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Abstract: Palm oil is the main cash crop of tropical Asia, and the implementation of LPWAN (low-
power wide-area network) technologies for smart agriculture applications in palm oil plantations
will benefit the palm oil industry in terms of making more revenue. This research attempts to
characterize the LoRa 433 MHz frequency channels for the available spreading factors (SF7-SF12)
and bandwidths (125 kHz, 250 kHz, and 500 kHz) for wireless sensor networks. The LoRa channel
modeling in terms of path-loss calculation uses empirical measurements of RSS (received signal
strength) in a palm oil plantation located in Selangor, Malaysia. In this research, about 1500 LoS
(line-of-sight) and 300 NLoS (non-line-of-sight) propagation measurement data are collected for
path-loss prediction modeling. Using the empirical data, a prediction model is constructed. The
path-loss exponent for LoS propagation of the proposed prediction model is found to be 2.34 and 2.9
for 125–250 kHz bandwidth and 500 kHz bandwidth, respectively. Again, for the NLoS propagation
links, the attenuation per trunk is found to be 7.58 dB, 7.04 dB, 5.35 dB, 5.02 dB, 5.01 dB, and 5 dB for
SF7-SF12, and the attenuation per canopy is found to be 9.32 dB, 7.96 dB, 6.2 dB, 5.89 dB, 5.79 dB, and
5.45 dB for SF7-SF12. Moreover, the prediction model is found to be the better choice (mean RMSE
2.74 dB) in comparison to the empirical foliage loss models (Weissberger’s and ITU-R) to predict the
path loss in palm oil plantations.

Keywords: multiwall model; path loss; foliage loss; LoRaWAN; 433 MHz; smart agriculture

1. Introduction

Long-range low-power wide-area network (LoRa LPWAN) technology is unique and
remarkable technology because of its long-range coverage, low power consumption, and
low-cost system architecture. These features have allowed LoRa LPWAN to become a
favorable option for performing communications in most IoT (Internet of things) wire-
less applications for smart agriculture [1]. The vision of smart farming comes with the
application of modern IoT technologies for autonomous monitoring, data processing, and
decision making [2]. New, challenging situations are arising for the deployment of LoRa in
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farmlands, due to the diverse characteristics of the agriculture farms and foliage loss caused
by the plants [3]. Palm oil is the main cash crop of Malaysia, and most of the farmland
in Malaysia is devoted to palm oil plantations. The use of LoRa-IoT applications in palm
oil plantations can bring a revolutionary improvement in the palm oil industry through
smart farming activities; however, LoRa data transmission is vulnerable due to the foliage
blockage [4] caused by vegetation canopies [5]. Palm oil plantations are covered by oil palm
trees, which are planted in rows. Moreover, tree foliage is very prone to absorbing water,
causing scattering of the propagated signal. Low frequencies, such as 240 MHz (compared
to 700 MHz), are less prone to being affected by weather conditions such as rain and strong
wind [6]. However, the tree foliage causes obstruction of the propagation path, and foliage
obstruction loss is unavoidable in an agricultural farm. Furthermore, the plantation area
with matured oil palm trees is densely foliated and can cause a significant propagation loss
due to its pattern. Although data transmission loss due to obstruction in the propagation
path can be solved using a routing scheme [7–9], significant propagation loss remains due
to the dense foliage. Taking the advantage of the symmetric pattern of the oil palm trees in
the plantation area to solve this problem, in this study we propose a new path-loss model.
Therefore, this research attempts to analyze the LoRa LPWAN propagation channels using
433 MHz frequency in a palm oil plantation located in Selangor, Malaysia, using empirical
measurements. Hence in this research, a prediction model is initiated and compared to the
existing empirical models. The contributions of this article are as follows:

• A multiwall path-loss model for palm oil plantation foliage is proposed.
• Path-loss prediction is modeled for LoRa LPWAN 433 MHz frequency channels.
• The proposed and predicted path-loss models are compared with existing empiri-

cal models.

