v 3a+1 4
V3(x, (s,v)) = (;) [3m*cos(mx)

— 3m%cos(mx) + cos(mx)
— mOcos(mx)]
Taking inverse Shehu transform, we get
v3(x,t) = [[31t4cos(nx) — 3m%cos(mx)
+ cos(mx)
t3a
]] rGa+1)
From the foregoing, the final answer shall be obtained
as

— m%cos(mx)

v(x, t) = vo(x,t) + v1(x, t) + vy(x, 1)
+ v3(x, O)+..
Thus,
v(x,t) = cos(mx)
+ [cos(mx)
IMNa+1)
+ [-2m?%cos(mx) + cos(mx)
2a
r2a+1)
+ [[3n4cos(nx) — 3% cos(mx)
+ cos(mx)

— m?cos(mx)]

+ m*cos(mx)]

t3a

- HGCOS(TIX)]] m + .-

5. Discussion of Results

The proposed method, STHAM has been applied to
nonlinear fractional order ordinary differential
equations as well as linear and nonlinear fractional
order partial differential equations that are
homogeneous and inhomogeneous problems. The
solutions obtained for the selected problems from the
literatures tally with the solutions obtained through
other methods in the literature, at reduced
computational time and space. In all the nonlinear
problems considered, the nonlinearities are resolved
with the aid of the concept of homotopy derivatives.

6. Conclusion
The proposed semi analytical method STHAM has

been developed and successfully applied to selected
nonlinear fractional order ODEs and PDEs. Homotopy
derivative has equally been deployed to overcome the
nonlinearities encountered in all cases.

In the nearest future, the STHAM proposed in the
present work shall be expanded in scope to the solution
of system of nonlinear fractional order differential and
integral equations.
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