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Abstract: The current study was conducted to examine the in vitro anticancer potential of Cordia
dichotoma (bark, leaves, pulp and seed). The plant material was collected from UT of J&K and
methodical bioassays were carried out on ten human cancer cell lines (Michigan Cancer Foundation-7
(MCF-7), M.D. Anderson-Metastatic Breast (MDA-MB-231), Neuroblastoma-2a (N2A), SH-SY5Y,
U-251, HCT-116, SW-620, A-549, MIA PaCa-2, Panc-1) from five different origins (breast, CNS, colon,
lung, pancreas) respectively. Methanolic extracts were produced and fractions were then obtained
from the extracts and evaluated for cytotoxicity. Mechanistic assays, HPLC, and GCMS profiling
were performed on the highest active fraction. The Sulforhodamine B (SRB) assay determined the
in vitro cytotoxicity. The findings revealed that the bark portion had in vitro cytotoxicity against the
A-549 human lung cancer cell line. To our knowledge, this is the first study to show that the plant’s
bark has anticancer properties and induced chromatin condensation, confirmed cell death via ROS
generation, and significantly decreased colony formation in A-549 cell line from lung origin in a
dose-dependent manner. Furthermore, HPLC and GCMS investigations indicated the presence of a
number of bioactive molecules such as gallic acid (144,969.86) uV*sec, caffeic acid (104.26) uV*sec,
ferulic acid (472.87) uV*sec, vanillic acid (13,775.39) uV*sec, palmitic acid (18.34%), cis vaccenic acid
(28.81%), etc. and one of the compounds was reported for the first time from the bark. As a result
of its promising efficacy, it may become an essential cancer chemopreventive or chemotherapeutic
medication for patients with lung carcinoma.

Keywords: C. dichotoma; anticancer; apoptosis; ROS; HPLC; GCMS

1. Introduction

Cancer is one of the most persistent diseases in humans and there is a lot of scientific
and economic attention in finding novel anticancer medicines in natural sources, including
terrestrial and aquatic plants. Natural compounds originating from plants play an vital
part in the expansion and marketing of pharmaceuticals [1,2]. The revelation of drugs
from natural sources is associated with their ethno-pharmacological utilization and the heft
of plant-inferred medicines are likewise connected to their conventional restorative use
from quite some time ago [3,4]. Terpenoids, phenolics, flavonoids, and alkaloids are the
principal types of plant-derived compounds with therapeutic effects [2]. These substances
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act on a variety of cellular components, causing alterations in the cell’s regular metabolism
and growth. Although the majority of anticancer drugs isolated from different parts of the
plants used in chemotherapy such as Vincristine and Vinblastime from Catharanthus roseus,
Taxol from Taxus brevifolia, and camptothecin from Camptotheca acuminata [5–8] are recom-
mended, which alter the basic biological processes [9,10] and impede nucleic acid synthesis,
however the mechanisms of action differ significantly. A number of mechanisms [11,12],
including mitochondrial pathways [13], can cause apoptosis. It is generally known that
reactive oxygen species (ROS) may cause intracellular protein modification, lipid peroxida-
tion, mitochondrial malfunction, and finally apoptosis [14,15]. ROS are important in cell
signaling and the control of the primary apoptosis pathways mediated by mitochondria,
death receptors, and the endoplasmic reticulum. Other controlled mechanisms of cell
survival and death, such as autophagy and necroptosis, are also influenced by ROS [16].
The involvement of ROS in the intricate interaction and crosstalk between these diverse
signaling pathways, in particular, will be investigated extensively in the coming years.

Cordia dichotoma (lasoda) is a member of the Boraginaceae family with around 2740 species
divided into 148 genera and has been historically used to treat a number of human ailments
in India. Cordia is a significant and prominent genus within this family. It is found in
the Sub-Himalayan and outlying slopes of the Himalayas. It grows in a wide range of
forests, from the Rajasthan to the India’s Western Ghats [17]. The species is common in
the Philippines and can be found in thickets. The species is propagated by seeds. Leaves
are elliptic-lanceolate to long ovate, simple, whole, and slightly dentate with a round and
cordate base. The flowers have small bisexual stalks and vary in color from white to pink.
The fruits with a sticky flesh mass are edible, immature fruits and are pickled/used as
vegetables and the whole plant of C. dichotoma is edible/used as food [18]. According
to ethnopharmacological studies, the plant has antimicrobial, antifungal [19], wound
healing [20], antiinflammatory [21], and antibiofilm [22] properties.