2. Related Work

In recent years, a lot of research has been carried out on path-loss estimation for
roadside trees, single trees, lines of trees, etc., based on empirical models. An empirical
measurement and path-loss modeling using RFID (radio frequency identification) propaga-
tion at 433 MHz was carried out in a palm oil plantation in Malaysia [10]. The average loss
for a single oil palm tree using an RFID signal was found to be 2.49 dB, and Weissberger’s
exponential decay model showed almost the same results for the measured propagation
path loss. To characterize the LoRa propagation path loss in a tropical vegetative environ-
ment, empirical research was conducted, concluding that the tree canopy area caused the
greatest loss of about 56 dB [11]. The measurements were performed in the vegetation area
of mixed forest, utilizing a LoRa 868 MHz frequency.

Another study was conducted at the 700–800 MHz band through a line of trees
in a suburban park in Brazil, focusing on vegetal morphology with varied frequency
and antenna height [12]. In this study, the empirical path-loss model was compared to
the existing empirical models, showing similarities with Weissberger’s model. Similar
approaches were used to predict path loss in different foliage environments.

Utilizing the early ITU foliage path-loss model, a study was conducted to find the error
function for foliage depth and develop a tuned model [13]. The results showed that the
foliage depth-tuning method had the best prediction performance, with an RMSE of 2.92 dB
for the training dataset and an RMSE of 3.71 dB for the validation dataset. Empirical vegeta-
tion models were analyzed in vegetation environments including a banana plantation [14],
a tomato greenhouse [15], and a coniferous forest [16], showing that the conventional em-
pirical models are not suitable to predict the path loss in vegetated environments, because
of the diversity of canopy density. Palm oil plantations comprise a dense canopy, and there
is no existing site-specific path-loss prediction model for palm oil plantations. Therefore,
there is a need for a site-specific empirical path-loss model for palm oil plantations that can
predict the path loss for LoRa LPWAN 433 MHz frequency channels.
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3. Materials and Methods

In this section, the related empirical foliage models are briefly discussed, after which
the proposed model for palm oil plantations is introduced. The other parts contain the mea-
surement environment, oil palm tree specifications, measurement equipment description,
and data gathering methodology.

3.1. Related Empirical Models

The free-space models are not capable of predicting the channel attenuation due to
the presence of foliage obstruction (e.g., tree trunks, leaves, branches, and canopies) in the
propagation path [17]. To build an optimal monitoring system, the propagation quality
should be examined, and path-loss estimation can be used to predict the channel quality
for a certain distance in the propagation field [18].

To predict the loss of propagating signal in foliage, an empirical foliage propagation
exponential decay model was initiated. Later, several modified exponential decay (MED)
models for low frequencies—namely, the Weissberger model [19] and the ITU recommended
model (ITU-R) were used [20]. These models were constructed considering the exponential
functions, including operating frequencies and path lengths. However, each of these models
was subjected to a specific dataset and environmental conditions. Weissberger’s model is
applicable for short-distance propagation through the vegetation in the frequency range
from 230 MHz to 95 GHz. The expression of the model for f frequency and d foliage depth
is as follows:

LW(dB) =
{

1.33 f 0.284d0.588 ; 14 m < d < 400 m
0.45 f 0.284d ; 0 m < d < 14 m

(1)

Other empirical vegetation models for frequencies from 30 MHz to 100 GHz are also
capable of prediction signal attenuation at certain vegetation depths. The ITU-R model for
f frequency and d foliage depth is expressed as follows:

LITU−R(dB) = 0.2 f 0.3d0.6 ; d < 400 m (2)

The ITU-R model is optimized by least square error for high frequency ranges (11.2 GHZ
to 20 GHZ), where in-leaf and out-of-leaf vegetation is named as fitted FITU-R [19,20].
Another modified version of the ITU-R vegetation model is COST-235, designed for the
frequency range 2.5–2.7 GHz [21,22]. Since this research concerns 433 MHz frequencies,
the Weissberger and ITU-R vegetation models are compared with the proposed and pre-
dicted models.

