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Heavy metal (HM) contamination resulting from industrialization and urbanization during

the Anthropocene along with plant invasion can severely threaten the growth and

adaptation of local flora. Invasive alien plant species generally exhibit a growth pattern

consistent with their functional traits in non-contaminated environments in the introduced

range. However, it remains unclear whether invasive alien plants have an advantage

over native plants in contaminated environments and whether this growth pattern is

dependent on the adaptation of their leaf functional traits. Here, we selected two

congeneric pairs of invasive alien and native grasses that naturally co-exist in China and

are commonly found growing in contaminated soil. To evaluate the effect of cadmium

(Cd) on the structural and physiological leaf traits, we grew all four species in soil

contaminated without or with 80 mg/kg Cd. Invasive plants contained significantly

higher concentrations of Cd in all three organs (leaf, stem, and root). They displayed

a higher transfer factor and bioconcentration factor (BCF) of shoot and root than

natives, indicating that invasive species are potential Cd hyperaccumulators. Invasive

plants accumulated polyphenol oxidase (PPO) to higher levels than natives and showed

similar patterns of leaf structural and physiological traits in response to changes in

Cd bioconcentration. The quantifiable leaf structural traits of invasive plants were

significantly greater (except for stomatal density and number of dead leaves) than

native plants. Leaf physiological traits, chlorophyll content, and flavonoid content were

also significantly higher in invasive plants than in natives under Cd stress conditions

after 4 weeks, although nitrogen balance index (NBI) showed no significant difference

between the two species. Chlorophyll fluorescence parameters decreased, except for
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the quantum yield of photosystem II (8PSII) and the proportion of open photosystem II

(qP), which increased under Cd stress conditions in both species. However, invasive

plants exhibited higher fluorescence parameters than natives under Cd stress, and

the decrement observed in invasive plants under Cd stress was greater than that in

natives. High Cd adaptation of invasive grasses over natives suggests that invasive plants

possess optimal leaf structural and physiological traits, which enable them to adapt to

stressful conditions and capture resources more quickly than natives. This study further

emphasizes the potential invasion of alien plants in contaminated soil environments

within the introduced range. To a certain extent, some non-invasive alien plants might

adapt to metalliferous environments and serve as hyperaccumulator candidates in

phytoremediation projects in contaminated environments.

Keywords: bioconcentration factor, cadmium, leaf functional traits, phytoremediation, physiological response

INTRODUCTION

Heavy metal (HM) contamination, which occurred in
Anthropocene, has the potential to severely threaten biodiversity
and human health, especially in developing countries (Li et al.,
2014; Duan et al., 2016). In the last few decades, the HM
contamination of soil has spread extensively throughout the
globe (Huamain et al., 1999; Dong et al., 2001). The increment

GRAPHICAL ABSTRACT | Higher structural and physiological leaf traits in invasive than in native plants.

of soil HM contamination is one of the common and severe
threats to urban flora and fauna communities (Bi et al., 2013; Li
et al., 2014). HM can greatly impact plant growth, reproduction,
and migration (Deng et al., 2007). Plants lack the ability to
deliberately migrate away from a polluted area, and the only way
to increase their chance of survival in adverse environments is to
trigger defense mechanisms and evolve tolerance-inducing genes
(Chmielowska-Bak et al., 2014). When exposed to cadmium
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(Cd) stress, plants display signs of injury in the form of chlorosis,
growth inhibition, root tip browning, and eventually death
(Mohanpuria et al., 2007; Ali H. et al., 2013; Ali et al., 2014).
HM stress inhibits biological processes such as photosynthesis,
cell division, and water absorption, thus reducing plant growth
and canopy cover (Jadia and Fulekar, 2009; Taiz and Zeiger,
2010).

Elevated Cd concentration can cause many disturbances
in the morphological, anatomical, and physiological processes
of plants. A recent study reported that HM reduces leaf
chlorophyll index, leaf area, and various other metabolic
processes in plants (Hatamian et al., 2020). Several mechanisms
are involved in delaying plant development under HM stress.
Cell division and leaf morphological features are adversely
affected by lead (Pb) and Cd toxicity (Hatamian et al.,
2020). Plants regulate their morphological, physiological, and
ecological adaptation to environmental fluctuations and change
the leaf functional traits under unfavorable conditions (Dwyer
et al., 2014; Meng et al., 2014). Functional traits directly or
indirectly affect plant adaptability through their effects on plant
development, survival, and reproduction (Marteinsdóttir and
Eriksson, 2014).

Plant functional traits are expected to represent general
adaptation under stress (Dwyer et al., 2014; Marteinsdóttir and
Eriksson, 2014; Ilyas et al., 2021). Specific leaf area (SLA) is
an outstanding indicator of plant functional traits and explains
the changes in plant species in response to any changes in the
available resources (Kardel et al., 2010; Scheepens et al., 2010).
Besides leaf size, and shape, chlorophyll content is an important
functional trait of leaves, which accurately describes the plant
resource use strategy (Wang et al., 2016). The competitive
ability of plants for resource acquisition, especially sunlight,
is influenced by plant height (Gross et al., 2007; Thomson
et al., 2011). Similarly, the leaf dry weight, leaf number, and
plant height significantly decreased under Cd (Farooq et al.,
2016). Related or even identical environmental stresses, such as
habitat filtering, can also affect the leaf functional traits (Gross
et al., 2007). Furthermore, invasive plant species exhibit a higher
leaf shape index than native species to increase their resource
capturing efficiency and enhance their competitiveness (Liu et al.,
2017). Moreover, under stress conditions, invasive plants grow
significantly taller than native plants, which enables them to
capture more light energy and transport more water (Ishii and
Asano, 2010; Wang et al., 2017). Wang et al. (2018b) reported
that HM treatments negatively affected the functional traits of
invasive and native plants; however, invasive plants showed an
increase in height and leaf shape index compared with native
plants. Cd has a major impact on the survival and physiological
efficiency of native plants. Moreover, it has been proposed that
biotic stresses, such as enemy release, superior competitor, and
allelopathy, benefit invasive species over resident species (Bakker
and Wilson, 2001; Maron and Vilà, 2001; Keane and Crawley,
2002; Callaway and Ridenour, 2004). Many invasive plants
exhibit a greater ability to use water and nutrients under stress
conditions (Blicker et al., 2003), implying that the adaptation
or tolerance to stressful environments may be an important
trait of invasive plant species. However, well-established invasive