The intention of this study was to determine the anticancer potential of different
parts of C. dichotoma against ten human cancer cell lines from five different origins such
as breast (MCF-7, MDA-MB-231), CNS (N2A, SH-SY5Y, U-251), colon (HCT-116, SW-620),
lung (A-549), and pancreas (MIA PaCa-2, Panc-1), as well as to assess the potential for
cellular oxidative stress at intracellular ROS levels, nuclear morphology, wound healing,
and mitochondrial permeability. Furthermore, we investigated the bioactive compound
responsible for the activity through GCMS and HPLC profiling.

2. Results
2.1. Screening for Cytotoxic Activity

The SRB test was used to examine the cytotoxic impact of extracts and fractions from
C. dichotoma bark, leaves, pulp, and seed on the development of various human cancer cell
lines and the criteria for activity was a minimum of 70%. Figure 1 depicts the cell inhibitory
activity of methanol extract and subsequent fractions (hexane, chloroform, ethyl acetate,
and acetone).

In the preliminary investigation of methanolic extract obtained from the bark of Cordia
dichotoma, against ten human cancer cell lines (MCF-7, MDA-MB-231, N2A, SH-SY5Y,
U-251, HCT-116, SW-620, A-549, MIA PaCa-2, Panc-1) from five different origins (breast,
CNS, colon, lung, pancreas) respectively, the results showed growth inhibition in the range
of 0–57%. However, the chloroform fraction obtained from the abovementioned extract
showed remarkable results as a growth inhibition of 88% was found against the A-549 cell
line from lung tissue, whereas the same fraction inhibited the human cancer cell lines used
in the present study in the range of 0–62%. While evaluating the cytotoxic potential of
other fractions, the growth inhibition in case of n-hexane fraction was observed in the
range of 0–65%, and for ethyl acetate fraction the growth inhibition range was 0–16% as
shown in (Figure 1A). The acetone fraction was completely considered as inactive as growth
inhibition was found as 0%.
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Figure 1. Graphs represent in vitro cytotoxic potential of different parts of C. dichotoma Bark (A),
Leaves (B), Pulp (C), and Seed (D) extracts and fractions at concentration 100 µg/mL. Values are
the mean ± SD (n = 3). Met ext (Methanolic extract), Hex fr (Hexane fraction), Ch fr (Chloroform
fraction), EtAc fr (Ethyl acetate fraction), and Ac fr (Acetone fraction).

The lasoda leaf extract (methanolic) and fractions were evaluated at the concentration
of 100 µg/mL against ten human cancer cell lines used in the present study. The growth in-
hibition by extract was found in the range of 0–63%, whereas in case of fractions, the growth
inhibition was in the range of 0–59% in n-hexane, 0–68% in chloroform, 0–53% in ethyl
acetate, and 0–43% in acetone fraction as depicted in Figure 1B.

The pulp part of the lasoda fruit was assessed at the same concentration against ten
human cancer cell lines used in the present investigation. The overall growth inhibition
was seen in the range of 0–56% in methanolic extract, 0–40% in n-hexane fraction, 0–63%
in chloroform fraction, 0–34% in ethyl acetate fraction, and 0–27% in acetone fraction as
shown in Figure 1C. So, the pulp part of the lasoda fruit was considered as non-significant.
The observations produced by the methanolic extract and subsequent fractions from the
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seed part of C. dichotoma are shown in Figure 1D and the data represented that the growth
inhibition by the extract was observed in the range of 0–43%. The growth inhibition in case
fractions, namely n-hexane and chloroform, was observed in the range of 0–48% and 0–54%
respectively, which is considered non-significant. The ethyl acetate and acetone fractions
were considered purely inactive as growth inhibition was found as 0%.

The chloroform fraction was further evaluated at lower concentrations (50, 40, 30,
20, 10 µg/mL) against the A-549 (lung) cancer cell line. Table 1 depicts the IC50 value of
chloroform fraction and standard drug.

