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 COVID-19 illness has a detrimental impact on the respiratory system, and 

the severity of the infection may be determined utilizing a selected imaging 
technique. Chest computer tomography (CT) imaging is a reliable diagnostic 

technique for finding COVID-19 early and slowing its progression. Recent 

research shows that deep learning algorithms, particularly convolutional 

neural network (CNN), may accurately diagnose COVID-19 using lung CT 
scan images. But in an emergency, detection accuracy simply is not enough. 

Determinants of data loss and classification completion time play a critical 

element. This study addresses the issue by finding the most efficient CNN 

model with the least data loss and classification time. Eight deep learning 
models, including Max Pooling 2D, Average Pooling 2D, VGG19, VGG16, 

MobileNetV2, InceptionV3, AlexNet, NFNet using a dataset of 16000 CT 

scans image data of COVID-19 and non-COVID-19 are compared in the 

study. Using the confusion matrix, the performance of the models is 
compared and together with the data loss and completion time. It is observed 

from the research that MobileNetV2 provides the highest accurate result of 

99.12% with the least data loss of 0.0504% in the lowest classification 

completion time of 16.5secs per epoch. Thus, employing MobileNetV2 gives 
the best and the quickest result in an emergency. 
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1. INTRODUCTION  

COVID-19 was derived from the virus known as a severe acute respiratory syndrome (SARS) or 

coronavirus2, commonly known as SARS-CoV-2 [1]. SARS-CoV-2 is a socially transmitted virus. While the 

majority of COVID-19 patients present with minor symptoms, a tiny proportion develop serious or life 

threatening complications. Contamination may result in pneumonia, excruciating respiratory pain, multiorgan 

failure, and death in a growing number of real instances [2]. A crucial and essential step in combating 

COVID-19 is an efficient screening of infected individuals, allowing for the isolation and treatment of 

positive patients. Currently, the major screening technique for COVID-19 detection is CT scan imaging of 

the lungs. The test is performed on the patient's chest and the result is ready within minutes. The lungs of 

patients with COVID-19 symptoms exhibit certain visual characteristics such as ground glass opacities-hazy 

darker patches that may distinguish COVID-19-infected individuals from non-infected patients [3], [4].  

https://creativecommons.org/licenses/by-sa/4.0/
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A detection technique based on chest radiography images has a number of benefits over the traditional 

approach. It may be quick, evaluate many cases concurrently, increase availability, and, most significantly, 

such a system can be very helpful in hospitals that lack or have a limited number of testing kits and 

resources. Additionally, due to radiography's significance in today's health care system, radiology imaging 

equipment is available in every hospital, making radiography-based approaches more easy and accessible. 

Since 2020, there has been a rise in the number of publicly accessible CT scan images from healthy 

individuals, as well as those with Covid-19. This allows us to examine medical pictures and discover 

potential trends that may result in the illness being diagnosed automatically. Machine learning techniques for 

automated diagnosis have recently acquired favor in the medical sector as an auxiliary tool for professionals 

[5]-[9]. Deep learning, a prominent field of study in artificial intelligence (AI), allows the development of 

end-to-end models capable of achieving promised outcomes utilizing input data without requiring human 

feature extraction [10], [11]. Numerous research addresses the diagnosis of lung illness using artificial 

intelligence to analyze medical images. Artificial intelligence is a rapidly growing area dedicated to the 

creation of models from data, and its use in the development of techniques to help professionals in the 

interpretation of medical images has accelerated in recent years. Transfer learning, in particular, is 

developing as a deep learning technique in which a model created for one task is utilized as the starting point 

for a model on a second task. Recent efforts have shown potential in enhancing detection in a variety of 

medical fields, including kidney cancer detection, Lungs cancer, and breast cancer detection. Nowadays, 

multiple pre-trained deep learning models are utilized to detect and predict COVID-19 from CT scans or X-

ray images. In this study, eight deep learning models are used to detect the COVID-19 on chest CT scan 

images and compared their accuracy, data loss and compilation time. 
 