plant populations may pay a high fitness cost during subsequent
bouts of admixture with native populations (Pantoja et al.,
2018). Invasive plant species demonstrate local adaptation as
frequently as and at least as effectively as native plant species
(Oduor et al., 2016). Previous studies confirmed that, given
their functional traits, invasive plants can grow and adapt to
metalliferous environments more effectively than native plants
(Arredondo et al., 2006; Murtaza et al., 2017). The growth pattern
and leaf functional traits of invasive alien plants are generally
consistent with those observed under limited light, limited water,
and limited nutrient environments or under altitude stress in
the introduced range (Liu et al., 2017, 2022; Wang et al.,
2017, 2019). However, whether invasive alien plants have an
advantage over native plants in contaminated environments is
poorly understood.

Invasive plant species invade the ecosystem and change
their functions and processes by affecting nutrient cycling
and reducing the biodiversity of native flora (Ehrenfeld, 2010;
Simberloff et al., 2013). However, rather than getting eliminated
from the ecosystem, these species are used for ecosystem
restoration and the bioremediation of contaminated soil (Ewel
and Putz, 2004; Pandey, 2012). In previous studies, invasive
alien plant species such as Chromolaena odorata and Praxelis
clematidea significantly enhanced soil nutrient levels (Koné et al.,
2012; Wei et al., 2017). Therefore, some alien plant species
may be useful for the restoration of degraded ecosystems.
Comparatively, invasive plant species have higher adaptability
to stressful environments (Ehrenfeld, 2010; Bai et al., 2020).
According to previous studies, the high adaptability rate of
invasive plants makes them a potentially better choice for
removing soil pollutants (Tanhan et al., 2007; Sun et al., 2009;
Pandey, 2012). Chlorophyll fluorescence parameters are the
significant determinants of the performance and adaptability of
plants in stressed environments. Fluorescence parameters such
as maximum potential quantum efficiency of photosystem II
(PSII; Fv/Fm) and quantum yield of PSII (8PSII) decreased
under HM stress (Chen et al., 2015), and parameters including
variable fluorescence (Fv) and Fv/Fm decreased in plants exposed
to high Cd concentration (Li et al., 2015). In contrast, parameters
including minimum fluorescence (F0) and non-photochemical
quenching (NPQ) increased, whereas maximum fluorescence
(Fm) was not significantly affected in Purslane plants under
Cd stress (Yaghoubian et al., 2016). Joshi and Mohanty (2004)
reported that different concentrations of Cd had a major impact
on chlorophyll a, chlorophyll b, and carotenoids contents, F0 and
chlorophyll fluorescence in Amaranthus caudatus L.; however,
changes in chlorophyll fluorescence parameters F0 and Fm were
dependent on the experimental conditions such as the plant
growth stage and metal ion exposure of plants (Joshi and
Mohanty, 2004).

In this study, we aimed to understand the effect of Cd toxicity
on the leaf functional traits (structural and physiological traits)
of invasive and native plant species and the accumulation of
Cd in different parts of these species. We hypothesized that
(1) Cd stress has more negative impacts on native grasses than
on invasive grasses, and invasive species exhibit greater stress
resistance than native species; and (2) leaf functional traits
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confer better physiological response, plant adaptation, and Cd
accumulation ability (i.e., high Cd adaptation) compared to
invasive with grasses than to natives under stress conditions. This
study provides a solid theoretical base and practical applications
for the control and prevention of invasion under HM stress.

MATERIALS AND METHODS

Species Selection and Cultivation
Two invasive (Pennisetum purpureum and Paspalum
dilatatum) and two native (Pennisetum alopecuroides and
Paspalum distichum) grasses, which are commonly found
co-occurring in the grasslands of China, were included
in this study (Supplementary Table 1). More than 100
ramets of each species were collected from the Hubei
Province of China in 2014. To increase the likelihood of
sampling ramets from different genets (i.e., genotypes),
ramets spaced at least 500m apart were collected. After
collection, the ramets were vegetatively cultivated for 1 year
in a glasshouse at Huazhong Agricultural University in
Wuhan (Hubei Province, China) to produce enough new
clonal fragments.

Experimental Design
Experiments were conducted in a plastic greenhouse at
Huazhong Agricultural University, Wuhan, China. A factorial
design was applied, with two levels of HM contamination in the
soil (0 and 80 mg/kg). Cd was used in this study because it is
one of the most important HMs found in China and was added
to the soil at a concentration of 80mg/kg (Alaboudi et al., 2018).
3.8 g of CdCl2·2.5H2Owas prepared into 10 and 240mg/ml water
respectively. Before transplanting, soil samples were collected to
determine the initial index of the soil. Subsequently, plants were
transplanted in disposable plastic pots (30 cm diameter × 20 cm
height) filled with 9.5 L of a mixture of sand and yellow-brown
soil (1:1, v/v) collected from Shizishan Mountain in Wuhan,
Hubei Province, China. The nutrient concentration of the soil
mixture was quite low, with total N, P, and K contents of 0.23
± 0.03, 0.32 ± 0.04, and 14.27 ± 1.25 g kg−1, respectively (mean
± SE, n = 10). Each pot contained one invasive and one native
plant, which were planted in the center of the pot (Figure 1).
Two weeks after transplanting, weed management and daily
watering were carried out until the end of the experiment.
Relevant data, including chlorophyll and flavonoid contents,
nitrogen balance index (NBI), number of total leaves and dead
leaves, and plant height, were measured one time a week for
8–10 weeks. Four replicate pots were used for each treatment.
The experiment was terminated 10 weeks after the start of
the treatments.