Table 1. In vitro cytotoxicity IC50 of the chloroform fraction of bark and standard drug against human
lung cancer cell line (A-549).

Cell Line Chloroform Fraction of
Bark IC50 (µg/mL)

Standard Drug (Paclitaxel)
IC50 (nM)

A-549 37.978 4.8

2.2. Mechanistic Assays

The chloroform fraction displayed a potent in vitro cytotoxic effect against human
lung cancer cell line (A-549) with maximum growth inhibition and lower IC50 values. So,
the fraction was chosen for several mechanistic experiments against the A-549 human lung
cancer cell line as shown in Figure 2.

Figure 2. Various mechanistic assays performed on human lung cancer cell line A-549. I. Nuclear
morphological changes as indicated by arrow using DAPI staining with chloroform fraction of bark
treatment. (A) Control (B) 50 µg/mL (C) 75 µg/mL and (D) 100 µg/mL II. Effect of chloroform frac-
tion on A-549 in the production of reactive oxygen species evaluated by oxidation of DCFDA by hy-
drogen peroxide through fluoroscence microscopy at 24 h posttreatment. (A) Control (B) H2O2 0.5%
(C) 50 µg/mL (D) 75 µg/mL (E) 100 µg/mL III. In vitro colony formation assay of bark chloroform
fraction (A) Control (B) 50 µg/mL (C) 75 µg/mL and (D) 100 µg/mL IV. In vitro wound healing
assay chloroform fraction. 0 h (A) Control (B) 50 µg/mL (C) 75 µg/mL and (D) 100 µg/mL. After
24 h (E) Control (F) 50 µg/mL (G) 75 µg/mL and (H) 100 µg/mL.
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2.2.1. Chloroform Fraction Triggered Chromatin Condensation

The fluorescent dye DAPI (4,6-diamidino-2-phenylindole) binds to the A-T region
of DNA’s minor groove. The activation of apoptosis results in morphological changes
such as chromatin condensation, cell shrinkage, nuclear distortion, and the development
of apoptotic bodies and their elimination by neighboring cells. After being treated with
different concentrations of chloroform fraction, namely 50, 75, and 100 µg/mL, A-549 cells
were stained with DAPI dye and studied under a fluorescence microscope. Untreated
cells exhibited a constant appearance of blue nuclei, indicating that they were healthy.
The chloroform fraction-treated cells, on the other hand, demonstrated dose-dependent
chromatin condensation of cell nuclei as shown in Figure 2I. After a 24-h incubation period,
the size and shape of cell nuclei in drug-treated cells seemed to change. The fraction induced
DNA fragmentation as well as a decrease in the number of cell nuclei in a concentration-
dependent manner, according to the findings.

2.2.2. ROS Production by the Chloroform Fraction Causes Cell Death

DCFDA (2,7-dichlorofluorescein diacetate), a non-fluorescent dye that becomes green
in the presence of ROS, was used to detect its presence. It is a hydrogen peroxide-detecting
probe used to assess hydrogen peroxide levels in intact cells. It easily penetrates across the
plasma membrane and oxidizes in the presence of free radicals to generate DCF (dichlo-
rofluorescein), a green fluoroscent byproduct that is excited at 495 nm and emits at 520 nm.
When treated with DCFDA dye, the positive control (0.5% H2O2) emitted green fluores-
cence, which was then compared with drug-treated cells. The results indicate a substantial
dose-dependent increase in the fluorescence of drug-treated (chloroform fraction) cells,
demonstrating that ROS generation is required for cell death as shown in Figure 2II.

2.2.3. Effect of Fraction on Colonies Development

It is an in vitro cell existence test that is based on the ability of a solitary cell to become
a colony. This test evaluates the ability of each cell in a population to divide forever and
is used to determine the effectiveness of cytotoxic drugs. It assists in assessing if cells
have retained the potential to generate a large number of progenies or have perished as a
result of various pharmacological treatments. Before seeding in the appropriate dilution, A-
549 cells were treated with chloroform fraction at concentrations of 50, 75, and 100 µg/mL.
The chloroform fraction of bark inhibited colony development in A-549 cells in a dose-
dependent manner, according to the findings. As indicated in Figure 2III, the colony
formation of the control cells was higher than that of the drug-treated cells.