3.2. The Multiwall Path-Loss Model for Palm Oil Plantations

The multiwall path-loss model has usually been used to analyze indoor electromag-
netic wave propagation [23–25] from industrial plants [26], laboratory buildings [27], school
buildings [28], and many others. This model is derived from one of the basic path-loss mod-
els for indoor environments—the one-slope model [29]—where the free-space path-loss
term is introduced as follows:

PLone slop = PL0 + 10nlog(d) (3)

where PL0 = reference pathloss, which is the path loss over 1 m distance; d is the distance
between the transmitter and the receiver; and n is the path-loss exponent that indicates
how fast the path loss increases with distance.

The path-loss exponent (n) defines the rate of power decay with respect to distance [30].
This model can also be developed to become a multi–frequency, multiwall and -floor
path-loss model [31]; however, in this research we only used one frequency; therefore, a
multi-frequency model was not used in this research.
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The RSSI measurements indicate the strength of the radio signals when they reach a
specific distance (d). Higher RSSI values indicate good signal quality, while low RSSI values
indicate that the signal is lost and fails to communicate. Hence, the path-loss exponent is:

n = (Prd − Pr0)/10log10(d) (4)

where n is the path-loss exponent, d is the distance between the transmitter and receiver,
Prd is the RSSI at d distance, and Pr0 is the RSSI at 1 m distance [32]. To quantify the
intervening wall loss in the multiwall path-loss model, the COST231 multiwall model was
proposed by the European Commission in 1999. Therefore, for the same floor environment,
the equation of multiwall path loss [23] is:

PLcost231 = PL0 + 10nlog(d) +
M

∑
i=1

PLi (5)

where M is the total number of walls to be traversed in the path along which the radio
signal propagates, and PLi denotes the total loss due to the intervening walls [33]. In
the palm oil plantation environment, the signal propagation path crosses either trunks or
canopies; therefore, the total intervening wall loss can be expressed as follows:

N

∑
i=1

PLi =
N

∑
C=1

CN +
N

∑
T=1

TN (6)

where,

CN = Attenuation caused by N number of canopies.
TN = Attenuation caused by N number of trunks.

Therefore, the proposed path-loss model for palm oil plantations is as follows:

PLpalm−oil = PL0 + 10nlog(d) +
N

∑
C=1

CN +
N

∑
T=1

TN (7)

In the path-loss equation, the total canopy and trunk loss can be predicted using the
average attenuation caused by a single canopy and trunk, multiplied by the number of
trunks and canopies present in between the propagation links.

Since this research concerns the LoRa 433 MHz frequency, the proposed path-loss
model was utilized for all LoRa channels (SF7-SF12) and three bandwidths (BW 125 kHz,
BW 250 kHz, BW 500 kHz) by empirical measurement methods in the palm oil plantation.
The following flowchart (Figure 1) concludes the multi-wall path-loss prediction modeling
of the palm oil plantation.

3.3. Measurement Environment

Malaysia, as a typically tropical location, is very popular for its palm oil plantations.
To ensure a good harvest, oil palm trees must be planted at certain density. Thus, oil palm
tree plantation follows a specific pattern. According to the FAO (Food and Agriculture
Organization), the oil palm pegs are planted in straight, lines leaving 7.8 m between rows
and 9 m between pegs (Figure 2). Thus, 143 oil palms can be planted per hectare.
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Figure 2. Palm oil planation pattern (left); palm oil plantation top view (right).

Moreover, the adult trees form multiple lines of trees, where the trees can be considered
as intervening walls for an NLoS (non-line-of-sight) propagation path in a line of trees.
Thus, the pattern of the planted trees in the plantation area can be considered as a multiwall
environment where the propagation links cross multiple walls (oil palm trees). Therefore,
the palm oil path-loss model can be proposed in line with the multiwall path-loss models.