Measurements of Leaf Structural Traits
To measure leaf structural traits, samples were collected at the
end of the experimental period. All samples were collected
at 9:00 a.m. and 11:00 a.m. on sunny days from August to
September 2020. Mature leaves were randomly collected from
each plant in three replicates, with each replicate containing

three leaves. After collection, all leaf samples were preserved in
an ice bag for transfer from the greenhouse to the laboratory
for further processing. The leaves were fixed in formaldehyde-
alcohol-acetic acid (FAA) for 1–2min to measure stomatal
traits. Then, the leaves were removed from the FAA and
excess FAA was blotted with a filter paper. Subsequently, nail
polish was applied to the adaxial and abaxial side of the
leaf. After air-drying for 40 seconds, the nail polish marks
were removed with transparent adhesive tape, and leaves were
placed on a microscopic glass slides. To determine the density
and size of the stomata in the lower epidermis, these were
photographed under a light microscope (AxioPlan, Zeiss, Jena,
Germany). The images were then used to determine the pore
number and size. The x (long) and y (short) axes of each
pore were measured using (https://imagej.net). The size of
at least 30 pores was measured from each leaf sample. To
determine pore density, all the pores within a 309.81-mm2

area were counted. Plant height and leaf length were also
measured with the scale. The number of total leaves and dead
leaves per plant was counted carefully. To determine the leaf
area, fully expanded leaves were selected from the plants and
measured using Image-Pro Plus version 6.0 (Media Cybernetics,
USA). All measurements were taken in triplicate, within a 1%
measurement error.

Estimation of Chlorophyll Content,
Flavonoid Content, and NBI
All representative plants in the control and Cd treatments
with four replicates were selected and subjected to proximal
sensing using the Dualex 4 sensor (Force-A, Orsay, France). The
plant samples and sensor readings were obtained 3 weeks after
planting. The Dualex values were measured on the adaxial side
of leaves at six growth points: topmost, second, and third leaves
before tasseling and leaves above and below the panicle as well
as the panicle leaf at the tasseling stage. The Dualex readings
(chlorophyll and flavonoid contents and NBI) were recorded one
time a week for up to 7 weeks from leaves at the same position for
each plant species.

Measurement of Chlorophyll Fluorescence
Parameters
Chlorophyll fluorescence was measured with a portable
fluorometer (PAM-2500, Walz, Germany), as described
previously (Genty et al., 1989). To measure fluorescence
parameters, the light intensity was maintained at 200 µmol
m−2 s−1. The leaf samples were dark-adapted for 30min using
leaf-clip holders (2030-B, Walz). Values of F0 and Fm were
measured in dark-adapted leaves. The variable fluorescence
8PSII quantum yield of PSII, 8PSII qP proportion of open
PSII, and 8PSII Fv/Fm maximum quantum yield of PSII
were calculated as shown in Equations (1)–(3), respectively
(Schreiber et al., 1986). Values of F0′, Fm′, and steady-state
fluorescence (Ft) were measured using leaves adapted to actinic
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FIGURE 1 | Experimental design. Notes, CK, control, Cd, cadmium stress. Experimental layout. R1-4 mean replicates.

light (Klughammer and Schreiber, 2008).

8PSII = (F′m − F′t)/Fm (1)

8PSII = (F′m − Ft)/(F
′
m − F′0) (2)

8PSII = (Fm − F0)/Fm (3)

Measurements of Cd Concentration and
Polyphenol Oxidase Activity
The activity of PPO was measured in leaves and roots of plants
treated with and without Cd stress, as described previously
(Webb et al., 2014). Additionally, the Cd removal efficiency
of all four plant species was quantified using a combination
of shoot bioconcentration factor (shoot BCF), root BCF, and
transfer factor (Wei et al., 2018; Bai et al., 2020). Shoot and

root BCFs were calculated by dividing the shoot and root Cd
concentrations, respectively, with soil Cd concentration at the
end of the incubation period, as shown in Equations (4) and (5):

Shoot BCF = (Cdstem + Cdleaf)/Cdsoil (4)

Root BCF = Cdroot/Cdsoil (5)

where Cdroot, Cdstem, Cdleaf, and Cdsoil represent Cd
concentrations (mg kg−1) in the root, stem, leaf, and
soil, respectively.

The transfer factor, which indicates the capacity of a plant to
transport Cd from the root system to aboveground organs (stem
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and leaf), was calculated using Equation (6):

Transfer factor =
Cdstem + Cdleaf

Cdroot
(6)

Statistical Analysis
Two-way analysis of variance (ANOVA) was used to test
the effects of soil Cd concentration (0 and 80 mg/kg) and
species origin (invasive alien and native) on leaf functional
(structural and physiological) traits of plants. If a significant
effect of Cd contamination or species origin was detected, then
Tukey’s honestly significant difference (HSD) test was conducted
to compare the means of different treatment combinations.
Additionally, two-way repeated measures ANOVA was used to
examine the effects of soil Cd concentration, species origin, and
time (different experimental periods) on leaf functional traits.
Data are presented as mean ± standard error (SE). Significant
differences among different traits were determined using SPSS
13.0 (SPSS Inc., Chicago, IL, USA, 2016) and indicated using
asterisks (∗p < 0.05, ∗∗p < 0.01, ∗∗∗p < 0.001). All figures were
drawn with OriginPro 7.0 and GraphPad Prism 8 (Graph-Pad
Software Inc., San Diego, CA, USA). The relationship among
different functional traits of invasive and native species was
analyzed with a correlation matrix using the R software (version
4.0.3; R Development Core Team 2012).

RESULTS

Effects of Cd Stress on the Morphological
Traits of Invasive and Native Plants
Morphological traits of invasive and native plant species were
significantly affected by Cd stress. However, from 3 to 5 weeks,
the total leaf number of invasive and native plant species under
Cd stress was significantly lower than that of control plants
(p < 0.05). Moreover, native species showed fewer leaves than
invasive species under Cd stress (Figure 2B). Cd-treated native
species produced the greatest amount of leaf litter, followed
by Cd-treated invasive species. Leaf litter under Cd stress was
significantly higher than that in the control treatment for both
invasive and native species (p < 0.05). However, in the Cd stress
treatment, the leaf litter of native species increased from 3 to
7 weeks, whereas that of invasive plant species increased from
5 to 7 weeks (Figure 2A). During the experimental period, the
plant height of invasive and native species was similar between
the control and Cd stress treatments from 1 to 3 weeks but
dramatically decreased from 4 to 7 weeks. The height of invasive
and native plant species under Cd stress was significantly lower
than that of their control counterparts (p < 0.05). Under Cd
stress, the plant height of invasive species was greater than that
of native species, indicating that the height of native plants
was affected by soil contamination to a greater extent than that
of invasive plants (Figure 2C). These findings suggest that leaf
litter and leaf abscission are higher in native plants than in
invasive plants in a metalliferous environment. This indicates
that invasive species are more tolerant to HM stress and can
potentially survive in a metalliferous environment.

