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A B S T R A C T   

COVID-19 is an infectious disease that kills millions of people each year and it is a major public health problem 
around the globe. The current COVID-19 situation is still now concerning, though the vaccination program is 
running. In this study, we considered a COVID-19 model with a double-dose vaccination strategy to control the 
current outbreak situation in Bangladesh. The fundamental qualitative analysis of this mathematical model has 
been performed. The conditions of positive invariance, boundedness with suitable initial conditions were 
analyzed. We have estimated the basic reproduction number (R0) for disease transmission and determined that 
our model contains two equilibrium points: the disease-free equilibrium and a disease-endemic equilibrium. We 
used the Routh-Hurwitz criteria to determine the stability of the equilibria. The disease will be eradicated from 
the community if R0 < 1, otherwise the disease persists in the population. To support the qualitative analysis of 
our model, we performed numerical simulations using MATLAB routine and estimated model parameters. 
Sensitivity analysis is used to explore the association for Mild and Critical cases concerning the corresponding 
model parameters. We observed that the most significant parameter to spread the virus is the transmission rate. 
The numerical simulations showed that a full dose vaccination program significantly reduces the mild and 
critical cases and has potential impact to eradicate the virus from the community. The information that we 
generated from our analysis may help the public health professionals to impose the best strategy effectively to 
control the outbreak situation of the virus in Bangladesh.   

Introduction 

Human being around the globe is now continuously facing major 
public health problem due to the spread of the SARS-CoV-2 virus. Ac
cording to the mutation rate and severity of the virus, different variants 
of the SARS-CoV-2 have been identified [1]. The World Health Orga
nization (WHO) estimated that there were approximately 248,467,363 
infected cases, and 5,027,183 persons died due to COVID-19 whereas, 
7,027,377,238 doses of vaccine have been administered up to November 
4, 2021 [2]. Already, most of the countries in the world continued the 
second dose vaccination against the SARS-CoV-2 virus and considering 
buster dose vaccine for the near future. Therefore, the studies about the 
new infection and transmission of the virus after vaccination is a key 
concern. Mathematical models play an important role to explore the 
transmission dynamics of diseases and policy-makers can effortlessly 
evaluate the further health risk. 

Since the middle of the 20th century, the transmission dynamic of 

infectious diseases outbreak can be analyzed with the help of deter
ministic and stochastic epidemiology models. Those models represent 
real-world phenomena and predict the severity of the infectious disease 
using mathematical concepts [3]. This research is motivated by the 
ongoing vaccination to protect the transmission of the novel coronavirus 
among human beings. Here, we developed a COVID-19 mathematical 
model to simulate the transmission and progression of the virus after one 
or second dose vaccination. 

Transmission dynamics of any epidemiological infectious diseases 
are universal. Several researchers have been analyzed the transmission 
dynamics of coronavirus and presented different models. They studied 
and extended Susceptible–Exposed–Infected–Removed (SEIR) mathe
matical model with significant compartments to track and express the 
real phenomena. Muller and Muller, 2021 [4] presented a modified SEIR 
model to determine the transmission dynamics of the coronavirus on a 
college campus. They suggested as contact tracing can be an effective 
strategy to prevent the disease. The awareness programs and proper 
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treatment, in hospital or isolation, of infected individuals, are the main 
steps to mitigate the COVID-19 pandemic effectively [5]. Kemp et al., 
2021 [6] analyzed modified SEIR model and included the mutual 
interaction between vaccinations and social measures to explore the 
shape of the virus infection and hospitalizations. The model determines 
which vaccination rates are below to permit reaching herd immunity in 
2021 by considering the social interaction parameter. [6]. Treesataya
pun, 2022 [7] modified the SEIR model and considered the quarantined 
populations, effectively vaccinated, and ineffectively vaccinated in
dividuals. The optimal vaccination strategy is estimated accompanied 
by the performance analysis [7]. De León et al., 2020 [8] proposed the 
SEIARD compartmental model to investigate the transmission dynamics 
of the coronavirus disease. Rafiq et al., 2022 [9] presented a new nu
merical scheme that generates a more realistic and accurate result of a 
complex bi-modal nonlinear model. Acheampong et al., 2022 [10] 
constructed a modified SEIR compartmental model to delineate the 
transmission dynamics of SARS-CoV-2 in Ghana and evaluate the basic 
reproduction number. Liu et al., 2021 [11] also proposed a Bayesian 
SEIR epidemiological model which can explain the transmission dy
namics in the nine regions of England. 

Gonzalez-Parra et al., 2021 [12] studied two different variants of the 
COVID-19 virus and presented a mathematical model for any other new 
variant. Kassa et al., 2020 [13] discussed the mitigation strategies for 
Covid-19 and performed sensitivity analysis. Sharov, 2020 [14] and 
Tong et al., 2021 [15] tried to demonstrate the efficacy of lockdown to 
control virus transmission and proposed the SIR model and its extension. 
Pai et al., 2020 [16] discussed the lockdown effect which is imple
mented in India to control the transmission of the coronavirus and 
evaluated the transmission dynamics of COVID-19. Huang et al., 2021 
[17] presented an epidemiological model which demonstrated that 
combined effort of vaccination and maintaining physical distancing is a 
better strategy than stay-at-home. Şahin and Şahin, 2020 [18] compared 
three different models a) grey model (GM), b) nonlinear grey Bernoulli 
model (NGBM), and c) fractional nonlinear grey Bernoulli model 
(FANGBM) to identify properly a cumulative number of COVID-19 
confirmed cases. 