 

2. LITERATURE REVIEW 

Researchers have been drawn to the COVID-19 classification to build algorithms to deal with this 

new problem. It's no secret that digital image processing algorithms have been utilized extensively in 

medicine to demonstrate their efficacy with acceptable outcomes. For this reason, these algorithms have been 

among the most popular approaches to finding a solution. Because a trustworthy method for diagnosing this 

viral illness is urgently required. Many new methods have recently been developed to identify and diagnose 

illness in its early stages to save the lives of the people suffering from it. For example, organ segmentation, 

disease identification and categorization, prediction, and more may be aided by image processing algorithms 

in the healthcare sector. 

Seum et al. [12] performed a qualitative study to examine the performance of CNN architectures 

DenseNet169 and DenseNet201 in identifying COVID-19 from CT scan pictures. The U-Net segmentation 

technique is examined in this study to determine the performance of CNN models. The dataset, SARS-COV-

2 CT-Scan, contains a record of 2481 CT scan images. DenseNet169 architecture obtained an accuracy of 

89.31% without using the segmentation method, whereas DenseNet201 model achieved an accuracy of 89.67% 

using U-Net. 

Polsinelli et al. [13], a light CNN architecture based on the Squeeze Net method is suggested to 

efficiently classify COVID-19 CT images from those of other patients suspected of having pneumonia and 

healthy individuals. The approach provides an accuracy of 85.03% during the first dataset layout and around 

3.2% inside the second dataset layout. 

Mishra et al. [14] used Transfer Learning to build an algorithm for detecting COVID-19 from CT 

scan images classified as Healthy (Normal), COVID-19, and Pneumonia. This article employs data 

augmentation and fine-tuning methods to enhance and optimize the VGG16 and Res-Net50 models, resulting 

in an average classification accuracy of 86.74% and 88.52%, respectively. 

Naeem and Bin Salem [15] describes how a combination of deep learning and multi-level feature 

extraction methodology is used to obtain COVID-19 classification using the CT scan and chest X-ray. GIST, 

SIFT, and CNN are used in this method to extract features from image data. The experimental findings show 

that the proposed method obtained an accuracy of 98.94%. 

The suggested technique from Kundu et al. [16] involves an ensemble method that utilizes the 

Gompertz function to generate fuzzy rankings for the basic classification models and adaptively fusing the 

base models' decision scores to construct predictions. Three transfer learning-based CNN models are being 

used to generate the decision scores for the proposed ensemble model that is VGG-1, WideResNet0-2, and 

InceptionV3. The ensemble method achieves 98.93% and 98.79% accuracy rates on the SARS-COV-2 and 

Harvard Data verse chest CT datasets, respectively. 

Deep learning techniques based on CNN were used in [17] to classify COVID-19 and non-COVID-

19 CT scan images. CTnet-10 was developed to detect COVID-19 with an accuracy of 82.1%. Additionally, 

different models including such DenseNet-169, VGG-16, ResNet-50, InceptionV3, and VGG-19 were 

assessed, with the latter showing to be better with an accuracy of 94.52%. 
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Most of the studies suggested or used deep learning techniques to identify, predict, and classify 

COVID-19 from CT scans and X-ray images of the chest. Table 1 demonstrations the summary of relevant 

research. This study uses deep learning techniques to classify the COVID-19, and the best models with the 

highest accuracy, lowest data loss, and shortest compilation time are identified. 

 

 

Table 1. The overview of the related studies 
Paper Dataset Type Source Class Model Accuracy 

[12] 
CT scan dataset Kaggle.com 

2 
DenseNet169 89.31% 

DenseNet201+ U-Net 89.67% 

[13] CT scan dataset Github.com 2 Custom Squeeze Net 85.03% 

[14] 
CT scan dataset Kaggle.com + sirm.org 

3 
VGG16 86.74% 

ResNet50 88.52% 

[15] CT scan + X-ray dataset Kaggle.com + sirm.org 2 GIST+ SIFT+ CNN 98.94% 

[16] 
CT scan dataset Github.com 

2 
VGG11 +  

WideResNet502 + InceptionV3 

98.93% 

CT scan dataset Harvard Dataverse 98.79% 

[17] 
CT scan dataset Github.com 

2 
CTnet-10 82.1% 

VGG-16 94.52% 

 