Effects of Cd Stress on the Leaf Structural
Traits of Invasive and Native Plants
Effects on Leaf Morphological Traits
All quantifiable leaf structural traits of invasive plants, except
stomatal density and number of dead leaves, were significantly
greater than those of native plants. Among the invasive and
native plants, species had significant effects on all leaf and
stomatal traits. Overall, the species effects were highly significant
for stomatal and leaf traits (p ≤ 0.001). Cd stress had significant
effects on leaf length, stomatal area, stomatal length, and
stomatal width (p ≤ 0.001) but non-significant effects on leaf
area and stomatal density. The interaction between species
origin and Cd stress had a significant effect (p ≤ 0.001) on
stomatal and leaf traits, except for stomatal density and leaf
area (Table 1).

The stomatal traits of invasive and native plants showed
different responses to Cd stress. The stomatal density of native
species was higher in the control treatment than in the Cd
treatment, whereas invasive species were similar under both
conditions (Figure 3A). Moreover, the stomatal length of all
species decreased following Cd treatment, and the decline
observed in stomatal length was greater in native plants than
in invasive plants (Figure 3B). The stomatal area data showed
similar trends (Figure 3D). The stomatal width of both invasive
and native plants was slightly lower in the Cd treatment than
in the control treatment (Figure 3C). These results suggest that
stomatal traits were affected by Cd stress, and the stomatal traits
of invasive plant species respond better than that of native species
in metalliferous environments.

Overall, the leaf area and leaf length of invasive and native
species were lower under Cd stress than under control conditions
(Figure 4). Under Cd stress, the leaf area of native plants was
lower than that of invasive plants (Figure 4A). The leaf length
data showed similar trends (Figure 4B). These results suggest
that the leaf traits of native plants are affected by Cd stress to a
greater extent than those of invasive plants.

Effects on Stomatal Morphology
Exposure to Cd stress-induced clear morphological changes in
the shape of epidermal cells on the abaxial leaf surface in invasive
and native plants (Figure 5); however, no visible changes were
observed in stomatal depth (i.e., how deep the stomata are
inserted in the leaf epidermis). Under Cd stress, the stomata
guard cells were affected more in native plants than in invasive
plants. Additionally, Cd stress decreased stomatal length and
width in invasive and native plants, although the decrease in both
these parameters was greater in native plants than in invasive
plants (Figure 5). These results demonstrate that themorphology
of epidermal and guard cells changes under Cd stress, which
increases stomatal density but decreases stomatal length, width,
and area.

Effects of Cd Stress on the Physiological
Parameters of Invasive and Native Plants
Under Cd stress, the leaf chlorophyll and flavonoid contents of
invasive species were significantly higher than those of native
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FIGURE 2 | Number of leaves (A), number of dead leaves (B) and plant height (C) of invasive and native plants during cadmium (Cd) stress. Control: uncontaminated

soil + native and invasive: Treatment Cd contaminated soil (80 mg/kg) +native and invasive. Error bars depict the SE of the mean of four independent replicates.

TABLE 1 | Two-way ANOVA analysis of effects of Cd stress on leaf functional traits of invasive and native plants.

Effect Leaf area Leaf length Stomatal area

Df F ratio P F ratio P F ratio P

Species 3 17.17 0.001*** 38.60 0.001*** 3.43 0.001***

Cd 1 0.20 0.658ns 10.84 0.001*** 8.33 0.001***

Species*Cd 3 0.72 0.715ns 4.15 0.003* 1.43 0.001***

Effect Stomatal length Stomatal width Stomatal density

Df F ratio P F ratio P F ratio P

Species 3 2.63 0.001*** 1.33 0.001*** 4.23 0.001***

Cd 1 6.73 0.001*** 2.82 0.001*** 0.56 0.456ns

Species*Cd 3 4.81 0.001*** 7.33 0.001*** 0.40 0.94ns

Cd, cadmium Significant effects are indicated in boldface as follows: ***p ≤ 0.001, *p ≤ 0.05. ns: no significance.
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FIGURE 3 | Stomatal density (A), stomatal length (B), stomatal width (C), and stomatal area (D) of the invasive and native plants in response to cadmium (Cd). Values

are means ± standard error (SE).

species after 4 weeks, although the NBI showed a significant
difference between the two groups of plant species. We also
investigated the effects of Cd stress on the leaf chlorophyll
content of invasive and native species at different time points. The
results showed that chlorophyll content of both plant groups was
lower under Cd stress than under control conditions at different
time points (1–7 weeks; Figure 6A). At 2–3 weeks, chlorophyll
content showed a greater reduction in native species than in
invasive species. The chlorophyll content of invasive and native
plant species was significantly lower under Cd stress than under
control conditions. Under Cd stress, the flavonoid contents of
invasive and native plants increased dramatically from 1 to 7
weeks. The flavonoid content of invasive species was higher
under Cd stress than in the control treatment and was higher

than that of native plants under both Cd stress and control
conditions (Figure 6B). The NBI values of invasive and native
plants fluctuated during the experimental period. The NBI values
of Cd-treated plants were lower than those of control samples.
During week 1, the NBI values showed no significant difference
among treatments. Fromweeks 2–7, the NBI values of Cd-treated
native and invasive plants were lower than those of their control
counterparts. However, the NBI values of invasive species were
significantly higher than those of native species at some time
points, particularly during weeks 3 and 4 (Figure 6C). These
findings suggest that Cd stress decreased the chlorophyll content
and NBI values of both invasive and native plant groups but had a
greater negative impact on the flavonoid content of native species
than that of invasive species.
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FIGURE 4 | Leaf area (A) and leaf length (B) of the invasive and native plants in response to cadmium (Cd). Values are means ± standard error (SE).