2.2.4. Inhibition of Cell Migration by Chloroform Fraction

An in vitro wound healing assay was performed to evaluate the effect of chloroform
fraction on the migration of A-549 cells. Following the drug treatment, images of cells
moving into the scratched region were captured. The results indicated that wound closure
was clearly evident in untreated cells after 24 h due to cell migration and cell proliferation,
but cell migration was hindered in chloroform fraction treated cells with an increasing
concentration of 100 µg/mL, where the scratch produced was clearly visible. As a result
of the foregoing findings, the antiproliferative impact of fraction treatment resulted in
impaired cell migration shown in Figure 2IV.

2.3. Identification of Anticancer Molecules

Motivated by the cytotoxicity findings and mechanistic assays, we tried to identify the
positive molecules responsible for anticancer activity by suitable characterization investiga-
tions such as high-performance liquid chromatography (HPLC) and gas chromatography
mass spectrometry (GCMS).
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2.3.1. High-Performance Liquid Chromatography

HPLC analysis was used to detect certain key pharmaceutical substances. Peaks were
identified by comparing the retention period of the chloroform fraction of C. dichotoma bark
with those of the reference substances. The generated peaks were proportioned to each
constituent as shown in Figure 3.

Figure 3. HPLC chromatogram of Chloroform fraction of bark of C. dichotoma.

Phenolics are one of nature’s most diverse chemical families. Phenolic compounds
are phytochemicals present in almost all plant tissues. They are secondary metabolites pro-
duced by the shikimic acid and phenylpropanoid pathways, respectively. They have
a variety of bioactive characteristics [23]. HPLC quantification of the fraction identi-
fied the presence of gallic acid, syringic acid, p coumarin acid, caffeic acid, p-hydroxy
benzoic acid, ferulic acid, and vanillic acid as depicted in (Table 2). Gallic acid and
vanillic acid constituted the highest content observed with the areas of 144,969.86 and
13,775.39 uV*sec respectively.

Table 2. HPLC analysis of chloroform fraction of bark of C. dichotoma.

RT Area (uV*sec) Structure Name

1.988 144,969.86
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Table 2. Cont.

RT Area (uV*sec) Structure Name

7.130 2724.56
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Figure 4. GCMS chromatogram of the chloroform fraction of bark of C. dichotoma.

The compounds found in GCMS are presented in Table 3. Among all compounds,
the highest percentage compound was cis-vaccenic acid followed by palmitic acid, palmi-
toleic acid, Octadecadienoic acid, and soon. Furthermore, to the best of our knowledge,
it is the first time that cis-vaccenic acids, already described in other plants, were reported in
the lasoda bark.
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Table 3. Compounds found in chloroform fraction of C. dichotoma bark by GC-MS.

Compounds Class of Compound Area % m/z R. Time

1,3-Di-tert-butyl benzene Phenyl propanes 0.68 175.10 14.527
4-Vinylguaiacol Phenol 0.51 150.15 15.522

Diisobutyl phthalate Ester 0.83 149.05 26.535
Methyl palmitate Ester 1.29 74.00 27.365

Palmitic acid Fatty acid 18.34 73 27.770
Benzylamine,

2-hydroxy-N,N-di[2-aminoethyl)amino]methyl)phenol Phenol 1.73 71.05 27.935

16-Hydroxyhexadecanoic acid Fatty acid 1.43 60.10 28.046
Methyl linoleate Fatty acid 1.23 81.00 29.238

Methyl cis-9,10-epoxystearate Ester 1.41 55.00 29.313
Octadecadienoic acid Fatty acids 9.46 67.00 29.625

cis-Vaccenic acid Fatty acids 28.81 55.00 29.681
1-Dimethyl(pentafluorophenyl)silyloxydodecane NC 1.82 79.05 29.825

Palmitoleic acid Fatty acids 12.54 73.00 29.915
1-(beta.-d-Ribofuranosyl)-4-difluormethoxy-uracil Dihydropyridine 1.94 69.00 30.065

Methylallyl Trifluoroacetate Allyl acyls 1.89 55.05 30.170
Difluoroacetic acid Monocarboxylic acid 2.22 69.05 30.310

