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Abstract: Green extraction techniques (GreETs) emerged in the last decade as greener and sustain-
able alternatives to classical sample preparation procedures aiming to improve the selectivity and
sensitivity of analytical methods, simultaneously reducing the deleterious side effects of classical
extraction techniques (CETs) for both the operator and the environment. The implementation of
improved processes that overcome the main constraints of classical methods in terms of efficiency
and ability to minimize or eliminate the use and generation of harmful substances will promote more
efficient use of energy and resources in close association with the principles supporting the concept of
green chemistry. The current review aims to update the state of the art of some cutting-edge GreETs
developed and implemented in recent years focusing on the improvement of the main analytical
features, practical aspects, and relevant applications in the biological, food, and environmental fields.
Approaches to improve and accelerate the extraction efficiency and to lower solvent consumption,
including sorbent-based techniques, such as solid-phase microextraction (SPME) and fabric-phase
sorbent extraction (FPSE), and solvent-based techniques (µQuEChERS; micro quick, easy, cheap,
effective, rugged, and safe), ultrasound-assisted extraction (UAE), and microwave-assisted extraction
(MAE), in addition to supercritical fluid extraction (SFE) and pressurized solvent extraction (PSE),
are highlighted.

Keywords: green extraction techniques; microextraction techniques; sample preparation; biological
samples; food samples; environmental samples

1. Introduction

Over the last decades of the last century, technological improvements in chromato-
graphic instruments boosted a remarkable evolution in the analytical chemistry field.
Sophisticated configurations hyphenating fast and efficient chromatographic separations
with powerful detection systems able to deliver unprecedented time of analysis and an-
alytical performance become the forefront of this revolution where sample preparation
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was forgotten. For another decade, conventional processes, often involving large volumes
of sample and organic solvents and laborious and many times cumbersome protocols
prone to originate many experimental errors, continued to be used as standard procedures.
Meanwhile, growing concerns with the environmental footprint and planet sustainability
are promoting a green agenda affecting the most diverse human activities. The application
of the green chemistry principles to analytical chemistry has been elegantly defined under
the SIGNIFICANCE acronym [1]. Accordingly, the green analytical chemistry (GAC) envis-
ages the simplest experimental layout involving minimal or no sample preparation and
maximum integration of the analytical instruments used, preferentially in an automated
way to limit operator intervention, energy consumption, and waste production. In this
context, miniaturization of the sample extraction procedure, therefore decreasing sample
and solvent requirements, as well as, wastes produced, was an obvious consequence of the
GAC principles. This trend has fostered the development of a myriad of microextraction
approaches, hereby considered green extraction (GreETs) approaches. These GreETs span
almost all, if not all, fields of application, covering the microextraction of selected analytes
from biological samples to food matrices or environmental matrices.

On this basis, this review will provide an updated overview of the most important
and used green extraction approaches reported in the literature since 2016, their principles,
advantages, limitations, and examples of application. Sorbent-based techniques, such as
solid-phase microextraction (SPME), stir-bar sorptive extraction (SBSE), fabric-phase sor-
bent extraction (FPSE), and solvent-based techniques, including µQuEChERS (micro quick,
easy, cheap, effective, rugged, and safe), single-drop microextraction (SDME), hollow-fiber
liquid-phase microextraction (HF-LPME), and dispersive liquid–liquid microextraction
(DLLME), have been considered. Additionally, the use of emerging green solvents such as
ionic liquids (ILs) and deep eutectic solvents (DES) as an alternative to conventional sol-
vents will be discussed. Finally, a brief overview of other promising green and sustainable
approaches, such as pulsed electric-field-assisted extraction (PEFAE), supercritical fluid
extraction (SFE), and subcritical water extraction (SWE), will also be provided.

2. Sample Preparation: A Key Step to Getting the Correct Data

There has been an unprecedented growth in measurement techniques over the last
few decades. Instrumentation, such as spectroscopy, microscopy, and chromatography,
as well as microdevices and sensors, have undergone phenomenal developments. In
contrast, the importance of sample treatment in the analytical layout seems to have been
neglected. However, in the last decade, especially driven by the need of pharmaceutical and
environmental industries, an exponential growth, and a rapid evolution in this industry,
was observed. Some important steps in analytical chemistry to allow accurate, efficient, and
fast determinations are commonly used in the sample preparation process, including, for
example, extraction (recovering analytes from samples), clean-up (removal of compounds
that can interfere with analysis), and solvent evaporation/concentration (concentration of
analytes using an N2 stream), are shown in Figure 1. The procedures depend on the sample,
the matrix, and the concentration level at which the analysis needs to be carried out.

Sample preparation is the source of about 30% of the experimental errors and of about
60% of the time spent on tasks in the analytical lab. For these reasons, independently
of the high performance of the analytical instrument, the sampling procedure and the
sample handling and pretreatment methodologies, following a carefully outlined process,
are of utmost importance to acquire high-quality analytical results with high selectivity
and low sensitivity limits and to ensure high accuracy and reproducibility. In addition,
the selective isolation of the analytes of interest and the removal of interfering sample
components are vital for eliminating the interferences and matrix effect and protecting
the instrumental equipment from possible damages. However, as referred, these proce-
dures were not always seen as key steps in the analytical process, and for that fact, the
methodology followed in sample preparation did not receive the same attention as the
analytical instrumentation, considered, until the last years, being the bottleneck of the



Molecules 2022, 27, 2953 3 of 29

whole analytical procedure. Indeed, the most widely used and commonly accepted classi-
cal extraction techniques (CETs) were liquid–liquid extraction (LLE), Soxhlet extraction,
and solid-phase extraction (SPE). CETs, however, tend to be slow and labor intensive and
use high amounts of hazardous organic solvents causing serious environmental concerns
and present low extraction efficiency. Despite this reality, sample preparation techniques
did not receive much attention until quite recently. In the last decades, to overcome the
drawbacks of CETs, several novel microextraction techniques (Figure 1), which offer faster,
cheaper, and “greener” pretreatment of complex samples; utilization of hazardous reagents;
and less solvents with generation of less waste, maximizing the safety for operators and
the environment, have been reported as alternatives to CETs.

These techniques, hereby designated as green extraction techniques (GreETs), ex-
hibit attractive characteristics, such as simplicity, versatility, high extraction efficiency,
and environmentally friendly profile, and have experienced increased development and
implementation and stimulated significant progress in laboratory sample treatment. Some
of them, due to their importance and growing application in the biological, food, and
environmental fields, are highlighted below.
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Figure 1. Different steps involved in sample preparation.

3. Green Extraction (GreETs) Techniques

The most important and used GreET meeting all green analytical chemistry (GAC)
requirements, based on miniaturized SPE techniques, such as microextraction in packed
syringe (MEPS), solid-phase microextraction (SPME) in direct (DI) and headspace modes
(HS), stir-bar sorptive extraction (SBSE), and matrix solid-phase dispersion, in addition to
liquid-phase extraction techniques, including single-drop microextraction (SDME), hollow-
fiber liquid-phase microextraction (HF-LPME), dispersive liquid–liquid microextraction
(DLLME), QuEChERS, solidification of floating organic drop microextraction (SFOME),
and ultrasound-assisted back extraction (UABE), will be given more emphasis.

3.1. Miniaturized Sorbent-Based Techniques

SPE is one of the most used conventional extraction and preconcentration methods for
the analysis of food, biological, and environmental samples [2,3]. However, this technique
requires relatively large amounts of organic solvents and additional clean-up steps, which
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limits the automation, decreases sample throughput, and potentiates the contamination
of the extracts [3]. Moreover, SPE uses large sample amounts, involving long extraction
times [2,4]. Recently, new extraction methods were developed using modern techniques
with less or no organic solvents to minimize environmental pollution and overcome the
limitations of the conventional methods (Figure 2).
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phase microextraction in direct immersion mode; FPSE: fabric-phase solvent extraction; GreETs: green
extraction techniques; HS-SPME: solid-phase microextraction in headspace mode; MEPS: microextrac-
tion in packed sorbent; MSAµE: multisphere adsorptive microextraction; MSPD: matrix solid-phase
dispersion; MSPE: magnetic solid-phase extraction; SBSE: stir-bar sorbent extraction; SPDE: solid-
phase dynamic extraction; SPE: solid-phase extraction; SPME: solid-phase microextraction; µSPE:
micro-solid-phase extraction.