FIGURE 5 | Morphology of the abaxial leaf (A–D) and structure of the guard cells on abaxial surface (E–H) of the invasive (Paspalum dilatatum) and native plant

(Pennisetum alopecuroides) in control and Cd stress treatments. Images were taken by light microscope for stomatal density with 50-µm scale and for guard cells

with 20-µm scale.

Effects of Cd Stress on the Fluorescence
Parameters of Invasive and Native Plants
The chlorophyll fluorescence parameters of native
and invasive plants decreased under Cd stress; the

only exceptions were 8PSII and qP, which increased
under Cd stress. The values of fluorescence parameters
were higher in invasive species than natives under
Cd stress.
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FIGURE 6 | Effect of cadmium (Cd) on chlorophyll content (A), flavonoids content (B) and NBI (C) of leaves in invasive and native plants during stress conditions.

Control: uncontaminated soil + native and invasive plants: Treatment Cd contaminated soil (80 mg/kg) +native and invasive. Error bars depict the SE of the mean of

four independent replicates.

Effects on Chlorophyll Fluorescence Parameters
Chlorophyll fluorescence parameters of invasive and native
plants were significantly affected by Cd stress (Figures 7A,B).
Values of Ft in invasive and native plants were lower under
Cd stress than under control conditions. The F0 values
of invasive and native plants were similar in the control
treatment and decreased in the Cd treatment; however, the
magnitude of reduction was greater in invasive plants than in
native plants. Under Cd stress conditions, values of Fv′/Fm′

and Fv/Fm decreased in both plants, whereas the higher
decrement was found in native plants than in invasive plants
(Figures 7C,D). This finding shows that invasive plants exhibit
greater photosynthetic efficiency than native plants under
Cd stress.

Effect on Photochemical and Non-Photochemical

Chlorophyll Fluorescence Parameters
Values of 8PSII and Fv/Fm of invasive and native plants were
lower under Cd stress than under control conditions. Both

parameters showed a greater decline in native plants than in
invasive plants under Cd stress (Figures 8A–C). In comparison,
an improvement in Cd treatment in both plant species was
identified in the proportion of open photosystem II, and a further
increase was detected in invasive plants simultaneously. These
findings suggest that the chlorophyll fluorescence parameters of
native plants are more negatively affected by Cd stress than those
of invasive plants.

Correlation Between the Chlorophyll Fluorescence

Parameters of Native and Invasive Plants
The photochemical and non-photochemical chlorophyll
fluorescence parameters, including Fv′/Fm′-NPQ, Fv/Fm-QN,
and NPQ-QN, showed significant positive correlations (1,
0.84, and 0.84, respectively) between invasive and native
plants. Additionally, two chlorophyll fluorescence parameters,
F0- 8PSII and Ft- 8PSII qP, showed extremely negative
correlations (−1 and −0.84, respectively) between invasive
and native plants. Thus, the results of correlation analysis
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revealed that some chlorophyll fluorescence parameters
were positively correlated, whereas others were negatively
correlated between invasive and native plants under Cd stress
conditions (Figure 9).

Response of Leaf Functional Traits of
Invasive and Native Plants to Cd Stress
The exposure of invasive and native plants to Cd stress in
greenhouse experiments resulted in a significant change in
stomatal and leaf traits (Table 2). The leaf area of invasive
species, Pennisetum purpureum schum (13.977 ± 0.970 cm2)
and Paspalum dilatatum (6.229 ± 0.459 cm2), was greater

FIGURE 7 | Changes in chlorophyll fluorescence parameters in young-mature

(i.e., just after reaching their final size) leaves of invasive and native plants

during long term stress and acclimation in response to cadmium (Cd)

treatment (A) Ft, ground fluorescence in the light-adapted state (B) F0, ground

fluorescence in the dark-adapted (C) Fv
′/Fm

′, maximum chlorophyll

fluorescence in the light-adapted (D) Fv/Fm maximum chlorophyll fluorescence

in the dark-adapted state. Values are means ± standard error (SE). Notes, 0,

control 80, Cd concentration mg/kg.

than that of native species, Pennisetum alopecuroides (5.745
± 0.577 cm2) and Paspalum distichum (3.879 ± 0.372 cm2).
The leaf length of Pennisetum purpureum was the highest
(28.150 ± 1.488 cm), while that of Paspalum distichum was the
lowest (6.133 ± 1.484 cm). Similarly, P. purpureum showed the
highest stomatal area (1.59 ± 0.120 mm2), and P. distichum
showed the lowest leaf area (0.8713 ± 0.122 mm2). By contrast,
stomatal density was the highest in P. distichum (48.167 ±

5.954 mm2) and the lowest in P. dilatatum (24.500 ± 5.549
mm2). The highest stomatal length and width (1.7110 ±

0.077 and 0.9180 ± 0.0301mm, respectively) were observed
in P. purpureum. In contrast, the lowest values of stomatal
length (1.393 ± 0.077) and width (0.670 ± 0.040mm) were
observed in P. alopecuroides and P. distichum, respectively.
Overall, all leaf functional traits of the two invasive plant
species were higher than those of the two native plant species,
except stomatal density. This suggests that invasive plants
showed better adaptation to metalliferous conditions than
native plants.