Linoleic acid trimethylsilyl ester Ester 1.71 80.00 30.381
(2-phenyl-1,3-dioxolan-4-yl)methyl (z)-octadec-9-enoate NC 0.85 73.00 30.440

Tridecyl 2-Methoxyacetate Ester 0.70 57.00 31.389
6,9,12,15-Docosatetraenoic acid, methyl ester Ester 0.57 69.10 32.196

Dotriacontane Alkanes 1.58 57.00 32.656
(4-Allyloxy-3-methoxy-phenyl)-methanol NC 0.58 97.15 32.756

1-Propyltridecyl 4-bromobutanoate Ester 0.72 69.05 33.169
9-octylheptadecane Alkanes 3.39 57.00 34.206

1-[(1-Ethylundecyl)oxy]-1-methylsilinane Phenylpyrazoles 0.51 55.00 34.300
Dioctyl phthalate Benzoic acid 2.66 148.95 34.778

NC—Not Classified.

3. Discussion

The burden of cancer rose to 18.1 million new cases and 9.6 million deaths in 2018 and
with 36 different types, cancer mainly affects men in the form of colorectal, liver, lung,
prostate, and stomach cancer and women in the form of breast, cervix, colorectal, lung,
and thyroid cancer [24]. However, a projected 19.3 million new cancer cases and about
10.0 million cancer deaths occurred globally in 2020. With an anticipated 2.3 million new
cases (11.7%), female breast cancer has surpassed lung cancer as the most often diagnosed
malignancy, followed by lung (11.4%), colorectal (10.0%), prostate (7.3%), and stomach
(5.6%). With a projected 1.8 million fatalities (18%), lung cancer remains the top cause of
cancer mortality, followed by colorectal (9.4%), liver (8.3%), stomach (7.7%), and female
breast (6.9%). Overall, the prevalence of both sexes was 2- to 3-fold greater in transi-
tioned versus transitional nations, although death differed 2-fold for males and little for
females [25], and treating cancer has become a whole new area of research. There are con-
ventional as well as modern techniques applied against cancer and a variety of techniques
like chemotherapy, radiation therapy, and surgery, which are used for treating the disease.
However, all of them have some disadvantages [26] as the use of conventional chemicals
bear side effects/toxicities [27], but as the problem persists, new approaches are needed for
the control of disease, especially because of the failure of conventional chemotherapeutic
approaches. Therefore, there is a need for new strategies for the prevention/cure of cancer
to control the death rate and plant derived components has become a very safe, non-toxic
and easily available source as botanicals are believed to neutralize the effects of diseases in
a body because of their numerous medicinal properties [1–4]. In the present investigation,
we evaluated the in vitro cytotoxic potential of Cordia dichotoma bark, leaves, pulp, and seed,
collected from the Union Territory of Jammu & Kashmir. The extracts (methanolic) and
subsequent fractions (n-hexane, chloroform, ethyl acetate, acetone, methanol soluble) were
screened against ten human cancer cell lines (MCF-7, MDA-MB-231, N2A, SH-SY5Y, U-251,
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HCT-116, SW-620, A-549, MIA PaCa-2, Panc-1,) originated from five different tissues (breast,
CNS, colon, lung, pancreas) respectively and the anticancer activity was produced by only
chloroform fraction of bark as it fetched the IC50 value 37.978 µg/mL. The fraction was
further used for mechanistic assays and it induced chromatin condensation, confirmed
cell death via ROS generation, and significantly decreased colony formation in a dose-
dependent manner in the A-549 cell line from lung origin.