3.1.1. Fabric-Phase Sorbent Extraction

Introduced in 2014 by Kabir and Furton [5], the solid-phase dynamic extraction (SPDE)
format fabric-phase sorptive extraction (FPSE) is a fast, efficient, and versatile sample
preparation approach by implementing a natural or synthetic permeable and flexible
fabric (e.g., polyester, fiberglass, or cellulose) substrate to host a chemically coated sol–
gel organic–inorganic hybrid sorbent in the form of an ultrathin coating. FPSE allows
direct extraction of analytes without sample modification, thus minimizing/eliminating
the sample pretreatment steps, which are considered the primary source of major analyte
loss [6]. A strong covalent interaction between the fabric substrate and sol–gel contributes to
improving the extraction efficiency medium, helping expose the FPSE to extreme chemical
conditions without compromising the chemical/structural integrity of the microextraction
device. The main disadvantages of FPSE are low sample capacity and extensive longer
sample preparation time [7].

3.1.2. Solid-Phase Extraction-Based Approaches
Solid-Phase Microextraction (SPME)

A key milestone in the development of microextraction techniques was first achieved
by the seminal invention of solvent-free solid-phase microextraction, popularly known
as SPME by Arthur and Pawliszyn in the early 1990s [8]. SPME is an equilibrium-based
microextraction technique that involves the partitioning of the analytes from the sample
solution into the sorbent coating of the SPME fiber owing to the intermolecular interaction
or affinity for the sorbent material. Several configurations of SPME integrally optimize
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the volume of the extraction phase to improve the high surface-area-to-volume ratio of the
extraction-phase coating. There are several geometries for SPME, such as planar, spherical,
rod, and in-tube or cylinder [9]. The selection of the SPME geometry depends on the target
analyte and matrix that will be analyzed. Usually, in the reduced diameter or length of the
extraction phase, its higher surface-area-to-volume ratio can result in a smaller extraction
period and higher recoveries [9].

SPME is a simple, fast, universal, sensitive, solventless, and economical technique for
the preconcentration and sampling of analytes derived from various types of samples [3,10].
This technique combines extraction, enrichment, and sample injection into a single step.
Other advantages of SPME are due to the reliability, sensitivity, and selectivity of this
technique [4]. SPME allows the detection of semivolatile and nonvolatile compounds [10]
and benefits from the constant development of new sorption coatings [3]. This procedure
can be performed in different modes: (i) headspace SPME (HS-SPME) mode in which the
analytes are adsorbed/absorbed from the gas phase in equilibrium with the samples (as
the temperature is a parameter with a significant effect on the kinetics of the process, this
is the most adequate for volatiles extraction); (ii) direct mode (DI) in which the SPME
fiber is immersed directly into the bulk sample. In this case, the agitation is an important
experimental parameter to facilitate the transport of the analytes from the solution to the
fiber. (iii) In the third mode, membrane extraction, the extraction of less volatile compounds
is facilitated by the use of a protected membrane.

Microextraction in Packed Sorbent (MEPS)

MEPS emerged as a greener alternative to the conventional SPE, consisting of a sample
pretreatment technique based on the miniaturization of SPE. This technique uses the
same sorbents as SPE but is considered more advantageous since sorbent integration into a
liquid-handling syringe results in low void volumes, making sample manipulations easy [4].
MEPS can be applied to smaller samples and requires shorter sample preparation times and
lower solvent volumes [2]. Moreover, MEPS can be performed online in a fully automated
way using the same syringe for sample extraction and extract injection into the analytical
instrument [4]. A typical MEPS application comprises sorbent conditioning, sample loading,
washing, and analyte elution. Contrary to SPE, the two-direction flow potential in MEPS
provides the duplication of each step and satisfactory sorbent conditioning, enhanced
sample–sorbent interaction, sample loading, and improved analyte elution. The elution
and washing steps can be performed with 20–50 µL of organic solvent, and 1–4 mg of
reused sorbent material is sufficient to extract a target analyte with high efficiency [11].
More recently, µSPEed has been proposed. It represents an advance with respect to MEPS
because it has a unidirectional valve that corresponds to a flow in one direction, in addition
to the high pressure conferred by the small diameter of the sorbent particles. In this case,
the analytes retained in the adsorbent are not altered by the aspiration of solvents, as is
the case with MEPS, which results in more efficient extractions. The most remarkable
improvement over MEPS procedure is the direct flow through the sorbent bed; therefore,
the analytes retained in the sorbent bed are not disturbed by the solvent aspiration as it
occurs with MEPS. Moreover, the high pressure and the single direction contribute to obtain
more efficient extractions of the target analytes. Figure 3 represents a schematic overview
and the most important aspects of µSPEed.
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Solid-Phase Dispersion Extraction (SPDE)

In SPDE, the microparticles are dispersed in the solution (liquid sample) until the
equilibrium between the two phases is reached. The most popular formats are the matrix
solid-phase dispersion extraction (MSPD), magnetic solid-phase extraction (MSPE), and
micro-solid-phase extraction (µSPE).

MSPD is an efficient and generic technique for the isolation of a wide range of drugs,
pesticides, naturally occurring constituents, and other compounds from a wide variety of
complex plant and animal samples. According to Barker [12], the sample is dispersed over
the surface of the bonded-phase support material, producing, through hydrophobic and
hydrophilic interactions of the various components, a unique mixed-character phase for
conducting target analyte isolation [12].

MSPE is based on the use of sorbent materials, such as magnetic nanoparticles, car-
bon hemimicelles, and molecular imprinted polymers [13]. C18 functionalized magnetic
nanoparticles (MNP) are used for preconcentration or cleanup of moderate and nonpolar
polar pesticides due to the absence of internal diffusion resistance, the excellent absorp-
tion capacity of the target analytes, and the high surface-to-volume ratio [14]. The main
advantage of MSPE is that the sorbent is composed of MNPs, often NPs of the most diverse
chemistries and geometries, that can be easily recovered from a solution by a simple spin
or centrifugation process.

The pipette-tip SPE is the simplest format of µSPE in which the sorbent is placed in
a tip and extraction is handled by using a pipette, widely used in preclinical and clinical
development programs in addition to the study of metabolomics, genomics, and proteomics.
SPE tips, such as the MonoTip®, NuTip®, and ZipTip®, can be used for the purification of
peptides or proteins that, using affinity and metal chelation, can be successfully selectively
isolated [15].
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3.1.3. Stir-Bar Sorbent Extraction (SBSE)

Stir-bar sorbent extraction (SBSE) was introduced by Baltussen, Sandra, David, and
Cramers in 1999 as an alternative to SPME and became one of the most powerful mi-
croextraction and preconcentration techniques for the enrichment of volatile analytes from
aqueous samples due to its simplicity, robustness, cost-effectiveness, and environmental
friendliness. After that, its applications have been extended to the analysis of nonvolatile
analytes and solid and liquid samples.

This extraction procedure is based on a magnetic stir (0.5–1 mm thickness) coated with
polydimethylsiloxane, a nonpolymeric phase used as an extraction phase of target analytes
through hydrophilic interaction. SBSE consists of two steps: extraction and desorption.
Related to extraction, the coated stir bar can act in immersion mode (immersed in the
sample solution) or in headspace mode (stir bar is exposed in the gas phase above the
liquid or solid sample). After extraction, the target analytes adsorbed in the stir bar are
desorbed by thermal desorption, followed by analysis in a chromatographic system (e.g.,
GC, HPLC, and CE) [11,16].