Cd Bioaccumulation and Translocation in
Different Organs of Invasive and Native
Plants
Invasive plant species contained a significantly higher
concentration of Cd in all three organs (leaf, stem, and
root) and showed higher transfer factor and shoot and root BCFs
than natives, indicating that invasive species are potential Cd
hyperaccumulators. Moreover, invasive plants accumulated a
higher level of PPO to adapt to Cd stress than natives. At the end
of the Cd treatment, the leaf Cd concentration of invasive plants
was higher (97.62 ± 6.02 mg−1) than that of native plants (33.72
± 3.9 mg−1) (Figure 10A). Similarly, the stem and root tissues of
invasive species contained more Cd (194.20 ± 11.16 and 334.43
± 17.44 mg−1, respectively) than those of native plants (118.67
± 9.09 and 257.46 ± 21.35 mg−1, respectively) (Figures 10B,C).
Surprisingly, the highest difference in Cd concentration between

FIGURE 8 | Changes in chlorophyll fluorescence parameters in young-mature (i.e., just after reaching their final size) leaves of invasive and native plants during stress

and long-term acclimation in response to cadmium (Cd) treatments (A) 8PSII quantum yield of photosystem II (B) 8PSII qP proportion of open photosystem II (C)

8PSII Fv/Fm maximum quantum yield of photosystem II. Values are means ± standard error (SE).
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FIGURE 9 | Correlation matrix of chlorophyll fluorescence parameters in young-mature leaves of invasive and native plant species, the labels were similar in Table 1.

The colored gradient legends represent coefficients of correlation r values from +1.0 (green) to −1.0 (red). The significant correlation at a level (p*** < 0.001), (p** <

0.001), (P* < 0.05). All coefficients were computed by the Pearson correlation for possible pairs of variables in the matrix.

invasive and native plants was found in the leaf compared with
other plant parts (Figure 10).

The shoot BCF of invasive plants (3.64 ± 0.21) was higher
than that of native plants (1.90 ± 0.16) under Cd stress
and decreased with the increase in soil Cd concentration in
both plants (Figure 11A). Similarly, the root BCF and average
transfer factor of invasive species (4.18 ± 0.21 and 0.87 ± 0.08,

respectively) were greater than those of native species (3.21 ±

0.26 and 0.59± 0.05, respectively) (Figures 11B,C). These results
suggest that invasive plant species are either Cd tolerant or
Cd bioaccumulators.

Compared with the control, the Cd stress treatment increased
activity of PPO in the leaf and root tissues of invasive and native
plants. Under Cd stress, PPO enzyme activity in the leaf of

Frontiers in Plant Science | www.frontiersin.org 12 June 2022 | Volume 13 | Article 869072

https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/plant-science#articles


Ilyas et al. Advantages of Leaf Functional Traits for Invasion

TABLE 2 | The effects of Cd stress on leaf functional traits of each invasive and native plant.

Plant species Leaf area Leaf length Stomatal area

CK Cd stress CK Cd stress CK Cd stress

Pennisetum purpureum (invasive) 15.543 ± 0.992a 13.977 ± 0.970a 27.241 ± 1.318a 28.150 ± 1.488a 1.171 ± 0.086ab 1.590 ± 0.120a

Pennisetum alopecuroides (native) 5.245 ± 0.474c 5.745 ± 0.577c 11.757 ± 0.823bc 9.350 ± 1.483c 1.146 ± 0.108ab 1.152 ± 0.1220c

Paspalum dilatatum (invasive) 6.434 ± 0.451b 6.229 ± 0.459b 13.799 ± 1.132b 11.533 ± 1.438b 1.049 ± 0.096b 1.166 ± 0.120b

Paspalum distichum (native) 5.776 ± 0.336c 3.879 ± 0.372d 11.526 ± 1.215bc 6.133 ± 1.484d 1.343 ± 0.109a 0.871 ± 0.122d

Plant species Stomatal density Stomatal length Stomatal width

CK Cd stress CK Cd stress CK Cd stress

Pennistem purpureum (invasive) 50.333 ± 5.373b 44.000 ± 5.949b 1.461 ± 0.047b 1.7110 ± 0.077a 0.832 ± 0.027a 0.918 ± 0.030a

Pennisetum alopecuroides (native) 49.124 ± 4.977b 42.500 ± 5.9549b 1.392 ± 0.034b 1.393 ± 0.077c 0.822 ± 0.019a 0.828 ± 0.030ab

Paspalum dilatatum (invasive) 27.252 ± 1.242c 24.500 ± 5.549c 1.292 ± 0.021c 1.410 ± 0.097b 0.663 ± 0.018c 0.808 ± 0.020ab

Paspalum distichum (native) 62.231 ± 5.551a 48.167 ± 5.954a 1.547 ± 0.053a 1.289 ± 0.079d 0.775 ± 0.019b 0.670 ± 0.040d

Data points are mean ± standard error; different letter was (a, b, c, d) shown as significant differences among different plants were determined by a multiple comparisons Tukey’s test.

FIGURE 10 | Cd (Cadmium) concentrations in leaf (A), stem (B), and root (C) of the two group of invasive and native species under Cd 80 mg/kg level. Values are

means ± standard error (SE).

invasive plants (4.44 ± 0.31) was higher than that in the leaf of
native plants (2.32± 0.19) (Figure 12A). Similarly, PPO enzyme
was active in the invasive plant root (0.85 ± 0.06) which was
higher than that in the native plant root (0.45 ± 0.05) under Cd
stress conditions. Overall, PPO enzyme activity in the leaf and
root tissues of invasive plants was significantly higher than that in
the corresponding tissues of native plants in contaminated soil.
Therefore, this study suggests that invasive plants exhibit more
effective defense against stresses, such as pathogens, HM, and
herbivores, than native plants.

DISCUSSION

Our study showed that Cd stress significantly decreased the leaf
functional traits and altered the physiological parameters of both
groups of plants, which showed a different response to Cd stress.
Overall, invasive plant species showed better growth and higher
adaptation of leaf functional (structural and physiological) traits
to Cd stress than native plants.

Response of Plant Physiological
Parameters to Cd Toxicity
Chlorophyll is an important pigment required for maintaining
plant growth. In this study, we investigated the effects of Cd
toxicity on the chlorophyll content of invasive and native plant
species at different time points for up to 7 weeks. The Cd
treatment significantly decreased the chlorophyll content of
both plant groups compared with the control (Figure 6A). This
result is consistent with a previous study (Qian et al., 2009),
which showed that Cd stress decreased plant chlorophyll and
carotenoid contents because of the inhibitory effect of Cd on
enzymes involved in pigment biosynthesis. Additionally, the
chlorophyll content of leaves decreased significantly upon Cd
application, which is consistent with previous studies showing
that Cd inhibited chlorophyll biosynthesis and induced a form
of senescence (Fang et al., 1998; Nada et al., 2007; Qian et al.,
2009; Gill et al., 2012). Thus, the reduction in chlorophyll
content of leaves indicated that Cd stress is a major factor
responsible for plant injury. In this study, the negative effect
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FIGURE 11 | Shoot BCF (bioconcentration factor) (A), Root BCF (bioconcentration factor) (B), and transfer factor (C), the two group of invasive and native species

under Cd 80 mg/kg level. Values are means ± standard error (SE).