 

3. METHODOLOGY 

COVID-19 detection is performed in this study using the categorization of Chest CT scan images of 

the lungs. CNN architectures are used to classify images. To determine which architect performs the best at 

identifying COVID-19 infected CT scan images, a confusion matrix of implemented models is constructed 

and compared. Additionally, a variety of performance parameters are accessed through the confusion matrix. 

Finally, in order to determine which model is the most efficient, three measures are compared: accuracy, rate 

of data loss, and classification completion time per epoch for the models. The study's underlying idea is to 

find the most efficient CNN model by identifying the model with the greatest accuracy and the lowest data 

loss rate in the shortest classification completion time. Figure 1 depicts the study's flow diagram. 
 

 

 
 

Figure 1. System architecture of proposed study 
 

 

3.1.  Classification models 

3.1.1. Convolution neural network (CNN) architecture 

CNN is a machine learning method that utilizes deep learning. It takes an input image and weights 

different elements, allowing it to identify one image from another [18]-[21]. The model utilizes two 

convolutional layers, with convolutional 2D layers in each. In both convolutional 2D layers, 'Relu activation' 

is utilized. It implements two Dense Layers for complete connectivity and employed 'Relu activation' for the 

first dense layer and 'Sigmoid activation' for the second dense layer. Apart from these levels, there are several 

hidden layers and an input layer. The model implementes two pooling layers: Max Pooling 2D and Average 

Pooling 2D. 
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3.1.2. Max pooling 

Max pooling is used to assist in overfitting by giving an idealized version of the representation. It 

also reduces calculation time by lowering the amount of variables to learn and provides basic internal state 

performance. It performs a pooling procedure to find the largest feature map component. As the output pixel 

count decreases, the dimension of pictures decreases as well. 
 

3.1.3. Average pooling 

The filter's region of the feature map is used to pick the average element, which is a pooling process. 

Each value is added to an average and then fed to the next layer. That all data are used for feature mapping 

and output creation, which is a highly general calculation. 
 

3.1.4. VGG19 

VGG19 is a VGG model version comprised of 16 convolution layer, three fully connected layers, 

five Max Pool layers, and one Softmax. The feed to this network was a fixed-size RGB picture with a matrix 

with same size. Max pooling is accomplished using stride 2 across a 2x2 pixel window. Rectified linear units 

(ReLu) are used to incorporate non-linearity into models, which improves classification and computing 

performance. Three completely interconnected layers were created. Finally, as the model's final layer, there is 

indeed a softmax function. 
 

3.1.5. VGG16 

VGG16 uses 1x1 convolution filters, which may be thought of as a linear modification of the input 

channels. The input to the layer is chosen in such a way that the spatial resolution is maintained after 

convolution. In this model, spatial pooling is accomplished by using five max pooling layers that follow 

many of the conventional levels. Stride 2 is used to cover a 2x2 pixel frame when max pooling is applied. 

Three fully connected (FC) layers are inserted after a series of convolutional layers. The softmax layer is the 

last one. Layers 1 and 2 are always configured the same way in all networks. 

 

3.1.6. MobileNetV2 

MobileNetV2 is a CNN architecture optimized for mobile devices. MobileNetV2's first fully 

convolutional layer has 32 filters. There are 19 recurrent bottleneck layers. It is used to classify images, 

identify objects, and perform quantization. Two types of blocks are introduced in MobileNetv2. 

- Residual block of stride 1.  

- Block for downsizing with 2 stride.  

Both blocks are made up of three layers. The first layer employs the ReLU6 activation function with 

1x1 convolution. On the second layer, a depthwise convolution is performed, and the third layer is likewise a 

1x1 convolution, except for any non-linearity. The third layer also uses the ReLu activation function 

MobileNetV2 performs well with fewer mathematical operations and a small number of parameters. It is 

about 35% quicker than its predecessor, MobileNetV1. 

