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The blood-brain barrier (BBB) is a selective and semipermeable boundary that maintains
homeostasis inside the central nervous system (CNS). The BBB permeability of
compounds is an important consideration during CNS-acting drug development and
is difficult to formulate in a succinct manner. Clinical experiments are the most
accurate method of measuring BBB permeability. However, they are time taking and
labor-intensive. Therefore, numerous efforts have been made to predict the BBB
permeability of compounds using computational methods. However, the accuracy of
BBB permeability prediction models has always been an issue. To improve the accuracy
of the BBB permeability prediction, we applied deep learning and machine learning
algorithms to a dataset of 3,605 diverse compounds. Each compound was encoded
with 1,917 features containing 1,444 physicochemical (1D and 2D) properties, 166
molecular access system fingerprints (MACCS), and 307 substructure fingerprints.
The prediction performance metrics of the developed models were compared and
analyzed. The prediction accuracy of the deep neural network (DNN), one-dimensional
convolutional neural network, and convolutional neural network by transfer learning
was found to be 98.07, 97.44, and 97.61%, respectively. The best performing DNN-
based model was selected for the development of the “DeePred-BBB” model, which
can predict the BBB permeability of compounds using their simplified molecular input
line entry system (SMILES) notations. It could be useful in the screening of compounds
based on their BBB permeability at the preliminary stages of drug development. The
DeePred-BBB is made available at https://github.com/12rajnish/DeePred-BBB.

Keywords: blood-brain barrier, convolutional neural network, deep learning, machine learning, prediction, CNS-
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INTRODUCTION

Neurological diseases are among the most predominant health
issues, with an approximately 28% prevalence in all age groups
of patients (Menken et al., 2000). Despite a decrease in
communicable neurological diseases, the number of deaths
due to neurological diseases has increased to 39% in the last
three decades (Feigin et al., 2020). This substantial increase
in the absolute number of patients indicates that available
therapeutics are scarce to prevent and manage neurological
diseases in the current changing global demography. Therefore,
it is imperative to find novel and effective therapeutics to target
the central nervous system (CNS) to meet the challenges of the
ever-increasing absolute number of patients with neurological
diseases. An alternative method targeting the molecular and
signaling mechanisms at BBB rather than the traditional
approaches has become the recent trend in drug target validation
(Salman et al., 2022). Drugs must cross the blood-brain barrier
(BBB) to act on the CNS. There is a higher attrition rate of drug
candidates failing in clinical research due to non-permeability
to the BBB compared to potency issues (Dieterich et al., 2003;
Pardridge, 2005; Saunders et al., 2014; Hendricks et al., 2015). The
BBB is a semipermeable and selective boundary that maintains
the steady state of the CNS by protecting it from external
compounds (98%) (Figure 1; Pardridge, 2002). As drugs need
to enter the CNS to impart therapeutic activity, it becomes
crucial to determine BBB permeability during the initial stages of
CNS-acting drug design and development (Daneman, 2015; van
Tellingen et al., 2015; Saxena et al., 2019).

The BBB separates the CNS from the bloodstream, preventing
contagions from invading the brain. Brain endothelial cells,
astrocytes, neurons, and pericytes are four major components
of the BBB. The largest constituent of the BBB is a layer
containing brain endothelial cells, which serve as the first line
of defense from the CNS surroundings. Endothelial cells are
connected with tight junctions and adherence junctions, which
create a strong barrier, restricting pinocytosis and decreasing
vesicle-facilitated transcellular transport (Reese and Karnovsky,
1967; Tietz and Engelhardt, 2015). The BBB not only acts as a
physical barrier but also serves as a metabolic barrier, transport
interface, and secretory layer (Abbott et al., 2006; Rhea and Banks,
2019). Neurons reside very close to brain capillaries and play a
vital role in maintaining ion balance in the local environment
(Schlageter et al., 1999).

Clinical experiments to determine the BBB permeability of
compounds are accurate; however, they are time-consuming and
labor-intensive (Bickel, 2005; Massey et al., 2020; Schidlowski
et al., 2020). Additionally, it is difficult to perform clinical
experiments with diverse types of drug candidates (Main et al.,
2018; Mi et al., 2020). Therefore, it is crucial to predict and
forecast BBB permeability using computational algorithms or
in vitro BBB mimics to elucidate the permeability of compounds
across the BBB (Gupta et al., 2019). There have been numerous
attempts to predict the BBB permeability of compounds since
the advent of artificial intelligence (AI), primarily using machine
learning (ML) algorithms such as support vector machines
(SVMs), artificial neural networks (ANNs), k-nearest neighbors

(kNNs), naïve Bayes (NB), and random forests (RFs) (Doniger
et al., 2002; Zhang et al., 2008, 2015; Suenderhauf et al.,
2012; Khan et al., 2018). In addition to above, some future
directions of BBB permeability also seem promising such as
application of humanized self-organized models, organoids, 3D
cultures and human microvessel-on-a-chip platforms especially
those which are amenable for advanced imaging such as
transmission electron microscope and expansion microscopy
since they enable real-time monitoring of BBB permeability
(Wevers et al., 2018; Salman et al., 2020). BBB permeability
prediction models developed using AI algorithms can further
be assisted with the high throughput screening (Aldewachi
et al., 2021), computer aided drug designing (Salman et al.,
2021), and knowledge based rules, e.g., Lipinski rule of five
(hydrogen bond donor ≤ 5, hydrogen bond acceptor ≤ 10,
molecular weight≤ 500, CLogP≤ 5), Veber rule (rotatable bonds
count ≤ 10, polar surface area ≤ 140), BBB rule (hydrogen
bond = 8–10, molecular weight = 400–500, no acids), etc., to
screen potential drug candidates with desirable end-point for
prevention, mitigation and cure of neurological disorders (Veber
et al., 2002; Banks, 2009; Benet et al., 2016).