FIGURE 12 | Polyphenol oxidase in leaf (A) and in root (B) in the two group of invasive and native species under Cd 80 mg/kg level. Values are means ± standard

error (SE).

of Cd on leaf chlorophyll content was less in invasive plants
than in native plants, which suggests that invasive plants have
high physiological adaptation to Cd stress. This result was also
in line with the higher Cd accumulation in invasive plants,
particularly in the roots. Similarly, Ageratina adenophora, a
widely invasive plant species, can quickly accumulate Cd in its
roots in metal-contaminated areas (Lux et al., 2011; Dai et al.,
2020). These results indicate that invasive plants exhibit greater
resistance to high Cd levels than native plants. Besides, Cd
serves as a non-biological inducer of flavonoid synthesis in plants
(Ibrahim et al., 2017). Previous research has shown that Cd
present in the soil has amajor impact on the content of flavonoids

in the leaves of Robinia pseudoacacia seedlings, implying that
the effect of Cd on flavonoid biosynthesis is species-specific.
Furthermore, an important association between total flavonoid
and soluble sugar contents in leaves revealed that Cd regulates
the main metabolites and increases the total flavonoid content of
leaves (Zhang et al., 2021). Similarly, flavonoid content increased
dramatically at different time points during the experimental
period (1–7 weeks). However, invasive plant species showed
a greater increment in flavonoid content than native species
(Figure 6B). The effect of Cd on flavonoid synthesis is species-
dependent (Gondor et al., 2014; Zoufan et al., 2020). As a result,
our findings indicate that invasive plant species with higher
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total flavonoid content and activity can endure Cd stress better
than native plant species. Enrichment of HM in the root affects
the accumulation of N, which further alters the NBI (Yadav
et al., 2015). Consistent with this finding, the NBI values of
invasive and native plants were reduced under Cd stress in this
study (Figure 6C). The effect of change in plant photosynthetic
activity on NBI values has been observed at the elevated level of
HM in soil (Chapin III and Eviner, 2003). The NBI values are
closely linked to C and N metabolism, and these nutrients allow
plants to potentially growth and development (Zheng, 2009).
Therefore, these results indicate that NBI can be used to predict
plant growth.

Response of the Leaf Functional Traits of
Invasive and Native Plants to Cd Stress
The height and other morphological characteristics of plants
play the important roles in determining their competitive ability
in stress environments (Gross et al., 2007; Thomson et al.,
2011). Our results showed that invasive plants grew taller than
native plants when exposed to Cd stress (Figure 2C), which
is consistent with the previous studies (Wang et al., 2018a,b).
Greater height may confer a higher competitive ability to
invasive plants for resource acquisition, especially for sunlight,
one of the most important ecological factors required for
plant growth, reproduction, and survival (Meng et al., 2014;
DeMalach et al., 2017). Consequently, invasive plants exhibited
superior functional traits, such as plant height and leaf shape
in a metalliferous environment, which facilitated their spread
and successful invasion. Furthermore, the number of leaves of
invasive and native plants decreased with the increase in Cd
concentration, and native plants showed a greater reduction
in leaf number than invasive plants (Figure 2A). High Cd
concentrations result in brownish or yellowish leaves and dry
shoots, resulting in leaf litter, which is positively associated
with plant biomass production (Gomes et al., 2011; Mirshekali
et al., 2012). In a previous study, high Cd concentration in soil
caused chlorosis, development inhibition, and leaf senescence
(Mohanpuria et al., 2007). Similarly, we observed that high
Cd concentration increased the senescence rates of leaves in
both native and invasive species, although to a greater extent
in native plants than in invasive plants (Figure 2B). Moreover,
Cd stress affected the leaf traits to a greater level in native
plants than in invasive plants (Figures 4A,B). As recorded in
studies on Avena sativa, Hordeum vulgare, Brassica campestris,
and Apium graveolens, high HM content in soil changed the
morphological and functional traits of leaves, reducing plant
growth and biomass (Gross et al., 2007). Additionally, under
HM stress, plants exhibited phytotoxicity symptoms such as
chlorosis, leaf necrosis, and decreased production of plant roots,
stems, and leaves (Bini et al., 2000). Therefore, our results
indicate that leaf traits of invasive plants ensure better survival in
metalliferous conditions compared with native plants (Table 2).
Similarly, invasive plants exhibited superior leaf functional traits
and performed better than native plants under HM stress, which
could accelerate their subsequent invasion ability by improving
resource acquisition (Bai et al., 2020).

Response of the Physiological
Fluorescence Parameters of Invasive and
Native Plants to Cd Stress
Plant growth is commonly inhibited because of reduction
in leaf photosynthetic rate under stress conditions. This
inhibition of photosynthesis is caused by the damage to
chlorophyll fluorescence parameters (Tanyolaç et al., 2007;
Rodríguez-Serrano et al., 2009). In this study, chlorophyll
fluorescence parameters, including Fv′/Fm′ and Fv/Fm, of
invasive and native plant species, were significantly affected
by Cd stress (Figure 7). High foliar Cd concentration
dramatically decreased the chlorophyll fluorescence parameters
in a previous study (Baumann et al., 2009). Consistently,
values of Ft, F0, Fv/Fm, and Fv′/Fm′ decreased significantly
under Cd stress conditions in this study (Figures 7A,D).
Furthermore, previous studies showed that F0 reduced PSII
(photochemical ability) and was correlated with the leaf
chlorophyll content (Calatayud et al., 2006; Fu et al., 2012).
Therefore, a greater decline observed in the chlorophyll
fluorescence parameters of native plants compared with invasive
plants indicates that physiological traits of invasives are tolerant
to Cd stress.