Furthermore, when compared with the work of others, Hussain et al. [28] observed
69.4 and 72.1 percent growth inhibition in methanolic extract of bark against MDA-MB-
231 and MCF-7 respectively. The methanolic extract of C. dichotoma leaves was tested for
anticancer activity against human prostate carcinoma cell line (PC3) and human cervical can-
cer cell line (HeLa), and the results indicate that the extract exhibited good anti-cancerous
activity against HeLa [29]. According to some publications, the antitumor and anticancer
actions of C. dichotoma fruit pulp extract may be attributed to its antioxidant ability due to
its high level of secondary metabolites [30]. Healthy cells maintain a correct equilibrium of
ROS levels, but stress situations cause ROS levels to overwhelm the antioxidant capacity on
defense, resulting in an oxidative stress state. Transcription factors play a significant part in
the regulation of cellular growth cycle, tumor survival and angiogenesis [31]. The methano-
lic extract and aqueous portion of Cordia dichotoma seeds are cytotoxic to human cervical
epitheloid (HeLa) [32]. The SRB test was used to assess the cytotoxic activity of Cordia myxa
fruit extract and its micro and nano capsulated forms in vitro using THLE2 and HepG-2 cell
lines. The fruit extract was more cytotoxic (IC50: 70 g/mL) than the micro and nanocapsules
(IC50: 100 g/mL). The reduction in viability of hepatocellular carcinoma cells (HepG-2)
treated with extract compared with treated normal cells (THLE2) demonstrated that the
fruit extract was selective against only malignant cells. The extract inhibited cell prolifera-
tion less effectively against the HepG2 cell line. Further, micro and nanocapsules showed a
very low cytotoxicity [33]. In our current study, the growth inhibition of various extracts
and fractions deviated somewhat from that described in the literature. This might be due to
regional differences, solvent polarities or extraction methods. The data regarding in vitro
cytotoxicity of C. dichotoma bark against A-549, is not available in literature, made us unable
to compare our results.

Our study further investigates the bioactive compound which might be responsible
for the activity through phytochemical profiling via HPLC and GCMS. We investigate
seven phenolic standards such as gallic acid, syringic acid, p-coumarin acid, caffeic acid,
p-hydroxy benzoic acid, ferulic acid and vanillic acid. Ferulic acid, caffeic acid, gallic
acid, and syringic acid have already been explored for their anticancer potential [34–37].
By regulating the JAK/STAT3 signaling pathway and downstream apoptotic molecules,
some researchers revealed that GA had independent anticancer effects in non-small-cell
lung cancer A549 cells and aided the anticancer effects of cisplatin. These findings might
be used to justify more fundamental research and preclinical studies into GA’s anticancer
properties and its auxiliary effects on cisplatin activity in non-small-cell lung cancer pa-
tients [38]. The results from the GCMS profiling depicted total 26 compounds. Some of
these compounds such as palmitic acid, octadecadienoic acid, heptadecanoic acid, linoleic
acid, cis vaccenic acid, and hexadecanoic acid have already been reported from bark extracts
of other plant species, e.g., Quercus leucotrichophora [39]. Among the various compounds
found, hexadeconic acid and vaccenic acid in particular have been investigated for their
pharmacological potential, including anticancer [40,41] and anti-inflammatory proper-
ties [42]. Furthermore, the fraction’s activity might be attributed to the synergistic impact
of these chemicals.

4. Materials and Methods
4.1. Chemicals and Reagents

Sigma Chemical Co. (St. Louis, MO, USA) provided the growth media for the cells,
sulforhodamine B (SRB), crystal violet blue, Rhodamine 123, fetal bovine serum (FBS),
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and DCFDA (2,7-dichlorofluorescein diacetate). All additional chemicals were of analytical
grade and obtained from standard sources.

4.2. Collection of Plant Material and Preparation of Extract and Fractions

A sufficient quantity of bark, leaves, and fruit of C. dichotoma was collected from
district samba of UT J&K, India. To eliminate soil pollutants, the plant material was
carefully rinsed under running tap water. The plant materials were chopped, dried in
the shade, and powdered. The methanolic extract of the plant parts was obtained by
impregnating the dried plant material in 95% methanol for 24 h with intermittent shaking.
The mixture was filtered using filter paper and the residue was immersed in methanol
for further 24 h. The filtrates were mixed and the mixture was concentrated to dryness
under reduced pressure to produce a crude extract. Further fractionation of the crude
(methanolic) extract was performed using n-hexane, chloroform, ethyl acetate and acetone
solvents. All samples were concentrated and kept at −20 ◦C until further investigation.