The measurement site is located at Kuala Kubu Bharu, Selangor, Malaysia. The farm-
land designated for the experiment is 2 km in length and 0.5 km in width. Measurements
were conducted on 15–30 July 2021, and no rainfall occurred during the measurement
campaign. From the data of climate briefings (en.climate-data.org), it is noticeable that the
average temperature was 26.6 ◦C (maximum temperature 30.2 ◦C), and mean humidity
was 80%. Moreover, the measurement campaign was put on hold during strong wind
conditions. The month of July is part of the dry season in Malaysia, and there was no
rainfall for 15 days during the measurement campaign. Therefore, there was no presence of
stagnant water on the plantation surface, and the trees’ leaves were not wet.
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3.4. Oil Palm Tree Specifications

Palm oil is a very popular source of edible vegetable oil, which is derived from the
reddish pulp (mesocarp) of the palm fruit. A specific variety of oil palm tree is known as
Elaeis, from which palm oil is extracted. The species of oil palm trees include the African oil
palm (Elaeis guineensis), American oil palm (Elaeis oleifera), and maripa palm (Attalea maripa).
The most common species is Elaeis guineensis, which is commonly known as the African oil
palm. The oil palm (Elaeis guineensis) trees of the experimental site were planted in 2014,
and were in full growth in early 2020. The average economic lifespan of the oil palm is 25
to 30 years. Figure 3 shows the basic characteristics of an oil palm tree. To obtain more
information about the tree specifications, 5 trees were chosen randomly from a line of trees,
and their biological characteristics were measured (Table 1).
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Table 1. Measurement of oil palm tree characteristics.

Oil Palm Tree Tree Height (m) Trunk Height (m) Trunk Diameter (m) Canopy Depth (m) Canopy Diameter (m)

Tree 1 6.50 3.50 0.64 3.00 9.00
Tree 2 6.72 3.52 0.64 3.22 9.31
Tree 3 6.65 3.65 0.71 3.01 9.32
Tree 4 6.72 3.71 0.79 3.51 9.57
Tree 5 7.35 3.85 0.79 3.52 9.51

Average 6.79 3.65 0.714 3.25 9.34

Since the trees were planted at the same time of the year, the deviation of the measured
values was barely noticeable.

3.5. Measurement Equipment

LoRa is the short form of long-range, based on the principle of chirp spread spectrum
(CSS) wireless modulation technology systems, which use the wider band of 125, 250, and
500 kHz. In CSS technology, a narrow-band signal spreads over a wider-band channel. The
data rate and coverage change due to the change in SFs (SF7-SF12), where a higher SF causes
a lower data rate and greater coverage, and vice versa [34]. Moreover, LoRa technology is
robust against performance degradation due to harsh multipath [35] interface and Doppler
effects, because of the frequency modulated LoRa chirps, which increase the receiver’s
sensitivity. LoRa operates on license-free sub-gigahertz bands—for example, 433 MHz
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(Asia), 868 MHz (Europe), and 915 MHz (Australia). These frequencies fall into ISM bands,
which are reserved internationally for industrial, scientific, and medical purposes. LoRa
propagation loss is measured by the RSSI (received signal strength indicator) parameter.
This parameter has been used in many works as a transmission quality indicator [36–38].
The measurement of received signal strength (RSS) is followed by various metrics (Table 2).

Table 2. LoRa parameter settings.

Parameter Value

Frequency 433 MHz
Bandwidth (BW) 125 kHz, 250 kHz, 500 kHz

Spreading Factor (SF) SF7, SF8, SF9, SF10, SF11, SF12
Antenna Gain 2 dBi

Tx-Power 14 dbm
Coding Rate (CR) 4/5

Output power 14 dBm

To conduct the measurement procedure, a pair of LoRa ESP32 devices (transmitter and
receiver) was configured using Arduino software. Therefore, the modules were connected
using power banks and placed at the desired height. The following process diagram
(Figure 4) shows the entire measurement and modeling procedure.
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The following table (Table 3) contains the detailed information about antenna heights
for the RSS measurements.

Table 3. Antenna height setup.

Measurement Type Area Height (Tx)m Height (Rx)m Initial Distance between
Tx-Rx (m)

Line-of-Sight (LoS) Open Space 1 1 1
Non-Line-of-Sight (NLoS) Trunk 3 1.5 9
Non-Line-of-Sight (NLoS) Canopy 5.5 1.5 9

3.6. Data Gathering Method

The transmitter was programmed to send the data packet “hello” to the receiver every
100 microseconds. The measurement campaign was conducted in a few different scenarios
in the plantation region to observe the effect of foliage on the propagation signal. The RSS
data were collected for LoS links and NLoS links. For the LoS link measurements (Figure 5),
the transmitter was fixed in one location, and the receiver was placed after 1 m, 2 m, 3 m,
and so on, up to 100 m distance from the transmitter’s location. The exact same procedure
was followed for each LoRa configuration.
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The NLOS link measurement test was conducted in a line of oil palm trees using
two approaches:

• Scenario 1: Propagation through the trunk.
• Scenario 2: Propagation through the canopy.