In an attempt to develop the BBB permeability prediction
model, Jiang et al. (2016) applied SVM with a radial basis function
(RBF) kernel (Jiang et al., 2016). They used a dataset of 1,562
compounds containing 694 BBB permeable (BBB++) and 868
BBB non-permeable (BBB-) compounds. The overall accuracy,
sensitivity, and specificity were reported to be more than 85%.
The next year, Castillo-Garit et al. (2017) used the decision
tree algorithm on 581 compounds and found that the BBB
permeability prediction accuracy increased by 2.93% (Castillo-
Garit et al., 2017). However, this study was performed on a
much smaller dataset than Jiang et al.’s study. In another study,
Yuan et al. (2018) developed SVM-based BBB prediction model
using a larger dataset of 1,990 compounds with a prediction
accuracy of 93.96% (Yuan et al., 2018). The sensitivity and
specificity of the model were reported to be 94.3 and 91.0%,
respectively. In the same year, Wang et al. (2018) applied SVM
and kNN algorithms using 2,358 compounds (Wang et al.,
2018). The prediction accuracy of the best-performing model
was found to be 2.64% higher than that of the Yuan et al.
(2018) prediction model. However, the model lagged in terms
of sensitivity (0.925) and specificity (0.899). The next year,
Miao et al. (2019) applied a deep learning (DL) algorithm
to 462 compounds. The accuracy of the model was reported
to be 97%, with decent AUC (0.98) and F1 scores (0.92).
However, the dataset used for the DL study was very small
compared to the earlier ML-based models for BBB prediction.
Recently, Alsenan et al. (2020) proposed a recurrent neural
network (RNN) algorithm-based model using 2,342 compounds
for the prediction of BBB permeability (Alsenan et al., 2020).
The developed model had better performance metrics with an
accuracy, sensitivity, and specificity of 96.53, 94.91, and 98.09%,
respectively. The Matthews correlation coefficient (MCC) (93.14)
and area under the curve (AUC) (98.6) of the prediction were
also found to be satisfactory. In another study, Shaker et al.
(2020) applied a light gradient boosting machine algorithm
to a dataset of 7,162 compounds for the prediction of BBB
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FIGURE 1 | The BBB and its permeability mechanism (Saxena et al., 2021).

permeability (Shaker et al., 2020). Although the study involved
a very large dataset compared to previously reported studies,
the model’s accuracy was reported to be 90%, which was
approximately 6.5% less than the BBB permeability prediction
model proposed by Alsenan et al. (2020). In the same year,
Singh et al. (2020) used random forest, multilayer perceptron,
and sequential minimal optimization using 605 compounds to
develop the BBB permeability prediction model (Singh et al.,
2020). Upon validation of the developed model using 1,566
compounds, the prediction accuracy was found to be 86.5% only.
Very recently, Saxena et al. (2021) proposed an ML-based BBB

permeability prediction model using 1,978 compounds (Saxena
et al., 2021). The study group found that SVM with the RBF
kernel yielded an accuracy of 96.77% with AUC and F1 score
values of 0.964 and 0.975, respectively, which outperformed
the kNN, random forest, and naïve Bayes algorithms in the
prediction of BBB permeability on the same dataset.

The major challenge while applying ML algorithms is selecting
optimal features to develop predictive models based on labeled
BBB permeability datasets (Hu et al., 2019; Salmanpour et al.,
2020). To overcome this challenge, we applied DL algorithms and
compared their performance with traditional ML algorithms.
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MATERIALS AND METHODS

Data Collection
A total of 3,971 compounds with BBB permeability classes were
collected from Zhao et al. (2007); Shen et al. (2010), and Roy et al.
(2019). The PubChem database1 was used to retrieve available
PubChem IDs of the collected compounds. The collected datasets
were checked to remove redundant compounds. After careful
curation, we obtained a dataset of 3,605 non-redundant clean
compounds containing 2,607 BBB permeable and 998 BBB non-
permeable compounds (Table 1 and Supplementary File). The
class labels for BBB non-permeable and permeable compounds
were kept as “0” and “1,” respectively.

Feature Calculation
Three types of feature sets viz. physicochemical properties,
molecular access system (MACCS) fingerprints and substructure
fingerprints were used in this study. Physicochemical properties
contain different types of physical and chemical information
encoded in a compound, e.g., molecular weight, molecular
volume, solubility, partition coefficient, etc. The molecular
fingerprints are fixed-length vectors that indicate the
presence/absence of an atom type or functional group in a
compound. All features were calculated by open-source PaDel
(Yap, 2011). Each compound was encoded with 1,917 features
containing 1,444 physicochemical (1D and 2D) properties, 166
MACCS, and 307 substructure fingerprints. This feature set was
used for the ML, DNN, and CNN-1D algorithms using Keras
framework. For CNN-VGG16, the Python package RDKit was
used to generate the structure images of the compounds using
their Simplified molecular input line entry system (SMILES)
notations (Lovrić et al., 2019; Bento et al., 2020). The Python
package RDKit is a collection of ML and cheminformatic
software and contains functions to modify chemical compounds.
The RDKit package was used to generate 2D images of size 300 ∗
300 pixels (RGB) from SMILES notations of compounds. RDKit-
generated images contain different colors to express the chemical
information viz. carbon = black, oxygen = red, nitrogen = blue,
sulfur = yellow, chlorine = green, and phosphorous = orange.
Images generated by RDKit always fit the entire molecule, so
there was no issue with different molecular sizes. The dataset was
split into training and test sets at a ratio of 3:1. The test set was
separated from the training set to avoid any bias (Table 2). To
handle the data imbalance, we have already applied cost-sensitive

1https://pubchem.ncbi.nlm.nih.gov/

TABLE 1 | The final dataset and its distribution.

Dataset BBB permeable
compounds

BBB non-permeable
compounds

Total

Roy et al. (2019) 819 366 1,185

Zhao et al. (2007) 1,398 393 1,791

Shen et al. (2010) 390 239 629

Total 2,607 998 3,605

TABLE 2 | Distribution of the dataset in the training and test sets.

Dataset BBB permeable
compounds

BBB non-permeable
compounds

Total

Training set 1,955 749 2,704

Test set 652 249 901

Total 2,607 998 3,605

augmentation via the class_weight argument on the fit() function
when training models.