 

3.1.7. InceptionV3 

When Google first demonstrated their Inception Neural Network Model in the ImageNet 

Classification Competition, it was called InceptionV3. The model is constructed using symmetrical and 

asymmetrical building elements such as convolution layers, pooling layers, concatinations, dropout, and  

fully-connected layers. This allows for the identification and incorporation of information from smoothed 

label sequences utilizing the RMSProp Optimizer and Factorized 7x7 Convolution, as well as the use of the 

BatchNorm in Auxillary Classifiers and a downscaling classifier. 

 

3.1.8. AlexNet 

The AlexNet consists of 8 layers, each with its own set of learnable parameters. The model consists 

of 5 layers, the first of which is a max pooling layer followed by three fully connected layers; each of these 

levels, save the output layer, uses Relu activation. Using the Relu as an activation function resulted in a 

nearly six-fold increase in the speed of the training process. Additionally, utilizing dropout layers keep the 

model from overfitting. 

 

3.1.9. NFNet 

DeepMind created NFNets to eliminate the need for normalization and boost training performance. 

Additionally, it adds a method called adaptive gradient clipping (AGC), which enables fast training of neural 

network models such as ResNet with higher batch size. The primary advantage of AGC is that it eliminates 

this hyperparameter. Along with AGC, dropout is utilized to mimic the regularization effect that Batch 

normalization provided. 
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3.2.  Performance evaluation 

The scientific community has agreed on a number of criteria for evaluating the classification 

system's quality [22]-[24]. The confusion matrix is used to assess the study's success using the following key 

parameters: true-positive (TP), true-negative (TN), false-positive (FP), and false-negative (FN) where, 

- TP represents COVID-19 classified by the models.  

- TN indicates models that are not classed as COVID-19.  

- FP indicates non-COVID-19 that the models have classified as COVID-19.  

- FN denotes COVID-19 classified as non-COVID-19 by the models. 

Validity metrics such as accuracy, sensitivity/recall, specificity, F1-score, precision/positive 

predicted value (PPV), negative predicted value (NPV), false-negative rate (FNR), false-positive rate (FPR), 

false discovery rate (FDR), false omission rate (FOR), and Matthews correlation coefficient (MCC) can be 

calculated using these parameters [25]-[30]. The mathematical formulas for these measurements are as shown 

in (1) to (11). 

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝐹𝑁+𝐹𝑃+𝑇𝑁
 (1) 

 

From (1), Accuracy is the ratio of properly predicted observations to total observations. 

 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =
𝑇𝑃

TP+FN
 (2) 

 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =  
𝑇𝑁

𝑇𝑁+𝐹𝑃
  (3) 

 

Specificity and sensitivity in (2) and (3) are used to classify data into two groups. Sensitivity is defined as the 

true positive rate, while specificity is defined as the true negative rate. 

 

𝐹1 − 𝑠𝑐𝑜𝑟𝑒 =  2(
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
)  (4) 

 

By calculating the harmonic mean of the precision and sensitivity of a classifier, the F1-score in (4) 

integrates both into a single measure. 

 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑃

𝑇𝑃+𝐹𝑃
  (5) 

 

Precision in (5) refers to a classification model's ability to identify only relevant data items. 

 

𝑁𝑃𝑉 =  
𝑇𝑁

𝑇𝑁+𝐹𝑁
  (6) 

 

In (6), NPV refers to the percentage of anticipated negatives that are truly negative. It expresses the 

likelihood that a projected negative value is a real negative value. 

 

𝐹𝑁𝑅 =  
𝐹𝑁

𝐹𝑁+𝑇𝑃
  (7) 

 

FNR refers to the rate of determining truly positive negatives. As shown in (7) expresses the chance 

that an anticipated negative value is in reality a positive value. 

 

𝐹𝑃𝑅 =  
𝐹𝑃

𝐹𝑃+𝑇𝑁
  (8) 

 

In (8), FPR refers to the rate of classifying a real negative as a positive. 