4.3. Sample Preparation and Culturing of Cells

Stock solutions of 20 mg/mL were produced by dissolving the extract and subsequent
fractions in DMSO. The human cancer cell lines A-549 (Lung), HCT-116 and SW-620 (Colon),
MCF-7 and MDA-MB-231 (Breast), Mia PaCa-2 and Panc-1 (Pancreatic), SH-SY5Y, N2A,
and U-251 (CNS) were acquired from the National Centre for Cell Science in Pune, India
and the National Cancer Institute. These ten human cancer cell lines were developed
and kept up with in RPMI-1640 media (A-549, SW-620, and MCF-7) and DMEM medium
(HCT-116, MDA-MB-231, MIA PaCa-2, Panc-1, SH-SY5Y, N2A, and U-251).

4.4. SRB Assay for Cytotoxicity

The samples were examined for anticancer potential against ten distinct human cancer
cell lines from five distinct origins: lung (A-549), colon (HCT-116, SW-620), breast (MCF-7,
MDA-MB-231), pancreas (MIA PaCa-2 and Panc-1), and CNS (SHSY-5Y, U-251, and N2A).
Cell suspensions of optimum cell density for A-549 (7500), HCT-116 (7000), SW-620 (13,000),
MCF-7 (8000), MDA-MB-231 (8000), MIA PaCa-2 (10,000), Panc-1 (10,000), SH-SY5Y (15,000),
U-251 (15,000), and N2A (10,000) were seeded in 96-well flat-bottom plates (NUNC).
Cell suspension was added in an amount of 100 µL/well and the cells were allowed
to proliferate for 24 h. Cells were subsequently grown for 48 h at 37 ◦C with test material
(extract and fractions) including full growth medium (100 µL/well). Cell development
was halted by carefully stacking 50 µL of chilled TCA in each well and incubating at 4 ◦C
for one hour to fix the cells connected to the lower part of the wells. Each well’s liquid
was then carefully pipetted out and disposed. The wells were cleaned and air-dried five
times with distilled water. Each well received 100 µL of SRB and was incubated for 30 min
at room temperature. Unbound SRB was removed from the cells by washing them five
times with 1 percent v/v acetic acid. After drying at room temperature, tris buffer (100 µL)
was added to each well to solubilize the color and plates were delicately swirled for few
minutes on a mechanical stirrer. A microplate reader was used to measure the optical
density at 540 nm [43].

4.5. Mechanistic Assays
4.5.1. Evaluation of Cell Apoptosis

In a six-well plate, cells were planted at a density of 2 × 105 cells/mL and incubated
for 24 h. The chloroform fraction was added at concentrations of 50, 75, and 100 µg/mL
for an additional 24 h. Following the incubation period, cells were splashed with PBS and
fixed in 4 percent paraformaldehyde for 15 min at 4 ◦C. The fixed cells were washed again
and stained with DAPI for 15 min in the dark. The stained cells were again splashed with
PBS and analysed for nuclear morphological alterations using a fluorescent microscope
(Olympus-1X53 magnification) [44].
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4.5.2. Estimation of Reactive Oxygen Species Production

Cells were seeded in a six-well plate (2 × 105) and treated for 24 h with chloroform
fraction (50, 75, and 100 µg/mL). 2 h before termination, H2O2 was introduced to the
well-holding medium. The cells were then incubated for 30 min at 37 ◦C in the dark with
10 µM DCFDA (2, 7-dichlorofluorescein diacetate). The cells were washed with PBS before
being inspected with a fluorescence microscope (Olympus-1X 53 magnifications). The fluo-
rescence intensity was measured at 480/530 nm emission and excitation wavelengths [45].

4.5.3. Colony Formation Assay

In a six-well plate, cells were seeded at a density of (2 × 105) and cultured for 24 h.
Following the incubation time, cells were treated with chloroform fraction at concentra-
tions of 50, 75, and 100 µg/mL and incubated for another 24 h. The treated cells were
then trypsinized, counted, and reseeded in a new six-well plate at 1000 cells per well.
The plate was placed in an incubator for at least 6 cell divisions. The cells were rinsed
with PBS after the medium was removed. After that, the cells were fixed in 1% formalde-
hyde for 20–25 min. The plate was kept at room temperature for 30 min after the fixed
cells were stained with crystal violet dye. Following the incubation period, the crystal
violet was removed, the plate was gently washed with water, and colonogenic survival
was evaluated [46].