Development of Prediction Models
In this study, ML-based algorithms (SVM, kNN, RF, and
NB) and DL-based algorithms DNN, CNN-1D were developed
using keras framework with libraries; python, numpy, pandas,
keras, and tensorflow on Anaconda 3–5.2. CNN (VGG16)
was implemented using transfer learning through cloud-based
computational resource of Google Colaboratory to develop
prediction models for the BBB permeability of the compounds.
Based on the performance of the generated prediction models, the
DNN-based “DeePred-BBB” is proposed for BBB permeability
prediction. DeePred-BBB performance was compared with ML
algorithms viz. SVM, NB, kNN, RF, and DL algorithms CNN-1D
and CNN (VGG16).

Machine Learning-Based Models
Support vector machine with four different kernels (RBF,
polynomial, sigmoid, and linear), NB, kNN, and RF were
applied to the training set of 2,704 compounds and tested with
an independent set of 901 compounds. Principal component
analysis (PCA) (Giuliani, 2017) was used for feature reduction.
The component range (10, 20, 30, 40, 50, and 100) was used to
find the best prediction accuracy for each applied ML algorithm.
Tenfold cross-validation was applied to evaluate the efficacy of
the model during training.

Support Vector Machine
Support vector machine is among the robust ML algorithms
used for classification and regression (Ghandi et al., 2014;
Gaudillo et al., 2019). It searches for the optimal hyperplane
with maximized margins using support vectors for classification
(Ben-Hur et al., 2008). This algorithm plots the data to the
N-dimensional feature space and finds a hyperplane (2.x+ b = 0)
to classify the data sets with minimized loss using the hinge loss
function. The loss function is given in Eq. 1.

(θ, b) = arg min
2,b

∑
x∈X

[
1− y

(
2.x+ b

)]
+ λ| |2| |2 (1)

Support vector machine was applied using kernels to map the
data to higher dimensions to linearly classify the data (Kumar
et al., 2011). A penalty parameter “C” (Cost NAÏVE) adjusts
the balance between training errors and forcing rigid margins.
Another parameter, “γ,” regulates the kernel function amplitude
(Kumar et al., 2018). Various values of C (1, 5, 10, 50, 90) and γ

(0.0001, 0.0005, 0.001, 0.005, 0.01, 0.05) were tested to find the
best combination. An optimized combination of C and γ was
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used for each SVM kernel (RBF, C = 10, γ = 0.005; polynomial,
C = 1, γ = 0.005; sigmoid C = 90, γ = 0.0005; linear, C = 1,
γ = 0.05). For the polynomial kernel, 2–6 values of degree (d) were
applied and evaluated. The best performance of the polynomial
kernel was found at d = 3.

Naïve Bayes
The naïve Bayes algorithm is based on the Bayes theorem.
It is a probabilistic method that works on the assumption
of class conditional independence (Eq. 2) (Shen et al., 2019).
Each feature present in a class is independent and individually
contributes to the probability with nil dependency on other
features (Wang et al., 2021a). It is fast, readily manages a
large dataset, and generally produces better results than other
classification techniques when features existing in a class are
independent.

P (X | Y) =
P (Y | X) P (X)

P (Y)
(2)

where P(X|Y) is the posterior probability of X (class) for a given
Y (feature), P(Y|X) is the likelihood, P(X) is the prior probability
of class X, and P(Y) is the marginal probability of feature Y.

k-Nearest Neighbor
k-nearest neighbor is a simple and non-parametric classifier that
assumes that nearby data points are similar and tend to have
similar classes. Feature similarity is used to find the class label of
a new data instance. It commonly uses Euclidean distance to find
the closeness of the data points, and depending upon the class
matching with considered k-points, the class labels are decided
(Sharma et al., 2021). Here, k is the number of neighbors. The
Euclidean distance between data points x (x1, x2, x3) and y (y1,
y2, y3) is calculated using Eq. 3.

d
(
x, y

)
=

√((
x1 − y1

)2
+
(
x2 − y2

)2
+
(
x3 − y3

)2
)

(3)

To determine the optimal k, a range of k-values (1–10) was
evaluated. The best-performing prediction model at k = 3 was
selected for further analysis.

Random Forest
Random forest uses ensemble learning to create a collection of
decision trees (forest) that run concurrently and classify data
instances (Yao et al., 2020). Tree construction is performed
using arbitrary input vectors and node division on arbitrary
feature subsets. Each tree of the RF predicts a certain class, and
depending upon the highest votes, the final class label is predicted
(Yang et al., 2020). In the current study, the developed prediction
models were tested with variable trees in a forest (4, 8, 12, 32, 64).
Each decision tree’s various depths (2–5) and estimators (5, 10, 20,
30, 40) were tested to find the best performing prediction model.

Deep Learning-Based Models
Deep learning algorithms use multiple neurons and hidden
layers to extract high-level functions from input data. The major
advantage of DL algorithms is their inherent property of selecting
the most relevant features from the training dataset. Therefore,

unlike ML algorithms, separate feature selection algorithms are
not required (Isensee et al., 2021). In this study, three DL
algorithms, DNN, CNN-1D, and CNN-VGG16, were applied.
The tenfold cross-validation method was used to assess the
model’s efficiency while training. The training dataset was further
divided into ten subsets, iteratively training models using all
subsets except one held out to test the performance.

Deep Neural Network
For DNN, 2,704 compounds, each encoded with 1,917
features (1,444 physicochemical properties, 166 MACCS,
and 307 substructure fingerprints), were used to develop BBB
permeability prediction models. Initial layers receive compounds
encoded with feature vectors and subject them to the hidden
layers. These hidden layers obtain the relevant information
from the input vectors and project the freshly extracted features
to the batch normalization layer. This layer increases the
training process by reducing the intradata covariance. Dropout
layers were applied to reduce the problem of coadaptation of
neurons and overfitting (Baldi and Sadowski, 2014). These layers
randomly drop the nodes as per the dropout rate. Rectified linear
unit (ReLU) activation function was used, which adaptively
transforms rectifier parameters. Furthermore, ReLU transforms
the neuronal output by mapping it to the highest possible value
or zero (if the value is negative) (Wang et al., 2021b). ReLU
function is given in Eq. 4.

F(xi) = max(0, xi) (4)

where xi is input for activation function f on channel “i.”
The “softmax” activation function was applied on the output

layer to map the hidden layer output between 0 to 1 intervals.
The Adam optimizer was used to minimize the loss value from
the cross-entropy cost function.