 

𝐹𝐷𝑅 =  
𝐹𝑃

𝐹𝑃+𝑇𝑃
  (9) 

 

FDR in (9), is the percentage of ideas that all beliefs are true when they in fact false. It is the chance that all 

reject the null hypothesis erroneously. 

 

𝐹𝑂𝑅 =  
𝐹𝑁

𝐹𝑁+𝑇𝑁
  (10) 
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The FOR in (10) is the percentage of people who have a negative test result but have a positive actual 

disease. 

 

𝑀𝐶𝐶 =  
𝑇𝑃×𝑇𝑁−𝐹𝑃×𝐹𝑁 

√ ( (𝑇𝑃+𝐹𝑃)(𝑇𝑃+𝐹𝑁)(𝑇𝑁+𝐹𝑃)(𝑇𝑁+𝐹𝑁) )
  (11) 

 

As shown in (11) MCC is a quality metric for binary classification. where 1 represents a perfect agreement, 0 

represents a prediction that is just random, and -1 represents the complete conflict between prediction and 

real observation. 

 

 

4. RESULT AND DISCUSSION 

4.1.  Dataset preparation 
A database of CT scan images is used in this work, which is publicly available in [31]. The dataset 

contains 749 images, 397 images of Non-COVID-19 (healthy lungs), and 349 images of COVID-19 are 

shown in Figure 2. Since not all of the images were the same size, resized all the images to 224×224 pixels. 

As deep learning architectures perform better with more data, the ImageDataGenerator function is used to 

expand the size of the dataset and create more augmentation images. The ImageDataGenerator's parameters 

are shown in Table 2.  

Following that, all images are transformed to NumPy arrays to speed up computation. COVID-19 

and NON-COVID-19 are determined using the LabelBinarizer() and categorical methods. The augmented 

dataset (containing 16000 images) is divided into a training set and a test set at a ratio of 80:20. The final 

dataset's details are shown in Table 3. 

 

 

Table 2. Augmentation parameters 
Rotation 

Range 

Zoom 

Range 

Width Shift 

Range 

Height 

Shift Range 

Shear 

Range 

Horizontal 

Flip 

Vertical Flip Mode 

20 0.15 0.2  0.2 0.15 TRUE TRUE Nearest 

 

 

 
 

Figure 2. Data set classified sample (CT image of COVID-19 and Non-COVID-19) 

 

 

Table 3. Final dataset description (After Augmentation) 
Variable Speed (rpm) 

Total Number of Images  16000 

COVID-19 CT Image 8000 

Healthy (Non-COVID-19) CT Image 8000 

Dimension (Size in Pixel)  224×224 pixels 

Disease Types 2 

Training Images 12800 

Testing Images 3200 

 

 

4.2.  Result analysis 

The suggested study used CNN architectures to classify COVID-19 and non-COVID-19 from Chest 

CT scan images. 16000 image data are used after preprocessing to gain the best classification result. Here 8 

CNN architectures are used to identify the image data. The architectures are CNN Max Pooling, CNN 
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Average Polling, MobileNetV2, VGG16, VGG18, InceptionV3, and NFNet. Each architecture is trained and 

tested on 100 epochs using the RMSProp optimizer with a learning rate of 0.0000001. The outcome of the 

models is recorded and assessed to gain values of the confusion matrix. The confusion matrix obtained for 

each architecture is illustrated in the Figure 3.  

In the confusion matrix the cell (1,1) represents TP, (0,1) represents FP, (0,0) represents TN and 

(1,0) represents FN. As stated earlier, half of the image data in the dataset are of COVID-19 and the other 

half are of non-COVID-19. Therefore, it can be observed from the confusion matrix that all the models could 

successfully identify the classes with high accuracy. However, among the models, MobileNetV2 can 

successfully identify the most percentage of COVID-19 and non-COVID-19 data accurately with the least 

percentage of an incorrect prediction. Among the 50% of COVID-19 images, MobileNetV2 efficiently 

identified 49.9% of data and 49.22% of data in 50% of non-COVID-19 images. 