Moreover, another three sets of data were collected for validation of the prediction
model for another line of trees, keeping the transmitter in the same place. The LoRa settings
were maintained for different bandwidths and spreading factors. The LoRa settings used for
path-loss prediction model validation were SF7_125 kHz, SF10_250 kHz, and SF12_500 kHz.
The NLoS link was created in between two lines of trees, while the NLoS data were also
collected for scenarios 1 and 2, as stated above.

4. Results and Discussion
4.1. Data Analysis and Prediction Model

This section attempts to analyze all of the data collected at the LoRa 433 MHz frequency,
using three bandwidths and six spreading factors. Altogether, there are 18 LoRa parameter
settings (6 settings for each bandwidth) for data collection, and about 1500 LoS (line-
of-sight) and 300 NLoS (non-line-of-sight) propagation data are collected for path-loss
prediction modeling.

To collect the data, the transmitter and the receiver were placed very near to the
ground for LoS propagation, and for NLoS propagation the receiver’s height was 1.5 m,
which is also very near to the ground. Therefore, the propagated signal underwent natural
propagation effects such as scattering, reflection, diffraction, etc., resulting in degradation
of the received signal’s strength with the increase in distance between the transmitter and
the receiver. All of the empirically measured data analysis is presented for two segments:
LoS link data, and NLoS link propagation data.

4.1.1. LoS Link Data Analysis

The LoS link data were analyzed to find the path-loss exponent (n) for each LoRa
setting using Equation (4). The path-loss exponent was calculated for all of the LoS
measurements. The following graph represents the path-loss exponents (n) for the LOS
measurements, and the average value of 100 path-loss exponents is taken as the value
of the path-loss exponent of the corresponding settings. All of the path-loss exponent
values are presented in Table 4. It is noticeable that the path-loss exponent decreases from
SF7–SF12 with the change in the bandwidth. However, there is a notable exception in
SF8 (BW 125 kHz and BW 250 kHz). The exception for the SF8 data behavior may be
because of the environmental effects. Moreover, all the values are approximately similar
for the BW 125 kHz and 250 kHz bandwidths. The values for the 500 kHz frequencies are
always greater than those of the other two bandwidths. Therefore, from analyzing the
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data, the prediction value was found to be 2.34 for 125–500 kHz bandwidths and 2.9 for the
500 KHz bandwidth.

Table 4. Path-loss exponent (n) prediction value.

Path-Loss Exponent, n

SFs BW 125 kHz BW 250 kHz Average BW 500 kHz Average

SF7 2.37 2.36

2.34

3.15

2.9

SF8 2.63 2.52 2.98
SF9 2.39 2.44 2.87

SF10 2.37 2.33 2.84
SF 11 2.12 2.26 2.71
SF12 2.14 2.16 2.74

4.1.2. NLoS Link Data Analysis

The average intervening wall loss (per trunk and per canopy) was calculated for
scenarios 1 and 2 (Figure 6) for all of the LoRa settings. The following table (Table 5)
represents all the trunk and canopy attenuations.
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Table 5. Trunk and canopy attenuation.

Trunk Attenuation (dB) Canopy Attenuation (dB)

SFs 125 kHz 250 kHz 500 kHz Avg. 125 kHz 250 kHz 500 kHz Avg.