The network performance of a DNN depends upon its depth
and breadth. Therefore, it is vital to determine the optimal depth
and breadth and optimize other parameters, e.g., the learning
rate and dropout ratio. To achieve this, we kept other parameters
fixed and evaluated the prediction accuracy by varying the
hidden layers (K = 1–5) and neurons (100, 200, 300, 500,
800 neurons per layer). The DNNs were also simultaneously
evaluated for five dropout ratios (0.1, 0.2, 0.3, 0.4, 0.5), and
prediction accuracy was evaluated. Furthermore, various network
configurations were evaluated for epochs (100, 200, 400, 500,
800) and learning rates (0.0001, 0.0002, 0.0003, 0.001, 0.002,
0.003) optimization. Table 3 summarizes the explored values of
hyperparameters for the development of the DNN-based BBB
permeability prediction model.

TABLE 3 | Hyperparameter values explored for the DNN model.

Parameter Values

Number of hidden layers 1–5

Number of neurons 100, 200, 300, 500, 800

Dropout ratio 0.1, 0.2, 0.3, 0.4, 0.5

Learning rate 0.0001, 0.0002, 0.0003, 0.001, 0.002, 0.003

Epochs 100, 200, 400, 500, 800
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Convolutional Neural Network-1 Dimension (CNN-1D)
CNN is a particular type of DL that is widely used for image data
classification (LeCun et al., 2015). There are three major layers
in the CNN: convolutional, pooling, and fully connected layers.
Cube-shaped weights and multiple filters (kernels) are applied in
the convolutional layers to extract features and develop feature
maps from the images (Esteva et al., 2017; Malik et al., 2021;
Shan et al., 2021). The filter size may downsample the outputs;
therefore, the size and number of kernels are vital (D’souza et al.,
2020). To overcome the issue of downsampling, an optimized
padding value is applied, which allows the filter kernels to create
feature maps of the input image size.

Furthermore, other parameters of the convolutional layer
also needed to be optimized, e.g., regularization type and
value, activation function, and stride. Pooling layers specifically
perform average or max-pooling in the filter region to lower
the number of parameters and calculations by downsampling
the representations. The fully connected layers flatten the output
prior to the classification and are usually kept at the end. CNNs
are created to process and learn from images. However, CNN-
1D can be applied similarly to one-dimensional data containing
physicochemical properties and fingerprints. We used three
filters (15, 32, 64) to determine the local pattern in the 1,917
features, which were calculated from PaDel. After the CNN layers,
dense layers (1 and 2) were tested for three dropout ratios (0.2,
0.3, 0.5). Table 4 summarizes the explored hyperparameter values
for the development of the CNN-1D model.

Convolutional Neural Network by VGG16 Transfer Learning
(CNN-VGG16)
The CNN processes the input 2D images to distinguish the image
objects by allocating weights and biases. CNN captures temporal
and spatial relationships using the tiny squares of input images
by processing them through a series of convolution layers. Filters
in each convolutional layer skid on the image to find relevant and
specific features, e.g., edge detection, sharpen or blur the image
and produce the feature map. The feature map’s size depends on
filter numbers, filter slide-over pixels, and zero-padding (image
borders are padded with zero). The 2D-array values of the
feature map were subjected to the individual layer activation
function (ReLU). Dimensionality reduction of each feature map
is processed using pooling without any loss of information. The
pooling layer’s output is sent into fully connected layers, which
classify the images. The CNN with transfer learning (VGG16)
was used in this study using RDKit-generated images. The images
were scaled to a pixel size of 128 ∗ 128 to develop and validate the
BBB permeability prediction model.

TABLE 4 | Explored hyperparameter values for the CNN-1D model.

Parameter Values

Number of filters 15, 32, 64

Number of dense layers 1, 2

Dropout ratio 0.2, 0.3, 0.4

Learning rate 0.0001, 0.0002, 0.0003, 0.001, 0.002, 0.003

Epochs 100, 200, 400, 500, 600

Furthermore, image data argumentation was performed by
randomly zooming (up to 10%) and flipping the images.
The CNN (VGG16) hyperparameters are given in Table 5.
The developed model was tested with an independent test
set consisting of 901 images. Figure 2 depicts the adopted
methodology to develop the DL-based prediction models.

RESULTS AND DISCUSSION

The performance metrics of the ten developed models (ML = 7,
DL = 3) for BBB permeability prediction were compared
to determine the best-performing model. The performance
indicators used in this study were area under the curve (AUC),
area under the precision-recall curve (AUPRC), average precision
(AP), F1 score and accuracy, and Hamming distance (HD) of the
prediction models. Among the developed ML prediction models,
the SVM (RBF kernel)-based prediction model outperformed the
NB, kNN, and RF algorithms for BBB permeability prediction
with test set data. The accuracy of SVM (RBF) was found
to be approximately 6% higher than that of NB and RF and
approximately 1% higher than that of kNN. Moreover, SVM
(RBF) yielded better prediction values of other performance
indicators in BBB permeability prediction on the given dataset.
However, the performance metrics of SVM (polynomial) at
degree 3 were found to be very comparable to the SVM (RBF).

The performance metrics of the DL algorithms were found
to be very close to each other. The prediction accuracies of
DNN, CNN-1D, and CNN (VGG16) were 98.07, 97.44, and 97.66,
respectively. However, the DNN model was superior in AUC,
AUPRC, AP, F1, and HD when compared to that of CNN-1D and
CNN (VGG16) (Table 6). The comparison of receiver operating
characteristic (ROC) curves between SVM (RBF), DNN, CNN-
1D, and CNN (VGG16) also indicates the superiority of DNN in
BBB permeability prediction with the given dataset (Figure 3).
Furthermore, the accuracy and loss plots of the DNN model
are given in Figure 4. The accuracy plot shows good coherence
between the training (red) and test (blue) accuracy, suggesting
that the model is not overfitted. Additionally, coherence in
the training (red) and validation/test (blue) loss in the loss
plot (binary cross-entropy loss) is indicative of an unbiased
model (Figure 4).

The better performance of DL algorithms compared to ML
could be due to their ability to handle the large dataset and

TABLE 5 | The hyperparameters for CNN (VGG16).