Using the elements obtained from the confusion matrix and (1) to (11), the performance of the 

models are measured and recorded in Table 4. From the table, it is seen that MobileNetV2 achieves the 

overall highest accuracy of 99.12%. The second highest accuracy is derived from VGG19 with 98.25%. It is 

followed by AlexNet and Max Pooling with an accuracy of 97.81% and 97.52%, respectively. Furthermore, 

MobileNetV2 only achieved the highest accuracy, but the highest Sensitivity, Specificity, F1-Score, 

Precision, NPV and MCC scores with 98.65%, 99.59%, 99.12%, 99.6%, 98.63% and 0.9824% respectively. 
 

 

 
 

Figure 3. Confusion matrix of the models 
 

 

Table 4. Performance evaluation of CNN Models 
Criteria for 

Evaluation 

CNN Models 

MobileNetV2 VGG19 Max Pooling Average Pooling VGG16  NFNet AlexNet InceptionV3 

Accuracy 99.12 98.25 97.52 95.48 93.46 96.43 97.81 94.75 

Sensitivity 98.65 98.4 97.75 95.69 92.97 95.96 97.41 95.56 

Specificity 99.59 98.08 97.3 95.26 93.94 96.89 98.21 93.94 

F1-Score 99.12 98.26 97.52 95.48 93.46 96.43 97.81 94.77 

Precision 99.6 98.11 97.3 95.27 93.95 96.91 98.21 93.99 

NPV 98.63 98.38 97.75 95.68 92.97 95.95 97.41 95.52 

FNR 1.34 1.59 2.24 4.3 7.02 4.03 2.58 4.43 

FPR 0.4 1.91 2.69 4.73 6.05 3.1 1.78 6 

FDR 0.39 1.88 2.69 4.72 6.04 3.08 1.78 6 

FOR 1.36 1.61 2.24 4.31 7.02 4.04 2.58 4.47 

MCC 0.9824 0.965 0.9505 0.9096 0.8692 0.9286 0.9562 0.8951 

 

 

The most efficient performance of architecture depends on the accuracy of classification, 

classification completion time, and data loss rate. An efficient classification algorithm is characterized by its 

high accuracy rate in a low completion time with a low rate of data loss shown in Figure 4. From the 

recorded data of each model, it can be seen that from Figure 4(a), the accuracy of MobileNetV2 is the 

highest. From Figure 4(b), the rate of data loss is the lowest of VGG19. From Figure 4(c) the lowest 

classification completion time belongs to Max Pooling. However, putting the three factors together it is found 

that overall MobileNetV2 has the lowest completion time and lowest rate of data loss with the most accuracy. 

Though VGG19 has the lowest rate of data loss, it has a higher completion time and lower accuracy 

compared to MobileNetV2. Likewise, Max Pooling has the lowest completion time but a much poorer 

accuracy than MobileNetV2. The accuracy, rate off data loss and classification completion time per epoch for 

the MobileNetV2 are 99.12%, 0.0504%, 16.5secs/epoch. 
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(a) 

 

  
(b) (c) 

 

Figure 4. Performance of the models represents in (a) represents the highest accuracy of MobileNetV2,  

(b) represents the lowest data loss VGG19, and (c) represents the lowest classification completion time of 

max pooling 
 

 

5. CONCLUSION  

COVID-19's early diagnosis has been considered difficult because of the disease's potential to 

spread across society. The diagnostic procedure may be more precise and faster using deep learning methods 

and soft computing abilities. This study illustrated eight deep learning models that could help diagnose 

COVID-19 automatically. But the MobileNetV2 model has produced better accuracy than other models with 

the average data loss and compilation time. Though VGG19 has the lowest data loss rate, it has a higher 

completion time and lowers accuracy than MobileNetV2. Future studies will need the development of a 

hybrid deep learning method that can evaluate and perform on the high amount of images and determine how 

much of the lung's volume is infected. 
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