SF7 7.5 7.57 7.66 7.58 8.98 9.56 9.42 9.32
SF8 7 7 7.11 7.04 7.85 7.99 8.04 7.96
SF9 5.5 5.5 5.04 5.35 5.94 6.24 6.43 6.2
SF10 5 5 5.06 5.02 5.62 5.72 6.33 5.89
SF11 5 5.05 4.98 5.01 5.7 5.65 6.01 5.79
SF12 5 5 5.01 5.00 5.5 5.47 5.37 5.45

The highest average intervening wall loss per trunk for LoRa propagation was found
to be 7.66 dB, while the lowest was 4.98 dB. However, for RFID propagation in the palm
oil plantation, the average trunk loss was 2.49 dB per tree [10]. This might be because of
either the different propagation modulation types used by LoRa, or the differences in the
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physical characteristics of the oil palm trees. The trunk attenuation decreased in a similar
pattern for all of the bandwidths, while for SF8 and SF9 there was a noticeable drop in
the attenuation (2 dB and above). However, from SF9 to SF12, there were no significant
average attenuation changes (<1 dB) observed.

Likewise, for the trunk attenuation, the data obtained from Scenario 2 also show a
similar pattern to that of Scenario 1. The canopy attenuation depends on the spreading
factor changes, and insignificant change was observed due to the change in the bandwidth.
The highest attenuation was 9.56 dB and the lowest attenuation was 5.37 dB among all of
the measurements

For every SF, the trunk and canopy attenuation changed greatly, and insignificant
changes were observed with the change in bandwidth using the same spreading factor.
Therefore, the trunk and canopy attenuation are not bandwidth-dependent functions;
rather, they depend on the change in the spreading factor. Hence, the prediction model is
a function of the spreading factor (see Figure 7). The graphs show the best fit of the data
trend line based on the R-squared value. The R-squared is the coefficient of determination,
which evaluates the scattered data points around the fitted curve. A value of R-squared
that approaches 1 is considered a more accurate data trend line. To get the best fit for the
trunk and canopy attenuation data, the highest R-squared value was considered among the
popular curve-fitting trend lines (e.g., linear, exponential, logarithmic, and polynomial).
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Figure 7. Trunk and canopy attenuation functions.

Choosing the highest R-squared value (R2 = 0.891) to investigate the best curve fitting,
we found that the trunk attenuation changes in a logarithmic scale with the change in the
spreading factor. The prediction function for trunk attenuation is as follows:

y = −1.658 ln(x) + 7.6515 (8)

Equation (8) denotes the change in the trunk attenuation (y) depending on the SF (x).
The variables x = 1, 2, 3, 4, 5, and 6 are for the settings SF7, SF8, SF9, SF10, SF11, and
SF12, respectively.

Again, all of the measured data from Scenario 2 were also analyzed, and the graph
shows the canopy attenuation function by choosing the best fit of data with the highest
R2 = 0.9532 value (see Figure 6). The canopy attenuation also changes in a logarithmic
scale with the change in the spreading factors. The prediction function for trunk attenuation
is as follows:

y = −2.256 ln(x) + 9.242 (9)
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Equation (9) denotes the change in the canopy attenuation (y) depending on the SF (x).
The variables x = 1, 2, 3, 4, 5, and 6 are for the settings SF7, SF8, SF9, SF10, SF11, and
SF12, respectively.

Therefore, combining all of the components of the proposed path-loss prediction
model, the path-loss equation for 433 MHz in the palm oil plantation is as follows (Table 6):

PLpalm−oil(433MHz) = PL0 + 10nlog(d) +
N

∑
C=1

CN +
N

∑
T=1

TN (10)

Table 6. PL prediction model for 433 MHz.

Components Function

PL0 20 log f − 27.55, f = 433 MHz

n 2.34 (BW 125 to 250 kHz)
2.9 (BW 500 kHz)

T y = −1.658 ln(x) + 7.6515
C y = −2.256 ln(x) + 9.242

4.1.3. Validation of the Prediction Model

To validate the prediction model, 300 LoS and 30 NLoS data were collected to measure
path loss (Measured PL_2). Three random LoRa settings were chosen for three bandwidths
and spreading factors to compare with the reference measurement (Measured PL_1) and
the path-loss prediction model (Figure 8).
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From the above figure, the deviation of measured path loss from the prediction model
can be observed to be insignificant (<3 dB). The change in the path-loss values for another
line of trees can be the consequence of the multipath fading of the propagated signal when
the signal is reflected, diffracted, and scattered in the propagation medium. However, the
trees in a line are almost the same size and planted in a unique pattern; the biological
structure of the oil palm plants with unevenly scattered leaves could also be the reason
for this variation. Since there is no acute deviation observed, the prediction model is
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still sustainable for the palm oil plantation. Therefore, it can be concluded that the path-
loss prediction model can predict the path loss for an approximately similar-sized and
typical-patterned palm oil plantation.