The 8PSII values represent the performance and
photochemistry of plants at different photosynthetic photon
flux density (PPFDs) (Maxwell and Johnson, 2000; Baker
and Rosenqvist, 2004). Fv/Fm, qP, and NPQ have been
extensively used to investigate PSII activities in plants
(Liu et al., 2014). In our study, plants exhibited relatively
low values of Fv/Fm and 8PSII in the Cd treatment,
indicating that electron transfer at the acceptor side of
PSII was impeded under Cd stress. This suggests that Cd
stress causes great damage to the photosynthetic apparatus
in leaves and increases 8PSII and qP (Figures 8A,C).
However, we found that chlorophyll fluorescence parameters
including (Fv′/Fm′ – NPQ), (Fv/Fm – QN), and (NPQ –
QN) were significantly positively correlated under Cd stress,
whereas (F0 – 8PSII) and (Ft – 8PSII qP) were extremely
negatively correlated (Figure 9). Previous studies also reported
negative correlations among qP, NPQ, 8PSII, and NPQ
(Massacci et al., 2008; Fu et al., 2012). Our results are
consistent with a previous study on cucumber (Jin et al.,
2017). Moreover, the reduction in NPQ and QN values,
accompanied by an increase in 8PSII and qP values, in
the Cd stress treatment was in line with the results of
a previous study (Gururani et al., 2015). This approach
could be used to increase the photochemical competence
of plants and protect them from photo-oxidation under
stress conditions. Therefore, our results indicate that the
photosynthetic parameters of plants are severely affected by
Cd stress.

Response of the Morphological and
Structural Traits of Invasive and Native
Plants to Cd Stress
Cd stress had a significant effect on stomatal traits, i.e., stomatal
area, length, and width (p ≤ 0.001) (Table 1). Previous research
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has shown that plants in metalliferous environments have less
stomatal areas than those in non-metalliferous environments
(Khosropour et al., 2019). We found that the stomatal traits
of invasive and native species were negatively affected by Cd
stress, although invasive plants showed a better response than
native plants (Figure 3). The greater decline in the stomatal
density and stomatal area of native plants indicates that the
development and growth of stomata were affected to a greater
extent in native plants than in invasive plants in metalliferous
environments (Dineva, 2004). Additionally, in contaminated
environments, changes in stomatal traits and structure have
been reported in various plant species (Ghouse et al., 1980;
Baruah et al., 2014). Stomatal length was found to be negatively
linked to increasing stress exposure in a recent study (Aasamaa
et al., 2001). In this study, both native and invasive plant
groups showed a clear increment in stomatal density under
Cd stress, although the increase in stomatal density was
greater in native than in invasive plants (Figure 5). This result
demonstrates that contamination levels alter stomatal density
as an adaptation (Verma et al., 2006; Shiv and Ila, 2014).
Moreover, previous studies demonstrated that stomatal density
increased whereas the length and width of stomata decreased
under HM contamination (Alves et al., 2008; Gostin, 2009).
Therefore, this study results suggest that the morphological
structure of epidermal cells and guard cells changes under
Cd stress.

Cd Bioaccumulation and Translocation in
Invasive and Native Plants
Our results suggest that invasive species could potentially be
used for the phytoremediation of Cd-contaminated soil. Invasive
plants showed high bioaccumulation of Cd (Figure 10) and
high shoot BCF, root BCF, and transfer factor (Figure 11). The
high shoot and root BCFs are the two important indicators
that reflect the pertinence of species for phytoremediation.
The transfer factor shows the competence of plants to transfer
HM from belowground organs to aboveground plant parts
(Marques et al., 2009; Rascio and Navari-Izzo, 2011). However,
in previous studies, plant species with shoot BCF and transfer
factor > 1 have been accepted as HM hyperaccumulators. In
our study, invasive plants exhibited greater BCF and transfer
factors than natives. The shoot and root BCF were 3.64
for invasive plants and 1.90 for native plants, whereas the
transfer factor values were 0.87 and 0.59 for invasive and
native species, respectively (Figure 11). The shoot and root
BCF were greater than the commonly recognized threshold
(Marques et al., 2009; Ali B. et al., 2013). Additionally, higher
PPO activity in invasive plant species suggest that plants
exhibit great defense in response to Cd stress (Figure 12).
Similarly, in a previous study, Salicornia plants were found
to be more resistant to HM stress than other plants based
on the PPO activity (Adamski et al., 2012; Khalilzadeh et al.,
2020). These results suggest that invasive plant species are more
effective in bioaccumulating and translocating Cd and avoiding
Cd stress.

CONCLUSION

This study revealed that invasive plant species could be employed
as potential Cd hyperaccumulators as they had higher Cd
levels in all three plant parts (leaf, stem, and root) and
showed higher shoot and root BCF than native plant species.
Similarly, the increased activity of PPO in invasive plants may
comprise the adaptive defense system against Cd toxicity, which
shows that invasive plants are hyperaccumulators of HMs and
more resistant to metalliferous conditions. The quantifiable leaf
functional traits of invasive plants were significantly higher
than that of native plants under Cd stress which indicates
that invasive plants can spread further as their ability to
capture resources increases. This is particularly true as they
have more access to sunlight and soil nutrients as the length
of the plant parts shows increasing trend both in root and
shoot system. Furthermore, chlorophyll fluorescence parameters
provide additional insights into the responses of invasive and
native plants to HM and can identify a variety of conditions
suitable for the partial reversal of photo-inhibitory damage.
However, native plants showed a greater decline in chlorophyll
fluorescence parameters than invasive plants. This implies that
elevated Cd concentrations reduce the photosynthetic ability of
native plants and impact their physiological and biochemical
processes. We conclude that invasive plants grow better and
show greater adaptation to metalliferous environments than
native plants. Based on our results, we propose that Pennisetum
purpureum and Paspalum dilatatum are the bioaccumulators of
Cd and can be recommended for plantation in Cd-contaminated
soil. Our study further emphasizes that the potential invasion
by alien plants in contaminated soil environments is occurring
within the introduced range. Therefore, alien non-invasive plants
and native plants should be recommended to facilitate land
phytoremediation in contaminated environments.
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