Despite that the SBSE principle is similar to SPME, SBSE exhibits higher sensitivity,
recovery, and extraction efficiency. This is due to the larger amount of coated phase in
SBSE, which is 50–250 times higher than the SPME fiber, making SBSE more suitable to
analyze trace levels in complex matrices. On the other hand, a special interface is required
for thermal desorption in gas chromatography (GC), and lower recoveries are obtained for
target analytes with a logarithm of octanol–water partitioning coefficient (log Ko/w) lower
than 3 [11,16].

3.1.4. Multisphere Adsorptive Microextraction (MSAµE)

A new adsorptive microextraction (AµE) technique was proposed by Nogueira
et al. [17,18], which represents a great alternative for the enrichment of a wide range
of polar analytes at trace levels in aqueous media, selecting appropriate sorbent phases.
The new AµE approach can be used through different analytical devices presenting suitable
geometry, where specific sorbents are simply sustained through sticking-based technologies.
Usually, the sorbent is physically embedded on the substrate and put in the aqueous media.
The solution is stirred using a stir bar or vortexed. Since most of the polar targets are non-
volatile and some of them have thermolabile properties, liquid desorption (LD), followed
by HPLC is certainly the following combination of choice for analytical purposes. AµE can
appear in two geometrical configurations, namely, bar adsorptive microextraction (BAµE)
and multisphere adsorptive microextraction (MSAµE). Nevertheless, previous experimen-
tal data [17,18] showed that MSAµE devices present much better stability compared with
BAµE, especially when they are exposed to an aggressive sample matrix because, in this
case, thermal supporting promotes much higher robustness from the fixation point of view.
The MSAµE showed several advantages, namely, high recovery for polar analytes, easiness
to prepare, economicalness, and selectiveness, as sorbent can be selected based on the target
analyte of interest. Nevertheless, the main drawback is the device’s stability as should be
evaluated on a case-by-case basis.

3.2. Miniaturized LPE-Based Techniques

In addition to sorbent- or solid-based GreETs, several microextraction approaches
involving a sorbent phase in a liquid state have been developed in the last decades. Similar
to the SPE-based techniques, the major shortcomings of the conventional liquid–liquid
extraction technique (LLE), such as emulsion formation, long preparation time, noncompli-
ance with GAC due to the usage of a high volume of toxic organic solvents, and inevitability
of solvent evaporation and sample reconstitution, have triggered research into the miniatur-
ized and greener version of LLE. In contrast to SPME, miniaturized LPE techniques include
solvent-based extraction techniques that use microliters of organic solvent to accomplish the
selective isolation, preconcentration of the analytes, and clean-up of the sample (Figure 4).
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3.2.1. Single-Drop Microextraction (SDME)

The first to be invented for the series of solvent-based microextraction techniques was
SDME. SDME is a nearly solvent-free, quick, inexpensive, and easy-to-operate extraction
technique. It can be used to highly enrich analytes in a relatively short time and uses simple
laboratory equipment, which considerably lowers the cost of analysis [4,10]. This approach
implies that a single drop of an extraction solvent is employed for the isolation of the analyte.
It was introduced in the mid-1990s by Liu and Dasgupta [19], which used a drop of water to
extract ammonia and sulfur dioxide before the spectrophotometric analysis. SDME is based
on the principle of the partitioning of the analytes from the sample solution to the extraction
solvent with or without mechanical aid. As presented in Figure 5a, SDME can be operated
in different modes: direct immersion is employed mostly for nonvolatile analytes, being the
extraction solvent immersed in the liquid sample from which the analytes are transferred,
subsequently followed by the withdrawal of the drop before instrumental injection; the
headspace mode (HS-SDME) is tailored for the isolation of volatile compounds [20]; the
bubble-in-drop (BID-SDME) introduced by Williams et al. [21] was designed to enlarge
the droplet surface area; continuous-flow microextraction (CFME) proposed by Liu and
Lee [22] was designed to increase the contact area between the analyte and the extraction
solvent; or the drop-to-drop liquid–liquid microextraction was developed by Wijethunga
et al. [23] in which the sample volume required for analysis is reduced. Automation has also
been established with SDME coupled with electrothermal atomic absorption spectrometry
for the quantitation of Cr (VI) in natural water samples [24].
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3.2.2. Hollow-Fiber Liquid-Phase Microextraction (HF-LPME)

Pedersen-Bjergaard and Rasmussen [25] first developed the hollow fiber LPME cou-
pled with capillary electrophoresis for methamphetamine in biological samples, such as
urine and plasma. It is another mode of solvent-based microextraction technique that is
premised on the transfer of the target compounds from the sample (donor) solution via
a supported liquid membrane to the acceptor phase. Since its introduction, it has gained
wide popularity for the analysis of a wide range of analytes in environmental samples [26],
biological samples [27,28], and food samples [29,30]. HF-LPME could be operated in two
different modes, a two-phase system and a three-phase system (Figure 5b). Although
the two modes share a similarity in principle in that they involve the partitioning of the
analytes from the sample (donor phase) solution to other phases (acceptor phase), few lines
of demarcation can be observed. In two-phase systems, the analytes are transferred from
the aqueous phase to the organic acceptor phase based on their affinity for them. In turn,
the three-phase mode involves partitioning from the aqueous donor across the organic
solid support liquid membranes (SLMs) into the aqueous acceptor phase in the lumen
of the hollow fiber [26]. This results in several advantages that accompany automation,
including a lower number of operators to recruit, reduced chemical use, and accelerated
analysis time, just to mention a few. Automated HF-LPME has been applied for the analysis
of pharmaceutical drugs [31].

3.2.3. Dispersive Liquid–Liquid Microextraction (DLLME)

DLLME has also gained wide popularity over the years. DLLME offers several
advantages, including small sample volume, high extraction efficiency, low consumption of
solvents, high enrichment factor, good repeatability, and high recovery. Furthermore, this
technique is simple and uses small amounts of extraction solvents, and the equilibration
between the aqueous phase and extracting solvent is fast [32]. Ultrasounds can be applied
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to disperse the extraction solvent in the sample, avoiding the reduction of the analyte’s
partition coefficient between water and the extracting solvent [32]. As a result of efforts to
minimize errors incurred in analysis due to intermittent human intervention and to increase
the efficiency of the overall process, studies detailing the automation of the LPE techniques
have also been reported, for instance, the online sequential injection (SI) DLLME for the
isolation and preconcentration of copper and lead using a series of reagents including
methanol as disperser solvent mixed with 2.0% (v/v) xylene as the extraction solvent and
0.3% (m/v) ammonium diethyldithiophosphate as the complexing agent. The solvent
mixture was merged with the aqueous sample, and 300 µL isobutyl methyl ketone was
used to elute the complex of the analytes before the injection into the nebulizer of the flame
atomic absorption spectrometry (FAAS) [33]. A similar study involving a modification was
reported for the quantitative analysis of cadmium and lead in natural water samples [34].

3.2.4. QuEChERS

At the beginning of this century, Anastassiades, et al. [35] proposed an innovative
sample preparation approach with attractive characteristics, a quick, easy, cheap, effective,
rugged, and safe (QuEChERS) method for the quantitative measurement of pesticide
residues in vegetables and fruits. It is a two-stage process of solid–liquid partitioning
with a salting-out effect and a dispersive solid-phase extraction (dSPE). The extraction
of the target analytes occurs in the first stage, when a mixture of salts is dispersed in the
matrix and mixes thoroughly with an organic phase, often acetonitrile, till an equilibrium
is reached. This is followed by a clean-up step (dSPE) using a different combination of
porous sorbents and salts according to the matrix interferences that should be removed.
Since its invention, QuEChERS has been applied for the analysis of a wide spectrum of
analytes in different sample matrices, such as fluoxetine and carbamazepine in benthic
invertebrates (Potamopyrgus antipodarum and Valvata piscinalis) [36], pharmaceuticals and
personal care products in sewage and surface waters [37], sulfonamide residues in milk
samples [38], or BPA in human urine [39]. More recently, several improvements to the
original procedure were reported, notably, its miniaturization applied in different fields of
research [40] (additional reports available in Tables S1–S3).