Parameters VGG16

Convolutional blocks Convolutional layers, Kernel size, Filters, Max-Pooling,
Zero Padding: Predefined

Dense layers 02

Dense layers neurons 150, 104

Dropout ratio 0.5

Learning rate 0.02

Batch size 132

Epochs 800
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FIGURE 2 | Methodology adopted for predicting the BBB permeability of compounds using SMILES notation. The SMILES notations were used to calculate
molecular properties and fingerprints using PaDel. These features were used as input to DNN and CNN-1D to generate the BBB permeability prediction models. The
2D images of compounds were generated using RDkit and fed to the CNN (VGG16) to generate the BBB permeability prediction model.

TABLE 6 | Performance metrics of ML and DL algorithms.

Algorithm AUC AUPRC AP F1 A (%) HD FPR (%) FNR (%)

SVM (RBF) 0.964 0.988 0.975 0.985 96.29 0.022 6.451 0.724

SVM (Polynomial d = 3) 0.948 0.965 0.965 0.98 96.01 0.029 9.756 0.579

SVM (Sigmoid) 0.921 0.971 0.944 0.962 94.45 0.055 13.359 2.519

SVM (Linear) 0.916 0.969 0.938 0.963 94.56 0.054 15.242 1.497

NB 0.844 0.948 0.899 0.935 90.18 0.098 14.543 3.202

kNN (3) 0.927 0.974 0.949 0.968 95.3 0.047 12.891 1.615

RF (3, 20) 0.815 0.943 0.887 0.938 90.29 0.0971 26.666 1.471

DNN 0.992 0.997 0.996 0.987 98.07 0.019 4.048 1.159

CNN-1D 0.969 0.956 0.975 0.983 97.44 0.026 4.118 2.017

CNN (VGG16) 0.972 0.983 0.983 0.946 97.61 0.0804 4.581 2.326

AUC, area under curve; AUPRC, area under precision-recall curve; AP, average precision; F1, F1 score; A, accuracy; HD, hamming distance; FPR, false positive rate;
FNR, false negative rate; SVM, support vector machine; RBF, radial basis function; d, degree; NB, naïve Bayes; kNN, k-nearest neighbor; RF, random forest; DNN,
deep neural network; CNN-1D, convolution neural network-one dimension; CNN (VGG16), convolution neural network- visual geometry group16. Best performing model
(highlighted in bold).

extract the most relevant features of their own. The performance
metrics of DNN, CNN-1D, and CNN (VGG16) were very
comparable. To our surprise, DNN was found to be slightly better

FIGURE 3 | ROCs of the best performing models (CNN, SVM, DNN, and
CNN-1D) and their respective AUCs.

in overall performance based on accuracy and other performance
indicators compared to the CNN models. DNN appears to
be a better option to handle the compounds encoded with
physicochemical and fingerprint features for classifications and
predictions. Based on the overall performance, we selected the
DNN model for the development of “DeePred-BBB.” DeePred-
BBB can predict BBB permeability based on chemical SMILES
notation. It uses PaDel to calculate the features from the SMILES
notation and sends them as input to the DNN model. The output
is either permeable or non-permeable.

Compounds can penetrate the BBB using various different
mechanisms, such as transmembrane diffusion, adsorptive
endocytosis, saturable transporters, and extracellular pathways.
Most drugs in clinical use till date are small, lipid soluble
molecules that cross the BBB by transmembrane diffusion.
The prediction models to determine the mechanism of BBB
permeability require a mechanism-based set of compounds with
their permeability class labels for each mechanism. However,
the current study deals with the prediction of the BBB
permeability of compounds (irrespective of how they penetrate
the BBB) using their SMILES notations. The study holds
limitations in identifying the mechanism by which compounds
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FIGURE 4 | Accuracy and loss plot of the DNN model for the prediction of BBB permeability.

TABLE 7 | Comparative analysis of DeePred-BBB with recently published BBB permeability prediction models.

Algorithm Data set Prediction performance Study group

SVM (RBF) 1,562 compounds (BBB+ = 694, BBB- = 868) >85% accuracy, sensitivity, and specificity Jiang et al., 2016

Decision trees 581 compounds Accuracy = 87.93%, Sensitivity = 86.67%
Specificity = 89.29%

Castillo-Garit et al., 2017

SVM (RBF) 1,990 compounds (BBB permeable = 1,550,
BBB non-permeable = 440)

Accuracy = 93.96%, Sensitivity = 94.3%,
Specificity = 91.0%, MCC = 0.84

Yuan et al., 2018

SVM, kNN 2,358 compounds Accuracy = 96.6%, Sensitivity = 92.5%,
Specificity = 89.9%

Wang et al., 2018; Mi et al.,
2020

DL 462 compounds (BBB permeable = 250, BBB
non-permeable = 212)

Accuracy = 97%, AUC = 0.98, F1 = 0.92 Miao et al., 2019

RNN 2,342 compounds Accuracy = 96.53%, Sensitivity = 94.91%,
Specificity = 98.09%, MCC = 0.931,

AUC = 0.986

Alsenan et al., 2020

Light Gradient Boosting Machine
Algorithm

7,162 compounds (BBB permeable = 5,453
BBB non-permeable = 1,709)

Accuracy = 90%, sensitivity = 85%,
specificity = 94%

Shaker et al., 2020

RF, Multilayer perceptron, Sequential
minimal optimization

605 compounds (training) +1,566 compounds
(validation)

Accuracy = 86.5% Singh et al., 2020

SVM (RBF) 1,978 compounds (BBB permeable = 1,550,
BBB non-permeable = 440)

Accuracy = 96.77%, AUC = 0.964,
F1 = 0.975

Saxena et al., 2021

DNN 3,605 compounds (BBB permeable = 2,704
BBB non-permeable = 901)

Accuracy = 98.07%, AUC = 0.992,
AP = 0.997, F1 = 0.987

Current study

AUC, area under curve; AUPRC, area under precision-recall curve; AP, average precision; BBB, blood brain barrier; DL, deep learning; F1, F1 score; kNN, k-nearest
neighbor; MCC, Matthews correlation coefficient; RBF, radial basis function; RF, random forest; RNN, recurrent neural network; SVM, support vector machine.

are BBB permeable. DeePred-BBB does not take multiple SMILES
notations for prediction. The user needs to input the SMILES
notations of compounds one at a time for accurate prediction
of BBB permeability. A comparison between DeePred-BBB and
previously reported BBB permeability prediction models is given
in Table 7.