4.2. PL Measurement Analysis

In this research, each measurement showed varying signal strength (RSS) data for each
LoRa radio configuration. This is because of the natural propagation phenomena known
as diffraction, refraction, and reflection of the transmitted signal, which are caused by the
surroundings of the palm oil plantation environment [39].

Some excess attenuations can be caused due to losses from atmospheric factors such
as breezing wind. Since the measurements were carried out in the dry season, the effects of
rainfall were not considered in this research. However, researchers have found that rainfall
and atmospheric or gaseous absorption at frequencies below 10 GHz have insignificant
effects on signal propagation [40]. Therefore, this research concerning the 433 MHz fre-
quency might not be subject to rainfall and other atmospheric losses, such as humidity
and temperature.

Taking the measurements for the line-of-sight propagation path, the electromagnetic
wave passes through several obstacles—including grass, weeds, and uneven ground—in
the palm oil plantation, resulting in signal loss; a varied path-loss exponent is given in
Table 4. Moreover, the multipath fading that occurred in the palm oil plantation was not
ass static as it may seem. This fluctuation may be caused by the dynamic movement of
grass and weed petals present on the plantation surface [41].

Moreover, variation in the range was noticed for different spreading factors and
bandwidth settings when conducting the experiments in non-line-of-sight scenarios (line
of oil palm trees). It was found that every measurement point obstacle presented by
the oil palm trees showed distinct measurement results (RSS values) compared to the
other nearby line-of-sight measurement points. Switching the bandwidth from 125 to
500 kHz changed the range; however, the 250 kHz bandwidth showed similar ranges to the
125 kHz bandwidth.

Again, in 100 m distance, SF7–SF12 were able to penetrate 7–10 oil palm trees while
using 125–250 kHz bandwidth. However, the 500 kHz bandwidth setting was capable of
penetrating 5–7 oil palm trees. Therefore, the non-line-of-sight measurements of the palm
oil plantation can be concluded as follows:

• Obstacle loss due to the oil palm trees in the plantation region degraded the LoRa signal
quality. As demonstrated by Petäjäjärvi et al., increasing the bandwidth decreases the
communication range and sensitivity [42]. This was also witnessed in the palm oil
plantation propagation medium.

• Obstacle loss in the palm oil plantation was caused by two main parts of the oil palm
tree (i.e., trunk and canopy). Due to the symmetric pattern of the palm oil plantation
and similarity in the tree structure, the path loss did not fluctuate drastically. Therefore,
the path-loss prediction is generally easier in palm oil plantation scenario.

4.3. Comparison with Empirical Path-Loss Models

Considering the dense canopy loss in the empirical foliage path-loss models in this
research, the proposed path-loss model for Scenario 2 (Figure 5) includes trunks and
canopies in the propagation path. Therefore, in the existing foliage loss models, we consider
30% foliage depth in between TX and RX. Hence, the foliage depth (d = 0.3 d) is considered
for the abovementioned foliage loss models. The following graphs (Figures 9 and 10)
represent the path-loss comparisons, which are discussed below.



Sensors 2022, 22, 5397 13 of 17Sensors 2022, 22, x FOR PEER REVIEW 14 of 19 
 

 

 
Figure 9. Path-loss comparison of 125 kHz bandwidth LoRa settings. Figure 9. Path-loss comparison of 125 kHz bandwidth LoRa settings.

In this study, RSS data were collected for 433 MHz LoRa channels and analyzed. Since
there are similarities between the measured data of BW 125 kHz and BW 250 kHz, among
these two BWs, 125 kHz data were chosen for the comparison. Therefore, the comparison
is presented for BW 125 kHz and BW 500 kHz. Again, SF7, SF10, and SF12 data are used
for comparison to see the path-loss models’ behavior.
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As shown in the graphs (Figures 9 and 10), the predicted model deviates from the
measured path loss (proposed model) because the prediction model is constructed using the
averaged values for trunk and canopy attenuation. However, in real environment, all of the
canopies and trunks are not the same in size, and the attenuation does not remain constant
over the distance in a line of oil palm trees. Again, it is noticeable that Weissberger’s model
is very near to the model proposed in this research, whereas the ITU-R model deviates
largely from the proposed and predicted PL models.