3.2.5. Solidification of Floating Organic Drop Microextraction (SFOME)

The SFOME method was introduced by Khalili Zanjani et al. [41] using polycyclic
aromatic hydrocarbons as model compounds. In this technique, the collection of the
analytes in a microdrop of an organic extraction solvent under agitation is achieved by the
solidification of the suspended microdrop organic layer in ice. The solidified microdrop is
allowed to melt before it is injected into the instrument for quantitative assessment. The
notable characteristic of the extraction solvent, peculiar for this procedure, is its low melting
point usually in the range of 10–30 ◦C. The use of a little amount of organic solvent indicates
the compliance of this simple method with the green analytical chemistry requirements
(GAC), and it has been popularly employed either individually or in conjunction with
other extraction methods for the analysis of contaminants in environmental [42], food [43],
and biological [44] samples. The use of SFOME is not limited to the extraction of organic
compounds as it has been deployed for the isolation of inorganic metallic ions, such as
lead [45].

3.2.6. UABE

Ultrasound-assisted back extraction (UABE) is another LPE-based extraction method
that has been used in tandem with other sample preparation strategies, such as cloud point
extraction, for the analysis of brominated flame retardants in water samples (BFRs) [46],
heterocyclic aromatic amines in natural water samples [47], and DLLME for the isolation of
suvorexant in urine samples [48]. The use of UABE was reported to be a necessity when
the extracts contain much extraction solvent that is not compatible with the analytical
instrument. Zhou, Gao, Zhang, Li, and Li [46] developed a method for the quantitative
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determination of BFRs in water samples using a cloud point extraction coupled with UABE
before injection into the inlet of HPLC–MS/MS. An amount of 400 µL of an aqueous
solution of Triton X-114 and 0.5 M ammonium acetate was added to 40 mL of water sample,
which was thoroughly mixed and centrifuged at 5000 rpm for 3 min. After the aqueous
phase was decanted, 200 µL of acetonitrile and 2 mL of isooctane were added to the
surfactant-rich component and sonicated for 5 min. The isooctane layer was allowed to dry
with the aid of N2 flow in a new centrifuge tube, while the residue was reconstituted in
methanol (50 µL) after which it was injected into the HPLC system. This method gave a
limit of detection of 0.3 to 3.0 ng L−1 and a recovery of 8.7%–54.7%.

3.3. Emergent Green Solvents: Ionic Liquids (ILs), DES, and NADES

ILs have evolved as potential replacements for conventional solvents over the years.
They are low-melting organic salts with a combination of an organic cation and an organic
or inorganic anion, occurring in the liquid state at a temperature below 100 ◦C. The striking
features of ILs, such as negligible vapor pressure, enhanced synthesis route, fewer by-
products, thermal stability, and high hydrophobicity, are factors establishing them as
green solvents as they are more environmentally friendly than conventional solvents [49].
Added to the advantages of ILs is the ability to modify functionalities, which enhances the
selectivity and specificity of the target molecules [50]. ILs have been shown to improve
selectivity and extraction efficiency when used in tandem with a metal organic framework
(MOF). For instance, [51] employed imidazole-based ILs as a guest material with Zr-MOFs
for the preconcentration of sulfonamides in a water sample in a dSPE-HPLC-DAD method.
A limit of detection below 0.03 µg L−1 and enrichment factors greater than 270 were
obtained. Despite the promising usefulness of ILs in the field of separation science, their
notable drawback is that not all ILs are nonvolatile, nonflammable, and stable in air and
water as originally considered. In fact, many ILs are volatile, flammable, unstable, and even
toxic, particularly to aquatic beings [52]. For this reason, deep eutectic solvents (DES) have
emerged as safer alternatives, exhibiting higher stability and lower costs and toxicity [52].
DES are formed by combining different hydrogen bond acceptors and donors, and their
classification as ILs is not consensual, mainly because they share more differences than
similarities (reviewed in [52]). Among those differences, it is important to highlight in the
context of this review that DES are less hazardous and more stable and biodegradable than
IL [52]. A specific subclass of DES, composed of components of natural origin, NADES, will
be the ultimate green solvent that can be used. For their greener profile and possibilities
to fine-tune extraction properties by combining different ILs and, more recently, DES and
NADES, the use of these innovative extraction solvents in the most diverse extraction
formats is growing exponentially and constitutes one of the forefronts in sample extraction.
An exhaustive list of applications using ILs, DES, and NADES is available in Tables S1–S3.

3.4. Other Advanced Extraction Techniques

Other advanced extraction techniques may act at different levels (alone or in combi-
nation), including, but not limited to, breaking the overall matrix structure or cell wall,
allowing easier penetration of selective solvents with an affinity for the target analytes,
fastening mass transfer and extraction kinetics; using more selective and cost-effective
extraction solvents, increasing analyte solubility, increasing safety, and decreasing envi-
ronmental impact (e.g., by changing the type of solvent, decreasing the chemicals needed,
reducing energy consumption, or reducing wastes generation). Pulsed electric-field-assisted
extraction (PEFAE) is a nonthermal technology that has been primarily applied to disin-
tegrate cells and cellular tissues in food processing and extraction processes. It makes
use of very intense electrical pulses with a very short duration. The main objective is to
disrupt cell walls and tissues and increase cell permeability without heating the target
samples (and analytes), thus increasing extraction efficiency. As the duration of the pulses
is designed to avoid thermal effects, it can be used with heat-sensitive compounds. Other
electric-field-based approaches are also available. For instance, using moderate electric
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fields for longer times, combining thermal and nonthermal electric effects, may also be
an effective way of extracting the target analytes. This process is also known as ohmic
heating. Heat is generated inside the material through the Joule effect, and the matrix is
heated almost instantaneously and evenly. Simultaneously, a limited electroporation effect
is also expected. It is applicable when heat is needed to achieve an efficient extraction of
the target analytes, increasing extraction efficiencies and reducing thermal degradation.
Furthermore, energy efficiency in ohmic-heating-based processes is significantly higher
than in traditional heating processes [53]. Electric technologies may be used complemen-
tary to other more traditional approaches to increase their efficiency and selectivity and
decrease the time of sample preparation [54]. Applications of electric fields can be found
both in analytes’ extraction and in samples’ concentration/purification. One example,
described by Xu and coworkers [55], is the application of electric fields to enhance SPE
extraction of contaminating compounds (tricyclic antidepressants) in environmental waters
before their identification by GC–MS [55]. Electro-enhanced solid-phase microextraction
can be found applied to several other matrices and analytes, including phthalate esters
and bisphenol A from blood and seawater [56] or fluoroquinolones in eggs [57]. Electroex-
traction of analytes across aqueous–organic phase boundaries has also been described,
and membrane-based processes coupled with electric fields are also quite common in the
literature [58]. Using greener non-petroleum-based solvents and tuning their properties to
increase their efficiency and selectivity by using subcritical or supercritical temperatures
and pressures is also an interesting approach to reduce or remove the use of toxic and/or
environmental impacting solvents in the extraction step. For instance, when considering
analytes with moderate polarity and low thermal sensitivity, subcritical water extraction
(SWE) may be considered a viable option. Pressurized solvent extraction (PSE) consists of a
liquid–liquid extraction technique where the solvent is used at temperatures higher than
its “normal” boiling point (at atmospheric pressure) in pressurized systems. The pressure
is kept at values above the boiling point at the selected temperature, but under the critical
point, allowing to keep the fluid in the liquid state. Higher temperatures allow increasing
the solubility of the analytes and the transfer rate, thus improving extraction efficiencies.
Further, viscosity decreases, and the high pressures involved may facilitate the solvent
penetration into the matrix from which the analytes are being extracted. SWE is a particular
case of pressurized liquid extraction, using water as solvent. Water is a solvent with unique
properties in these conditions, not present in other solvents. Besides the above-mentioned
advantages, the dielectric constant of water decreases when temperature increases, thus
increasing its affinity for less polar analytes. Though this decrease is limited, it is possible to
use subcritical water as a greener replacer for “intermediate” polarity organic solvents, such
as methanol or ethanol. Further, it is possible to tune water properties to meet the desired
affinity for the target analyte by selecting the most appropriate temperature. On top of that,
the ionization constant of water also increases, thus liberating more ions, H+ and OH−, that
may work as a catalyst to break down the matrix, thus improving the solvent accessibility
to the analyte [59]. On the other side, for thermolabile nonpolar analytes, supercritical
carbon dioxide extraction (SCE) is a relevant option, avoiding the use of solvents, such as
hexane. Supercritical fluids have mixed properties between liquids and gases, facilitating
extraction processes: diffusion, viscosity, and surface tension similar to gases and density
and solvation power as liquids. In the particular case of CO2, the critical temperature is
close to room temperature (31 °C), and working under supercritical conditions is possible
at relatively low temperatures. The solvent’s low polarity makes it ideal for nonpolar com-
pounds. However, SCE of more polar compounds is possible using a chemical modifier or a
cosolvent (such as ethanol), though decreasing the process greenness. Further evaporation
or concentration steps are not needed: resuming the atmospheric conditions turns the
solvent back into gas that can either return to the environment or be pressurized again to
be reused while purifying/concentrating the analyte’s sample.