CONCLUSION

Deep learning and machine learning algorithms were applied to
a dataset of 3,605 compounds to develop a prediction model
that could accurately predict the BBB permeability of compounds
using their SMILES notations as input. The comparative analysis
of the performance metrics of the developed models suggested

that the overall performance of DNN-based BBB permeability
prediction is better than that of the ML and CNN models. It
was discovered that the notion of “deeper the network, better
the accuracy” does not often hold true. An optimal depth of
the network is required beyond which the performance of the
network does not improve. A DNN model with three layers
(depth) having 200, 100, and 2 nodes each was the most
accurate. It was also observed that in the case of compounds,
the physicochemical properties and fingerprint-based DL models
yield slightly better performance than 2D-structure image-based
models in BBB permeability prediction.

Based on this study, we propose the DeePred-BBB model for
BBB permeability prediction of compounds using their SMILES
notations as input. In DeePred-BBB, the best performing DNN
model is integrated with the open-source PaDel tool to calculate
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features. The calculated features are automatically fed to the
DNN model as input, which predicts whether the compound
will be BBB permeable or non-permeable. DeePred-BBB could
assist in making quality decisions regarding which compound
to carry forward in subsequent drug development stages and
could potentially help in reducing the attrition rate of CNS-acting
drug candidates failing due to BBB non-permeability. Inevitably,
such drug candidates need further in vivo validation to arrive at
efficacious and safe drugs at a faster rate and lower cost. DeePred-
BBB could be accessed at https://github.com/12rajnish/DeePred-
BBB.
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Lovrić, M., Molero, J.M., Kern, R., Spark, P. Y., and Kit, R. D. (2019). Moving
towards big data in cheminformatics. Mol. Inform. 38:e1800082. doi: 10.1002/
minf.201800082

Main, B. S., Villapol, S., Sloley, S. S., Barton, D. J., Parsadanian, M., Agbaegbu,
C., et al. (2018). Apolipoprotein E4 impairs spontaneous blood brain barrier
repair following traumatic brain injury. Mol. Neurodegener 13:17. doi: 10.1186/
s13024-018-0249-5

Malik, J., Kiranyaz, S., and Gabbouj, M. (2021). Self-organized operational neural
networks for severe image restoration problems. Neural. Netw. 135, 201–211.
doi: 10.1016/j.neunet.2020.12.014

Massey, S. C., Urcuyo, J. C., Marin, B. M., Sarkaria, J. N., and Swanson, K. R. (2020).
Quantifying glioblastoma drug response dynamics incorporating treatment
sensitivity and blood brain barrier penetrance from experimental data. Front.
Physiol. 11:830. doi: 10.3389/fphys.2020.00830

Menken, M., Munsat, T. L., and Toole, J. F. (2000). The global burden of disease
study: implications for neurology. Arch. Neurol. 57, 418–420. doi: 10.1001/
archneur.57.3.418

Mi, Y., Mao, Y., Cheng, H., Ke, G., Liu, M., Fang, C., et al. (2020). Studies of blood-
brain barrier permeability of gastrodigenin in vitro and in vivo. Fitoterapia 140,
104447. doi: 10.1016/j.fitote.2019.104447

Miao, R., Xia, L. Y., Chen, H. H., Huang, H. H., and Liang, Y. (2019). Improved
classification of blood-brain-barrier drugs using deep learning. Sci. Rep. 9:8802.
doi: 10.1038/s41598-019-44773-4

Pardridge, W. M. (2002). Why is the global CNS pharmaceutical market so under-
penetrated? Drug discov. Today 7, 5–7. doi: 10.1016/s1359-6446(01)02082-
7

Pardridge, W. M. (2005). The blood-brain barrier: bottleneck in brain drug
development. NeuroRx 2, 3–14. doi: 10.1602/neurorx.2.1.3

Reese, T. S., and Karnovsky, M. J. (1967). Fine structural localization of a blood-
brain barrier to exogenous peroxidase. J. Cell. Biol. 34, 207–217. doi: 10.1083/
jcb.34.1.207

Rhea, E. M., and Banks, W. A. (2019). Role of the Blood-Brain Barrier in Central
Nervous System Insulin Resistance. Front. Neurosci. 13:521. doi: 10.3389/fnins.
2019.00521

Roy, D., Hinge, V. K., and Kovalenko, A. (2019). To Pass or Not To Pass:
Predicting the Blood-Brain Barrier Permeability with the 3D-RISM-KH
Molecular Solvation Theory. ACS Omega. 4, 16774–16780. doi: 10.1021/
acsomega.9b01512

Salman, M. M., Al-Obaidi, Z., Kitchen, P., Loreto, A., Bill, R. M., and Wade-
Martins, R. (2021). Advances in Applying Computer-Aided Drug Design
for Neurodegenerative Diseases. Int. J. Mol. Sci. 22:4688. doi: 10.3390/
ijms22094688

Salman, M. M., Kitchen, P., Yool, A. J., and Bill, R. M. (2022). Recent breakthroughs
and future directions in drugging aquaporins. Trends Pharmacol. Sci. 43, 30–42.
doi: 10.1016/j.tips.2021.10.009

Salman, M. M., Marsh, G., Kusters, I., Delincé, M., Di Caprio, G., Upadhyayula, S.,
et al. (2020). Design and validation of a human brain endothelial microvessel-
on-a-chip open microfluidic model enabling advanced optical imaging. Front.
bioeng. biotechnol. 8:573775. doi: 10.3389/fbioe.2020.573775

Salmanpour, M. R., Shamsaei, M., Saberi, A., Klyuzhin, I. S., Tang, J., Sossi, V., et al.
(2020). Machine learning methods for optimal prediction of motor outcome in
parkinson’s disease. . Phys. Med. 69, 233–240. doi: 10.1016/j.ejmp.2019.12.022

Saunders, N. R., Dreifuss, J. J., Dziegielewska, K. M., Johansson, P. A., Habgood,
M. D., Møllgård, K., et al. (2014). The rights and wrongs of blood-brain barrier
permeability studies: a walk through 100 years of history. Front. Neurosci. 8:404.
doi: 10.3389/fnins.2014.00404