To observe the deviation of the multiwall prediction model from the measured and
empirical models, RMSE (root-mean-square error) was calculated, since other researchers
have also adopted RMSE as a validation method for path-loss propagation evaluation [39].
The RMSE (root-mean-square error) values present the variation between the empirical
measurements and predicted/related empirical models for the palm oil plantation environ-
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ment. RMSE is the mean value of the mean of the square of all of the error; RMSE for path
loss (dB) is calculated as follows (Table 7):

RMSE =

√
∑N

i=1(Measured PL − (Predicted or Weissberger or ITU_R) PL)2

N
(11)

Table 7. RMSE comparison values.

LoRa Channels RMSE (dB)

433 MHz Predicted Weissberger ITU-R

SF7, BW 125 kHz 3.24 10.73 34.1
SF10, BW 125 kHz 2.04 4.75 19.12
SF12, BW 125 kHz 2.07 3.9 20.08
SF7, BW 500 kHz 3.10 7.04 25.02
SF10, BW 500 kHz 3.39 2.32 20.02
SF12, BW 500 kHz 2.62 3.19 21.1

Avg. 2.74 5.32 23.24

From the RMSE values, it is noticeable that the prediction model is the closest (mean
RMSE 2.74 dB) to the measured PL; however, for SF10, BW 500 kHz LoRa channel propaga-
tion PL is close (mean RMSE 5.32 dB) to Weissberger’s model. The ITU-R foliage loss model
shows the maximum RMSE (mean 23.24 dB) with respect to the measured PL. Therefore,
the ITU-R foliage loss model cannot predict the path loss for palm oil plantations.

5. Conclusions and Future Work

In this research, LoRa propagation was analyzed using the empirical measurements
taken at a 433 MHz frequency in a palm oil plantation in Selangor, Malaysia. The LoS
measurements were used to find the path-loss exponent (n), where the spreading factors
(SFs) show the different propagation characteristics; hence, there was a noticeable change
in the value of the path-loss exponent (n). The averaged prediction value of the path-loss
exponent for BW 125–250 kHz and 500 kHz bandwidths were found to be 2.37 and 2.9,
respectively. Again, the NLoS measurements were used to find the trunk and canopy
loss prediction functions. Moreover, in the comparison of the predicted path loss and the
existing empirical path-loss models (Weissberger’s and ITU-R), the prediction model was
the more accurate (average RMSE 2.74) with respect to the measured path loss. However,
Weissberger’s model was close in prediction of the path loss in the palm oil plantation
(average RMSE 5.32), whereas the ITU-R foliage model was far from predicting the path
loss in the palm oil plantation.

The prediction model shows good performance with respect to the reference measured
data, and this model is a site-specific model for palm oil plantations. However, the model
could be applicable for other foliage propagation as well, provided that the plantation
maintains the unique pattern typical of modern palm-oil plantations. As with any other
wave propagation, LoRa signal propagation also undergoes multipath fading due to scat-
tering, reflection, and diffraction. Furthermore, due to the unevenly scattered leaves, the
path-loss results show a slight variation from other measurements taken in other lines of
trees. This research is based on empirical measurements, and the path-loss modeling is
not sustainable for heavy rainfall and harsh weather conditions. However, for the further
improvement of the prediction model, numerous measurements from different-sized oil
palm trees could be undertaken and analyzed with software-based modeling platforms.

The prediction model incorporated a 433 MHz LoRa frequency; other frequency
channels could also be utilized to form multiwall and multi-frequency path-loss prediction
models. To achieve higher accuracy of the prediction model, more research should be
conducted in other palm oil plantations in Malaysia and other tropical locations to improve
the path-loss prediction model by using the correction factors for the distinct trunk and
canopy sizes of oil palm trees.
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