Greener processes tend to use greener solvents with lower environmental impact.
Bio-based solvents using renewable sources or water are considered solvents with a lower
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environmental footprint. However, the utmost target should be using direct analytical
methods not requiring reagents or solvents [60]. When the sample’s pretreatment is
unavoidable, alternatives to reduce or use no solvent at all in the preparation step should
be considered [61]. In this context, sample treatments such as simple pressing or extrusion,
instant controlled pressure drop, PEFs, or microwaves applied directly in the matrix
being analyzed, without adding extra solvents, may cause membrane or cellular structure
ruptures enough to free intracellular or structural fluids containing the compounds to be
analyzed.

In Table 1 are described the advantages and disadvantages of the most common
GreETs used in the analysis of biological, food, and environmental samples.

Table 1. Advantages and disadvantages of some GreETs commonly used in the analysis of biological,
food, and environmental matrices.

Extraction Procedure Advantages Disadvantages

SPME

Alternative to SPE
A limited number of steps
Reduced sample amount
Reuse of the polymeric phase
Environmentally friendly
Short extraction time

Potential contamination of the SPME needle

µSPE

Alternative of LLE
Simplicity of automation
Suitable for large scale
Low sorbent
Low solvent volume

Requires stirring
Possibility of low recoveries

MEPS

Low solvent volume
Low sample amount
Fast and easy to use
Economical
Fully automated for online procedure

Requires a wide range of optimization steps

MSPE

Environmentally friendly
A limited number of steps
Low amount of sorbent material
Reuse of sorbent material
Short extraction time

Requires vortex/shaker/magnetic stirrerSelection
of suitable sorbent

MSDP

Environmentally friendly
A limited number of steps
Quick
Simple

Requires anhydrous sorbents activated at high
temperatures

FPSE

Efficient
Fast extraction
Low volume of solvents
High preconcentration factor

Low sorbent capacity
Long sample preparation time

DLLME

Economical
High recovery
Low sample amount
Low extraction time
Low solvent volume

Low selectivity
Requires centrifugation

SFOME

Environmentally friendly
High enrichment factor economical
Low volume of solvents
Simplicity of automation

Requires a wide range of optimization steps
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Table 1. Cont.

Extraction Procedure Advantages Disadvantages

µQuEChERS
Economical
Efficient clean-up by dSPE
Low solvent consumption

Labor intensive
Difficult to automate
Emulsion formation

SFE

Environmentally friendly
No required solvents
Low operating temperatures (40–80 ◦C)
Fast and high yield

Very expensive
Complex equipment operating at high pressures
High power consumption

Legend: DLLME: dispersive liquid–liquid microextraction; FPSE: fabric-phase sorptive extraction; MEPS: microex-
traction in packed sorbent; MSPD: matrix solid-phase dispersion; MSPE: magnetic solid-phase extraction; SFE:
supercritical fluid extraction; SFOME: solidification of floating organic drop microextraction; SPME: solid-phase
microextraction; µQuEChERS: micro-QuEChERS; µSPE: micro-solid-phase extraction.

4. High-Resolution Analytical Techniques

Liquid chromatography (LC) has a great benefit on the efficiency of separating complex
matrices, but it is not appropriate to achieve structural information of the target analytes.
In this sense, LC combined with mass spectrometry (MS) or MS/MS is certainly the most
common analytical approach in the analysis of a diversity of target analytes in environmen-
tal, clinical, and food matrices, since it provides higher selectivity, mainly when isomeric
mixtures were analyzed. HPLC combined with a traditional detector such as ultraviolet
(UV) [62], photodiode array detector (PDA) [63], and fluorescence detector (FLD) [64] have
been applied in the determination of several target analytes in environmental, clinical, and
food matrices. The benefits of these traditional systems are economical, more accessible
in common laboratories, efficient, faster, and easy to use. Despite the lower sensitivity
attained using these traditional detectors, excellent results related to validation parameters
were achieved, namely, low limit of detection (few µg/L), good accuracy (recoveries higher
than 70%), and intra- and interday precisions with relative standard deviation (RSD) lower
than 20%. Currently, UV, PDA (DAD), and FLD detectors have been substituted by MS
and/or MS/MS detectors since they provide high selectivity, sensitivity (low LODs), and
ability to provide information related to molecular mass and structural proprieties. Liquid
chromatography–tandem mass spectrometry (LC–MS/MS) [65] is becoming a promising
analytical approach to analyzing complex matrices due to its high separation resolution,
high sensitivity (low LODs), and capacity to identify compounds and does not require
any derivatization step before the analysis. Nevertheless, compared with the traditional
systems, LC–MS/MS showed several drawbacks, such as the complexity of the operation,
expensiveness, and strong matrix effects that promote in many cases signal suppression
or enhancement.

The atmospheric pressure ionization of MS has electrospray ionization (ESI) and atmo-
spheric pressure chemical ionization (APCI). The introduction of ESI and APCI overcame
the limitation of previous interfaces by evaporating the mobile phase during the ionization
process. This, combined with the orthogonal spray interface, provided a means to stop
possibly interfering nonvolatile compounds, such as salts, buffers, and detergents, from
entering the MS. For many target analytes, ESI provides high sensitivity, being more used
than APCI [65]. APCI is more appropriate for the analysis of nonpolar analytes and volatile
organic compounds (VOCs). In addition, the major benefits of the application of ESI for
quantitative LC–MS are the production of protonated or deprotonated molecules with
slight fragmentation, optimal selection of precursor ions, and maximizing sensitivity, the
matrix effect being its main drawback.

Single quadrupole, triple quadrupole (QQQ-MS), ion trap (IT), time of flight (TOF),
and quadrupole–time of flight (Q–TOF) are the most common MSs used in tandem mass
spectrometry (MS/MS). The IT, TOF, and Q–TOF mass spectrometers usually are used for
structural elucidation and the identification of unknown compounds. Nevertheless, achiev-
ing structural information of unknown compounds requires higher purity of matrices. More
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sophisticated analytical approaches, such as ultra-performance liquid chromatography–
tandem mass spectrometry (UHPLC–MS/MS) [66], have been recently used in the analysis
of compounds in environmental, clinical, and food matrices. UHPLC–MS/MS compared
with HPLC–MS/MS provides high pressures, narrow peaks, high chromatographic sep-
aration, and lower analysis time and solvent volumes. Moreover, LC coupled to high-
resolution mass spectrometry (HRMS) was used for direct determination of glyphosate
and its metabolite aminomethylphosphonic acid (AMPA) in human urine by combining
cold-induced phase separation (CIPS) with hydrophilic pipette tip solid-phase extraction
(PT-SPE) [67]. LC–HRMS compared with LC–MS offers screening for targeted, suspect,
and nontargeted analysis in a single run, producing high-resolution accurate masses, their
isotopic patterns, and MS2 spectra included in online databases.