Saxena, D., Sharma, A., Siddiqui, M. H., and Kumar, R. (2019). Blood brain
barrier permeability prediction using machine learning techniques: an update.
Curr. Pharm. Biotechnol. 20, 1163–1171. doi: 10.2174/138920102066619082114
5346

Saxena, D., Sharma, A., Siddiqui, M. H., and Kumar, R. (2021). Development of
machine Learning based blood-brain barrier permeability prediction models
using physicochemical properties, maccs and substructure fingerprints.
Curr. Bioinform. 16, 855–864. doi: 10.2174/157489361666621020310
4013

Schidlowski, M., Boland, M., Rüber, T., and Stöcker, T. (2020). Blood-brain barrier
permeability measurement by biexponentially modeling whole-brain arterial
spin labeling data with multiple T2 -weightings. NMR Biomed. 33:e4374. doi:
10.1002/nbm.4374

Schlageter, K. E., Molnar, P., Lapin, G. D., and Groothuis, D. R. (1999). Microvessel
organization and structure in experimental brain tumors: microvessel
populations with distinctive structural and functional properties. Microvasc.
Res. 58, 312–328. doi: 10.1006/mvre.1999.2188

Shaker, B., Yu, M. S., Song, J. S., Ahn, S., Ryu, J. Y., Oh, K. S., et al. (2020). LightBBB:
Computational prediction model of blood-brain-barrier penetration based on
LightGBM. Bioinformatics 37, 1135–1139. doi: 10.1093/bioinformatics/btaa918

Shan, W., Li, X., Yao, H., and Lin, K. (2021). Convolutional neural network-
based virtual screening. Curr. Med. Chem. 28, 2033–2047. doi: 10.2174/
0929867327666200526142958

Sharma, A., Kumar, R., Ranjta, S., and Varadwaj, P. K. (2021). SMILES to Smell:
Decoding the structure-odor relationship of chemical compounds using the
deep neural network approach. J. Chem. Inf. Model 61, 676–688. doi: 10.1021/
acs.jcim.0c01288

Shen, J., Cheng, F., Xu, Y., Li, W., and Tang, Y. (2010). Estimation of ADME
properties with substructure pattern recognition. J. Chem. Inf. Model 50, 1034–
1041. doi: 10.1021/ci100104j

Shen, Y., Li, Y., Zheng, H. T., Tang, B., and Yang, M. (2019). Enhancing ontology-
driven diagnostic reasoning with a symptom-dependency-aware naïve bayes
classifier. BMC Bioinform 20:330. doi: 10.1186/s12859-019-2924-0

Singh, M., Divakaran, R., Konda, L. S. K., and Kristam, R. (2020). A classification
model for blood brain barrier penetration. J. Mol. Graph. Model. 96:107516.
doi: 10.1016/j.jmgm.2019.107516

Suenderhauf, C., Hammann, F., and Huwyler, J. (2012). Computational prediction
of blood-brain barrier permeability using decision tree induction. Molecules 17,
10429–10445. doi: 10.3390/molecules170910429

Tietz, S., and Engelhardt, S. B. (2015). Brain barriers: crosstalk between complex
tight junctions and adherens junctions. J. Cell. Biol. 209, 493–506. doi: 10.1083/
jcb.201412147

van Tellingen, O., Yetkin-Arik, B., de Gooijer, M. C., Wesseling, P., Wurdinger,
T., and de Vries, H. E. (2015). Overcoming the blood-brain tumor barrier for
effective glioblastoma treatment. Drug Resist. Updat. 19, 1–12. doi: 10.1016/j.
drup.2015.02.002

Veber, D. F., Johnson, S. R., Cheng, H. Y., Smith, B. R., Ward, K. W., and Kopple,
K. D. (2002). Molecular properties that influence the oral bioavailability of drug
candidates. J.Med. Chem. 45, 2615–2623. doi: 10.1021/jm020017n

Wang, D., Zeng, J., and Lin, S. B. (2021b). Random Sketching for neural networks
with relu. IEEE Trans Neural. Netw. Learn. Syst. 32, 748–762. doi: 10.1109/
TNNLS.2020.2979228

Wang, M. W. H., Goodman, J. M., and Allen, T. E. H. (2021a). Machine learning in
predictive toxicology: recent applications and future directions for classification
models. Chem. Res. Toxicol. 34, 217–239. doi: 10.1021/acs.chemrestox.0c00316

Wang, Z., Yang, H., Wu, Z., Wang, T., Li, W., Tang, Y., et al. (2018). In silico
prediction of blood-brain barrier permeability of compounds by machine
learning and resampling methods. Chem. Med. Chem. 13, 2189–2201. doi:
10.1002/cmdc.201800533

Wevers, N. R., Kasi, D. G., Gray, T., Wilschut, K. J., Smith, B., van Vught, R., et al.
(2018). A perfused human blood-brain barrier on-a-chip for high-throughput
assessment of barrier function and antibody transport. Fluids barriers CNS
15:23. doi: 10.1186/s12987-018-0108-3

Frontiers in Neuroscience | www.frontiersin.org 10 May 2022 | Volume 16 | Article 858126