4.5.4. Wound Healing Assay

Cells with density (3 × 105)/well were seeded in a 6-well plate for 24 h. Then, using
200 µL tips at the top of the well, a horizontal scratch was formed on the cell monolayer
and it was treated with chloroform fraction (50, 75 and 100 µg/mL) for the following 24 h.
Cells were seen under the microscope at 0 h. After 24 h, the medium was aspirated, cleaned
with PBS, and examined using a phase contrast microscope.

4.6. Analysis of Phytochemicals by HPLC and GCMS

In vitro cytotoxicity of extracts and fractions were tested against human cancer cell
lines used in the present investigation. Based on the cytotoxicity results, chloroform fraction
(ch fr) was picked for additional phytochemical portrayal by HPLC and GCMS.

Qualitative and quantitative analysis of phenols was performed by reverse-phase high-
performance liquid chromatography (HPLC) using the method reported by Tarnawaski
et al. [47]. A liquid chromatography system (Perkin Elmer, Boston, MA, USA) comprising
of an HPLC pump, auto sampler, diode array detector (LC 200 D series), and Peltier Column
oven (200 series) Perkin Elmer reverse phase column (150 × 4.6 mm, 5 µm C18) was used for
analysis of phenols using 20 µL of samples. For analysis and data collection, total chrome
workstation software (version 6.3.1.0504) was utilized. Mobile phase was comprised of
acetic acid (2% v/v) in water and methanol (82:15, v/v) and a flow rate was adjusted at
1 mL/min. Analysis of phenolic acids chromatograms was performed at 280 nm on 30 min
retention time frame. Standard phenolic compounds (gallic acid, ferulic acid, syringic acid,
caffeic acid, vanillic acid, p-coumarin acid, p-hydroxy benzoic acid) at concentration of
1 mg/mL prepared in methanol were used. Phenolic compounds in samples were identified
by comparing retention time of standard phenolic compounds with retention time of each
phenolic compound.

Gas chromatography and mass spectroscopy were used to analyze the active fraction.
The GC-MS 4000 (Varian, Atlanta, GA, USA) system was employed, along with an HP-5
MS agilent column (30 m × 0.25 mm i.d., 0.25 film thickness). The temperature of the
injector was set at 280 degree Celsius. After holding the column at 50 degree Celsius
for 5 min, the temperature was steadily raised by 3 degrees Celsius each minute up to
280 degree Celsius and then held constant at 280 degree Celsius for 7 min. Helium was used
as the carrier gas at a constant flow rate of 1.0 mL/min. A sample solution of 0.2 L was put
onto the column and examined. The MS scan settings comprised a 70 Ev electron impact
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ionization voltage, a mass range of 40–500 m/z, and the identification of the sample’s
components was based on a comparison of their relative indexes.

4.7. Statistical Analysis

All experiments were conducted in triplicate and the findings were computed as
mean ± standard deviation (SD). GraphPAD prism 5.0 was used to calculate IC50.

5. Conclusions

The assessment of anticancer activity of different parts of C. dichotoma against human
cancer cell lines used in the study suggested that bark part of C. dichotoma might be a
significant natural source for anticancer drugs. This is the first study to show that bark has
anticancer properties against the A-549 cell line from lung origin. The chloroform fraction
of bark has anticancer potential and causes cell death against A-549 human cancer cell line
from lung origin via apoptosis induction mediated by excessive ROS production. Further-
more, HPLC and GCMS analyses revealed the presence of a number of bioactive molecules
such as gallic acid, vanillic acid, ferulic acid, caffeic acid, palmitic acid, cis vaccenic acid,
and others. We reported, for the first time, cis vaccenic acid from the bark through GC-MS.
As a result of its promising efficacy, the fraction might be an essential cancer chemopreven-
tive or chemotherapeutic drug for patients with lung carcinoma. To better comprehend
their capacity to manage illnesses that have a significant impact on quality of life, more re-
search into the separation of responsible anticancer components, as well as their mechanism
of action, is required.

6. Patents

To best of our knowledge, this is the first study to show that the plant’s bark has
anticancer properties against the A-549 human cancer cell line and induced chromatin
condensation, confirmed cell death via ROS generation and significantly decreased colony
formation in a dose dependent manner in A-549 cell line from lung origin. Furthermore,
GC-MS investigations indicated the presence of the compound that was reported from the
bark i.e., cis vaccenic acid, for the first time.
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