Gas chromatography (GC) coupled with a flame ionization detector (FID) [68], MS [69],
or MS/MS [70] has also been used in minor extension, when compared with LC–MS and
LC–MS/MS, in the analysis of environmental, clinical, and food matrices. This fact could
be explained by the derivatization process required for the analysis of some target analytes
in GC analysis to promote the volatility and decrease the polarity of the analytes, as well as
the time of analysis.

Other analytical approaches have been used in the analysis of environmental, clinical,
and food matrices, such as flame atomic absorption spectrometry (FAAS) [71], inductively
coupled plasma (ICP) combined with mass spectrometry (MS) [72], or optical emission
spectrometry (OES) [73]. Additional details about these and other examples are available
in Tables S1–S3, covering the clinical, food, and environmental fields, respectively.

5. Applications of Green Extraction Techniques to Different Fields

As discussed in the previous sections, the use of GreETs spans a wide range of applica-
tions, covering the most diverse type of samples, from biofluids to environmental matrices
and all type of foods (an exhaustive list of applications reported in the literature since 2016
is available in the Supplementary Material). In modern analytical layouts and to fulfill
GAC requirements, the analysis that follows the sample preparation using GreETs should
employ fast and efficient analytical instruments able to acquire huge amounts of data. As a
consequence, powerful data processing and statistical analysis procedures will be required
to produce consistent results (Figure 6).
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5.1. Biological Samples

The application of GreETs to the clinical field has increased consistently since the begin-
ning of the century [74]. This mostly includes body fluid samples containing lower-molecular-
mass organic molecules, less than 500 g/mol, comprising drug analytes, metabolites, envi-
ronmental exposure contaminants, poisons, tissues, and endogenous substances [74]. These
biological samples present great complexity and moderate-to-high levels of protein, thus
requiring robust sample preparation approaches able to simplify and isolate the target
analytes from the matrix [75]. As discussed in more detail in the previous sections, tradi-
tional sample preparation methods are not particularly tailored for clinical applications
because they are time-consuming and require various steps and extensive clean-up before
analysis. In contrast, most GreETs require low sample amounts, very low or no solvent at
all, and simple, fast, and user-friendly systems that can be easily automated [75]. These
advantages made SPME, µSPE, MEPS, MSPE, just to name a few GreETs, particularly
suitable to process biological samples. Moreover, they also allow spanning a wide range of
analytes with different properties, such as drugs for clinical and forensic toxicology assays,
pharmacokinetic studies, biochemical analysis, pharmaceuticals, in vivo applications, and
metabolomics [75]. SPME and its different formats are particularly efficient in this field of
application because they often require minimum sample pretreatment and can be easily cou-
pled to analytical instruments (e.g., CG and LC), providing an enhanced extraction capacity
and simultaneous quantification of different compounds with overall sensitivity. This in-
cludes the simultaneous identification of drugs of abuse (e.g., amphetamines, barbiturates,
methadone), psychoactive substances, pharmaceuticals (e.g., antidepressants, antiepileptic
agents, steroids, anorectic agents, corticosteroids, anaesthetics), substances that affect the
adrenergic system, nonsteroidal anti-inflammatory substances, and so forth [76]. Examples
of such applications are available as Supplementary Material (Table S1). Among the differ-
ent biological matrices, microextraction of urine samples has the advantage of minimum
processing, often not requiring any centrifugation or filtration before extraction. This
minimizes sample handling and improves method precision. Additionally, it is suitable
for a wide range of sample volumes, including volumes as small as 50 µL, and even for
sampling when the volume is not accurately known. Diverse types of GreETs using urine
are available in the literature, SPME, µSPE, and MEPS being the most often reported [75]
(Table S1). The use of GreETs with blood sampling is also advantageous, particularly when
this allows the elimination of blood-withdrawal steps from the analytical workflow, as with
SPME. GreET usage also reduces the risk of analyte degradation and matrix changes due to
enzymatic conversion, as well as fast sample collection and clean-up. Different examples of
applications involving blood sampling using GreETs can be found in the literature, such as
VOCs (SPME [77]), polycyclic aromatic hydrocarbons (PAHs, pipette-tip SPE [78]), Ni and
Pb (µSPE [79]), opiates (MEPS [70]), and antidepressants (FPSE [80]). SPME has also been
reported in in vivo assays with biological matrices like tissues. This can be performed with
a removed tissue portion (ex vivo), direct in vivo measurement, exposing the BioSPME
needle to the tissue or even inserting the probes directly into the tissue. Regarding this,
Musteata [81] observed that microdialysis and SPME were not only appropriate for tissue
sampling but also complementary to each other for in vivo sampling and ex situ analysis.
By using this approach, the probe extracts only a slight fraction of the free analyte, minimiz-
ing disturbances of chemical equilibrium and allowing multiple measurements of analyte
concentrations under physiological conditions. Moreover, the accurate determination of
analyte concentration is unaffected by the sample volume. Finally, the technique is open to
miniaturization, allowing its application within small living systems, sample storage and
transportation, and easy coupling to portable instrumentation [75]. An example of such an
approach was reported by Cudjoe, et al. [82], which used SPME to monitor neurotransmitter
changes in the striatum of a rat brain after dosing antidepressants, variations in serotonin
concentrations due to deep-brain stimulations, and distribution of pharmaceuticals in the
striatal region and cortex. This elegant experiment shows that SPME can also be very
useful in metabolomics assays, particularly at the initial stage of biomarker discovery in
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medical diagnosis. It is also very relevant to the quantification of different compounds si-
multaneously, which enables the simultaneous monitoring of drugs in complex treatments.
This is possible because GreETs coupling with chromatographic methods, as shown in
Section 4, can be easily achieved, allowing the analysis of a whole pharmacopoeia of drugs,
such as anticancer, antibiotic, antidepressant, analgesic, anti-inflammatory, steroid, and
neurotransmitter drugs. This can help to provide earlier detection of the disease, which
is imperative for a successful clinical treatment, especially in some oncologic diseases,
where an early diagnosis is crucial for the survival of the patient without suffering severe
impacts on health and life quality. FPSE is a very promising GreET having a key advantage
regarding other microextraction approaches, allowing a direct analyte extraction with no
sample modification [6]. Since its introduction in 2014, many examples of applications in-
volving biological samples have been reported in the literature, such as the cow and human
breast milk sample clean-up for screening bisphenol A and residual dental restorative mate-
rial [83]; the simultaneous monitoring of inflammatory bowel disease treatment drugs [84]
and anticancer drugs [85] in whole blood, plasma, and urine; or the assessment of radiation
exposure [86] (Table S1). The use of magnetic nanoparticles as microextraction sorbents in
MSPE also results in a very simple and efficient extraction procedure because the sorbent
can be tailored to extract specific analytes, and the sorbent-retained analyte complex can be
easily recovered from the solution using a magnetic field or magnet [87]. MSPE has been
used to extract different drugs from urine, such as nonsteroidal anti-inflammatory drugs
(NSAIDs) [88], methadone [89], pseudoephedrine [90], fluoxetine [91], and statins [92], as
well as antiepileptic drugs [93] or ibuprofen [94] from plasma (Table S1). GreETs involving
liquid-phase sorbents, such as DLLME, are also often reported in the literature. This format,
mostly assisted by ultrasounds (UA-DLLME), allows the usage of a myriad of extraction
solvents, and consequently, the repertoire of applications is very broad. Mabrouk et al. [95],
for instance, used UA-DLLME to extract three gliflozins (antidiabetic drugs) from plasma.