https://doi.org/10.1142/S0219720016500050
https://doi.org/10.1016/j.bbagen.2018.08.02016
https://doi.org/10.1016/j.bbagen.2018.08.02016
https://doi.org/10.2174/1389557517666170315150116
https://doi.org/10.6062/jcis.2011.02.03.0045
https://doi.org/10.6062/jcis.2011.02.03.0045
https://doi.org/10.1038/nature14539
https://doi.org/10.1002/minf.201800082
https://doi.org/10.1002/minf.201800082
https://doi.org/10.1186/s13024-018-0249-5
https://doi.org/10.1186/s13024-018-0249-5
https://doi.org/10.1016/j.neunet.2020.12.014
https://doi.org/10.3389/fphys.2020.00830
https://doi.org/10.1001/archneur.57.3.418
https://doi.org/10.1001/archneur.57.3.418
https://doi.org/10.1016/j.fitote.2019.104447
https://doi.org/10.1038/s41598-019-44773-4
https://doi.org/10.1016/s1359-6446(01)02082-7
https://doi.org/10.1016/s1359-6446(01)02082-7
https://doi.org/10.1602/neurorx.2.1.3
https://doi.org/10.1083/jcb.34.1.207
https://doi.org/10.1083/jcb.34.1.207
https://doi.org/10.3389/fnins.2019.00521
https://doi.org/10.3389/fnins.2019.00521
https://doi.org/10.1021/acsomega.9b01512
https://doi.org/10.1021/acsomega.9b01512
https://doi.org/10.3390/ijms22094688
https://doi.org/10.3390/ijms22094688
https://doi.org/10.1016/j.tips.2021.10.009
https://doi.org/10.3389/fbioe.2020.573775
https://doi.org/10.1016/j.ejmp.2019.12.022
https://doi.org/10.3389/fnins.2014.00404
https://doi.org/10.2174/1389201020666190821145346
https://doi.org/10.2174/1389201020666190821145346
https://doi.org/10.2174/1574893616666210203104013
https://doi.org/10.2174/1574893616666210203104013
https://doi.org/10.1002/nbm.4374
https://doi.org/10.1002/nbm.4374
https://doi.org/10.1006/mvre.1999.2188
https://doi.org/10.1093/bioinformatics/btaa918
https://doi.org/10.2174/0929867327666200526142958
https://doi.org/10.2174/0929867327666200526142958
https://doi.org/10.1021/acs.jcim.0c01288
https://doi.org/10.1021/acs.jcim.0c01288
https://doi.org/10.1021/ci100104j
https://doi.org/10.1186/s12859-019-2924-0
https://doi.org/10.1016/j.jmgm.2019.107516
https://doi.org/10.3390/molecules170910429
https://doi.org/10.1083/jcb.201412147
https://doi.org/10.1083/jcb.201412147
https://doi.org/10.1016/j.drup.2015.02.002
https://doi.org/10.1016/j.drup.2015.02.002
https://doi.org/10.1021/jm020017n
https://doi.org/10.1109/TNNLS.2020.2979228
https://doi.org/10.1109/TNNLS.2020.2979228
https://doi.org/10.1021/acs.chemrestox.0c00316
https://doi.org/10.1002/cmdc.201800533
https://doi.org/10.1002/cmdc.201800533
https://doi.org/10.1186/s12987-018-0108-3
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


fnins-16-858126 May 3, 2022 Time: 13:34 # 11

Kumar et al. DeePred-BBB: Prediction Model for BBB-Permeability

Yang, L., Wu, H., Jin, X., Zheng, P., Hu, S., Xu, X., et al. (2020).
Study of cardiovascular disease prediction model based on random
forest in eastern China. Sci. Rep. 10:5245. doi: 10.1038/s41598-020-62
133-5

Yao, D., Zhan, X., Zhan, X., Kwoh, C. K., Li, P., and Wang, J. (2020).
A random forest based computational model for predicting novel lncrna-
disease associations. BMC Bioinform 21:126. doi: 10.1186/s12859-020-3
458-1

Yap, C. W. (2011). PADEL-descriptor: an open source software to calculate
molecular descriptors and fingerprints. J. Comput. Chem. 32, 1466–1474. doi:
10.1002/jcc.21707

Yuan, Y., Zheng, F., and Zhan, C. G. (2018). Improved prediction of blood-
brain barrier permeability through machine learning with combined use of
molecular property-based descriptors and fingerprints. AAPS J. 20:54. doi: 10.
1208/s12248-018-0215-8

Zhang, D., Xiao, J., Zhou, N., Zheng, M., Luo, X., Jiang, H., et al. (2015).
A genetic algorithm based support vector machine model for blood-brain
barrier penetration prediction. Biomed. Res. Int. 2015:292683. doi: 10.1155/
2015/292683

Zhang, L., Zhu, H., Oprea, T. I., Golbraikh, A., and Tropsha, A. (2008).
QSAR 21odelling of the blood-brain barrier permeability for diverse organic
compounds. Pharm. Res. 25, 1902–1914. doi: 10.1007/s11095-008-9609-0

Zhao, Y. H., Abraham, M. H., Ibrahim, A., Fish, P. V., Cole, S., Lewis, M. L.,
et al. (2007). Predicting penetration across the blood-brain barrier from simple
descriptors and fragmentation schemes. J. Chem. Inf. Model. 47, 170–175. doi:
10.1021/ci600312d

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated organizations, or those of
the publisher, the editors and the reviewers. Any product that may be evaluated in
this article, or claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

Copyright © 2022 Kumar, Sharma, Alexiou, Bilgrami, Kamal and Ashraf. This is an
open-access article distributed under the terms of the Creative Commons Attribution
License (CC BY). The use, distribution or reproduction in other forums is permitted,
provided the original author(s) and the copyright owner(s) are credited and that the
original publication in this journal is cited, in accordance with accepted academic
practice. No use, distribution or reproduction is permitted which does not comply
with these terms.

Frontiers in Neuroscience | www.frontiersin.org 11 May 2022 | Volume 16 | Article 858126

https://doi.org/10.1038/s41598-020-62133-5
https://doi.org/10.1038/s41598-020-62133-5
https://doi.org/10.1186/s12859-020-3458-1
https://doi.org/10.1186/s12859-020-3458-1
https://doi.org/10.1002/jcc.21707
https://doi.org/10.1002/jcc.21707
https://doi.org/10.1208/s12248-018-0215-8
https://doi.org/10.1208/s12248-018-0215-8
https://doi.org/10.1155/2015/292683
https://doi.org/10.1155/2015/292683
https://doi.org/10.1007/s11095-008-9609-0
https://doi.org/10.1021/ci600312d
https://doi.org/10.1021/ci600312d
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles

	DeePred-BBB: A Blood Brain Barrier Permeability Prediction Model With Improved Accuracy
	Introduction
	Materials and Methods
	Data Collection
	Feature Calculation
	Development of Prediction Models
	Machine Learning-Based Models
	Support Vector Machine
	Naïve Bayes
	k-Nearest Neighbor
	Random Forest

	Deep Learning-Based Models
	Deep Neural Network
	Convolutional Neural Network-1 Dimension (CNN-1D)
	Convolutional Neural Network by VGG16 Transfer Learning (CNN-VGG16)



	Results and Discussion
	Conclusion
	Data Availability Statement
	Author Contributions
	Funding
	Supplementary Material
	References