5.2. Food Samples

Food analysis is of great importance since ingestion of a growing number of com-
pounds intentionally or not added to food can represent a risk to our health. However,
beyond food safety, consumers are also more aware of the nutritional value of food and
are also interested in its composition, particularly regarding the presence of bioactive com-
pounds. For these reasons, efficient methodologies for the identification and quantification
of all these analytes are required. Accordingly, GreETs have been used in the sample prepa-
ration procedures of different food matrices to extract and preconcentrate target analytes to
a sufficient level to allow their analysis [96]. The µSPE technique, for instance, has been
used in the determination of aflatoxins [96], pesticides [62], trace metals [73], and pollutants,
such as bisphenol A [97] and PAHs [68], in a variety of food products. Additionally, it aided
in the identification and quantification of rosmarinic acid in medicinal plants [98] and vita-
min D3 in bovine milk [99]. MEPS is another GreET that has been employed in the analysis
of foodstuffs, including the identification of herbicides in rice [100], insecticides in drinking
water [101], pesticides in apple juice and coffee [102], antibiotics [103] and steroids [104]
in milk, parabens in vegetable oil [105], PAHs in apple [106], caffeine in drinks [107], and
polyphenols in baby food [108]. SPME has been widely used to study the volatile compo-
sition of several foods, including walnut oils [109], hongeo [110], melon [111], and dairy
products [112]. Moreover, this technique has also been used to determine the composi-
tion of specific analytes, such as the x-ray induced markers 2-dodecylcyclobutanone and
2-tetradecylcyclobutanone in irradiated dairy products [113], the contaminants 1,4-dioxane
and 1,2,3-trichloropropane [114], acrylamide [115], organophosphorus pesticides [116], ph-
thalates [117], synthetic phenolic antioxidants [118], and xanthines [119]. MSPD has been re-
ported in the literature for the extraction of flavonoids [120], polyphenols [121], mangiferin,
and hyperoside in mango-processing waste [122], ergosterol in edible fungi [123], and
pharmacologically active substances in microalgae [124]. This methodology has also been
applied for pesticide [125] and sulfonylurea herbicide [126] extraction in several food
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matrices. MSPE allowed the extraction of trace metals in food products [127] (additional
examples available in Table S2). Moreover, studies have shown that this technique can
be used for the determination of acrylamide [78,79], bisphenols [80], PAHs [128], plant
growth regulators [129], and caffeine [130]. FPSE is another GreET that has been shown
to be very useful for the determination of several classes of pesticides in foods [96]. Other
analytes studied using this technique include bisphenol A [131], oligomers [132], PAHs [64],
steroid hormone residues [133], and tetracycline residues [134]. DLLME has been vastly ap-
plied for the determination of trace metals [71] (additional examples available in Table S2),
pesticides [96], chloramphenicol [135], and nonsteroidal anti-inflammatory drugs [136]
in different foods. µQuEChERS was employed in the extraction of several analytes from
foods, ranging from pesticide residues in wine [137] and PAHs in coffee and tea [138]
to polyphenols in baby food [139] and pyrrolizidine alkaloids in oregano [66]. The ap-
plication of SDME was proved to allow the determination of unfavorable compounds
and elements in foods, such as drug metabolites [140], acrylamide [141], ammonia [142],
ethyl carbamate [143], formaldehyde [144], tartrazine [145], and Cu(II) [146]. Similarly to
SDME, SFOME can be used for the detection of trace metals [147], as well as of β-lactam
antibiotic residues [148] and organochlorine pesticides [149]. PEAE has been applied for
the extraction of different bioactive compounds [63], including phenolic compounds [43],
carotenoids [150], procyanidins [151], and sulforaphane [152]. The use of SFE has been
used for the extraction of several antioxidant and antibacterial compounds from feijoa
leaf [153], fatty acids and oils from Indian almonds [154], oleoresins from industrial food
waste [155], and polar lipid fraction from blackberry and passion fruits [156]. Additionally,
SFE was employed for the extraction of phytochemicals from Terminalia chebula pulp [157].
Finally, SWE is a technique largely applied to the extraction of several classes of bioactive
compounds, including anthocyanins [158], fatty acids [159], hesperidin and narirutin [160],
phenolic compounds [161], and scopoletin, alizarin, and rutin [162]. The extraction of
antioxidant protein hydrolysates from shellfish waste [163] and pectic polysaccharides
from apple pomace has been also previously accomplished by SWE [164].

5.3. Environmental Samples

Most environmental samples have complex matrix compositions and involve the
determination of trace and ultra-trace analytes [3]. For instance, the determination of
PAHs in water samples or pesticide analysis is challenging due to their very low con-
centrations [2,3]. This requires efficient clean-up and enrichment procedures before the
analytes’ analysis [2]. MEPS seems to be tailored for these requirements and has been
applied in the analysis of benzene, phenol and their derivates [165], diazinon [166], La3+

and Tb3+ [167], organophosphorus pesticides [168] in water samples, fipronil and flu-
azuron residues in wastewater [169], and PAHs in the most diverse samples (see Table S3),
including Antarctic snow [170], and in the detection of phthalates in tap and river wa-
ter [171]. SPME is eventually one of the most used sample extraction procedures and has
been applied for the detection of different pesticides in water [172] (additional examples
in Table S3), microplastic in coral reef invertebrates [173], PAHs in rainwater [174], and
volatile organic compounds (VOCs) in wastewater [69]. Molecularly imprinted polymers
(MIPs) have also been employed in the extraction of polychlorinated aromatic compounds
from environmental samples. Some applications include the use of MIPs in the analysis
of 2-chlorophenol [175], 2,4-dichlorophenoxyacetic acid [176], and endosulfans [177] in
water samples and in the determination of organochlorine pesticides in environmental
samples [178]. This methodology has also been reported in the preparation of soil samples
to increase the extraction efficiency of triazine herbicides [179]. Multisphere adsorptive
microextraction (MSAµ) has been applied in the extraction of caffeine, acetaminophen [18],
pharmaceuticals, sexual steroid hormones, and antibiotics [17] in water samples. QuECh-
ERS is known as the Swiss knife of extraction. Its µQuEChERS version is even more greener
and includes applications such as the detection of insecticides in guttation fluids [65],
pesticides in arthropods and gastropods [180], and VOCs in zebrafish [181].
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LPME techniques, such as SDME and SLLME, use small volumes of organic solvents
to extract the analytes [4]. SDME has gained a lot of interest in the last few years and is
mostly used for the determination of trace analysis in environmental matrices, including
Cu(II) in tap and seawater [146], PAHs in tap water [182], ranitidine in wastewater [183],
and V(V) in water samples [184]. DLLME is another efficient microextraction procedure,
and its ultrasound-assisted (UA) DLLME variation has been adopted in several environ-
mental matrices for the analysis of aromatic amines [185], Cd [186], Cr [187], dyes [188],
herbicides [189], polybrominated biphenyls [190], pyrethroid insecticides [191], and tetra-
cycline [192] in water samples. SFE was applied to environmental matrices for the analysis
of Ag in electronic waste [193], petroleum biomarkers in tar balls and crude oils [194],
petroleum hydrocarbons in soil [195], and solanesol in tobacco residues [196]. In turn, SWE
has been successfully used for the extraction of Co, Li, and Mn in spent lithium-ion batter-
ies [197], crude oil in soil [198], oil shale in mines [199], and VOCs in sewage sludge [200].
An exhaustive list of GreETs involving environmental samples is available in Table S3.

6. Final Remarks

The sample preparation, including the extraction process, is one of the most important
steps for any analysis. It is the step that determines the quality of the measurements of the
target analytes, and so it should be critically considered. In recent years, a rapid transition
from solvent-based extractions and solid sorbent-based extractions to miniaturized formats
promoted a substantial reduction of the solvent consumption. Being simpler, faster, more
economical, and user-friendly than CETs, SPE techniques have become more popular. In
turn, this has boosted a continuous improvement of innovative techniques respecting
the green analytical chemistry principles, such as, FPSE, SPME, SPDE, MEPS, SBSE, and
MSAµE. However, there are always opportunities for improvement, and future research
should be directed to, for instance, innovative sorbents/nanosorbents able to further
improve retention efficiency, loading capacity, and selectivity. Also noticeable will be the use
of artificial intelligence, including microfluidics and smartphones, to boost the automation
of extraction procedures and the use of alternative detectors. Another challenging aspect in
this field in the near future is the integration of the whole analytical procedure in injection
loops able to protect operators from harmful solvents and significantly reduce their use.
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AMPA: aminomethylphosphonic acid; APCI: atmospheric pressure chemical ionization; BIN: bar-
rel insert needle; BID-SDME: bubble-in-drop; BFR: brominated flame retardants; CET: classical extrac-
tion techniques; CFME: continuous-flow microextraction; CIPS: cold-induced phase separation; CNFs:
carbon nanofibers; CNTs: carbon nanotubes; DAD: diode-array detection; DCM: dichloromethane;
DES: deep eutectic solvents; DLLME: dispersive liquid–liquid microextraction; dSPE: dispersive
solid-phase extraction; DVB: divinylbenzene; ESI: electrospray ionization; ECD: electrochemical
detection; EPT-SPME: effervescent pipette-tip solid-phase microextraction; EtAc: ethyl acetate; EtOH:
ethanol; FA: formic acid; FAAS: flame atomic absorption spectrometry; FID: flame ionization detec-
tor; FGO-TD-PTFE: functional graphene oxide thermal desorption poly(tetrafluoroethylene); FLD:
fluorescence detector; FPSE: fabric-phase sorbent extraction; GA: gallic acid; GAC: green analytical
chemistry; GC–MS: gas chromatography–mass spectrometry; GreETs: green extraction techniques;
HF-LPME: hollow fiber liquid-phase microextraction; HPLC: high performance liquid chromatogra-
phy; HS: headspace; HRMS: high-resolution mass spectrometry; ICP: inductively coupled plasma; ILs:
ionic liquids; IT: ion trap; LC–MS: liquid chromatography–mass spectrometry; LDH: layered double
hydroxide; LLE: liquid–liquid extraction; LLME: liquid–liquid microextraction; LOD: limit of detec-
tion; LPE: liquid-phase extraction; M-ILs-SDME: magnetic ionic liquid single-drop microextraction;
MAE: microwave-assisted extraction; MIP: molecular imprinted polymer; MIOMS-ir: molecularly
imprinted ordered mesoporous silica imprint-removed silica; MISM: molecularly imprinted silica
monolithic; MeOH: methanol; MEPS: microextraction by packed sorbent; MMF: multiple monolithic
fiber; MNPs: magnetic nanoparticles; MOF: metal organic framework; MS: mass spectrometry; MSAµ:
multisphere adsorptive microextraction; MSPD: matrix solid-phase dispersion; MSPE: magnetic solid-
phase extraction; MS/MS: tandem mass spectrometry; MWCNTs: multiwalled CNTs; NADES:
natural deep eutectic solvents; NPs: nanoparticles; NTD: needle trap device; NTME: needle trap
microextraction; NSAIDs: nonsteroidal anti-inflammatory drugs; OES: optical emission spectrometry;
PAHs: polycyclic aromatic hydrocarbons; PDA: photodiode array; PDMS: polydimethylsiloxane;
PEFAE: pulsed electric-field-assisted extraction; PSE: pressurized solvent extraction; PT: pipette tip;
PS/DVB-RP: reverse-phase polystyrene–divinylbenzene sorbent; QQQ: single quadrupole triple
quadrupole; Q–TOF: quadrupole–time of flight; SBSE: stir-bar sorptive extraction; SCE: supercritical
carbon dioxide extraction; SDME: single-drop microextraction; SFE: supercritical fluid extraction;
SFOME: solidification of floating organic drop microextraction; SPE: solid-phase extraction; SPME:
solid-phase microextraction; SWE: subcritical water extraction; TOF: quadrupole–time of flight; UA:
ultrasound-assisted; UHPLC: ultrahigh performance liquid chromatography; UABE: ultrasound-
assisted back extraction; UV: ultraviolet analysis; VOCs: volatile organic compounds; µQuEChERS:
micro-QuEChERS; µSPE: micro-solid-phase extraction.
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65. Hrynko, I.; Łozowicka, B.; Kaczyński, P. Development of precise micro analytical tool to identify potential insecticide hazards to
bees in guttation fluid using LC-ESI-MS/MS. Chemosphere 2021, 263, 128143. [CrossRef] [PubMed]

66. Izcara, S.; Casado, N.; Morante-Zarcero, S.; Sierra, I. A miniaturized QuEChERS method combined with ultrahigh liquid
chromatography coupled to tandem mass spectrometry for the analysis of pyrrolizidine alkaloids in oregano samples. Foods 2020,
9, 1319. [CrossRef]

67. Chen, D.; Miao, H.; Zhao, Y.; Wu, Y. A simple liquid chromatography-high resolution mass spectrometry method for the
determination of glyphosate and aminomethylphosphonic acid in human urine using cold-induced phase separation and
hydrophilic pipette tip solid-phase extraction. J. Chromatogr. A 2019, 1587, 73–78. [CrossRef]

68. Atirah Mohd Nazir, N.; Raoov, M.; Mohamad, S. Spent tea leaves as an adsorbent for micro-solid-phase extraction of polycyclic
aromatic hydrocarbons (PAHs) from water and food samples prior to GC-FID analysis. Microchem. J. 2020, 159, 105581. [CrossRef]

69. Moufid, M.; Hofmann, M.; El Bari, N.; Tiebe, C.; Bartholmai, M.; Bouchikhi, B. Wastewater monitoring by means of e-nose,
VE-tongue, TD-GC-MS, and SPME-GC-MS. Talanta 2021, 221, 121450. [CrossRef]

70. Prata, M.; Ribeiro, A.; Figueirinha, D.; Rosado, T.; Oppolzer, D.; Restolho, J.; Araújo, A.R.T.S.; Costa, S.; Barroso, M.; Gallardo,
E. Determination of opiates in whole blood using microextraction by packed sorbent and gas chromatography-tandem mass
spectrometry. J. Chromatogr. A 2019, 1602, 1–10. [CrossRef]

71. Altunay, N.; Elik, A.; Gürkan, R. Monitoring of some trace metals in honeys by flame atomic absorption spectrometry after
ultrasound assisted-dispersive liquid liquid microextraction using natural deep eutectic solvent. Microchem. J. 2019, 147, 49–59.
[CrossRef]

72. Shirkhanloo, H.; Khaleghi Abbasabadi, M.; Hosseini, F.; Faghihi Zarandi, A. Nanographene oxide modified phenyl methanethiol
nanomagnetic composite for rapid separation of aluminum in wastewaters, foods, and vegetable samples by microwave dispersive
magnetic micro solid-phase extraction. Food Chem. 2021, 347, 129042. [CrossRef]

73. Nyaba, L.; Nomngongo, P.N. Determination of trace metals in vegetables and water samples using dispersive ultrasound-assisted
cloud point-dispersive µ-solid phase extraction coupled with inductively coupled plasma optical emission spectrometry. Food
Chem. 2020, 322, 126749. [CrossRef] [PubMed]

74. Ulrich, S. Solid-phase microextraction in biomedical analysis. J. Chromatogr. A 2000, 902, 167–194. [CrossRef]
75. Souza-Silva, E.A.; Jiang, R.F.; Rodriguez-Lafuente, A.; Gionfriddo, E.; Pawliszyn, J. A critical review of the state of the art of

solid-phase microextraction of complex matrices I. Environmental analysis. TrAC Trends Anal. Chem. 2015, 71, 224–235. [CrossRef]
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