According to the high and low basic reproduction number, a multi- 
wave solution to the model of coronavirus was demonstrated by 
Shayak et al., 2021 [19]. A few numbers of researchers are considered 
the effect of vaccines in their proposed model to represent more specific 
transmission dynamics of the disease [3,12–15]. They performed SIR 
and SEIR mathematical models with a two-phase vaccination process. 
They assumed that those who received the first dose vaccine, may pro
tect the disease certainly but there is a possibility to move in susceptible 
compartment whereas those who received second dose vaccines, may 
have almost zero possibility to be infected. Kuddus et al., 2021 [22] have 
investigated the effect of double dose vaccination rate, progression rate 
as well as transmission rate on the spread of measles. They observed that 
the transmission rate (β) from susceptible to exposed individuals had the 
most significant influence on measles prevalence. 

Mathematically, the transmission of the disease will decrease when 
the effective reproduction number remain below 1. Moreover, a study to 
control the transmission dynamics of a virus is presented by Edward 
et al., 2015 [24] using the mathematical model. Sen et al., 2021 [25] 
proposed a new SEIR epidemic to explore the double-dose vaccination 
feedback. Gomes et al., 2022 [26] discussed the contribution of the 
vaccine to the acquisition of herd immunity in individuals. Annas et al., 
2020 [27] designed their COVID-19 model to study the transmission 
dynamics of the virus by considering the vaccination and isolation fac
tors. Moore et al., 2021 [28] employed a deterministic mathematical 
model to determine the efficiency of the vaccine to control long-term 
dynamics of coronavirus and their findings reveal that only double 
dose vaccination is insufficient to contain the outbreak. They stated that 
the vaccine will prevent 85% of infections which is estimated with the 
most optimistic assumption. 

Deploy the optimal level of vaccination in the community is one of 

the best strategies to prevent the transmission of the disease which 
reduce the infection and death risk [29]. Yang et al., 2021 [30] studied 
the impact of mitigation, suppression, and multiple rolling interventions 
to prevent the transmission of COVID-19 in the UK and other European 
countries, accounting for the balance of healthcare demand. They pro
posed that rolling intervention is an optimal strategy that would reduce 
the overall infections and deaths due to the coronavirus as well as bal
ance healthcare demand effectively in the UK [30]. Sah et al., 2021 [31] 
identified the impact of precipitated vaccine distribution which can 
reduce the burden due to the several variants of coronavirus. Martínez- 
Rodríguez et al., 2021 [32] also investigated the impact of the pace of 
vaccination and its efficacy on prevalence, hospitalizations, and deaths 
related to the coronavirus as well as identified different burden sce
narios due to the SARS-CoV-2 virus. Fuady et al., 2021 [33] demon
strated several vaccines delivering strategies. To mitigate the negative 
impact of COVID-19, vaccination programs in the community should 
follow a proper distribution strategy [19]. 

Rahman and Kuddus, 2021 [34] demonstrated an age-structured 
Susceptible-Latent-Mild-Critical-Removed (SLMCR) compartmental 
model of COVID-19 disease transmission. Aguilar-Canto et al., 2022 
[35] augmented a model of multiple vaccination strategies to control the 
disease. Ramos et al., 2021 [36] demonstrated a mathematical model to 
explore the impact of coronavirus variants as well as vaccines. Arruda 
et al., 2021 [37] presented a new epidemic model considering reinfec
tion and multiple viral strains of the virus which are the latest challenge 
to prevent the current COVID- 19 situation. Leónet et al., 2022 [38] 
demonstrated the multiple strains of the SARS-CoV-2 and introduced a 
new epidemiological model that accounts for two different variants of 
the virus and the significance of the vaccination program. 

In this study, we performed analytical and numerical simulations of 
COVID-19 model to depict the transmission dynamics of this disease. 
The next-generation matrix (NGM) technique is applied to estimate the 
basic reproduction number (R0) for the disease dynamics of the system. 
We determined the existence and uniqueness of the system properties 
and solution for the disease-free (DFE) and disease endemic equilibrium 
(DEE). Sensitivity analysis of different parameters has been performed to 
recognize the most efficacious model parameters to spread the COVID- 
19 virus. The outcomes of this analysis provide direction to the policy- 
maker about the steps which are effective to mitigate the COVID-19 
outbreak in Bangladesh. Finally, the numerical result represents that 
the transmission of the virus is significantly restricted if the susceptible 
individuals are fully vaccinated maintain all other health guidelines. 

The remainder of this paper is organized as follows: in section 2 we 
presented mathematical formulation of COVID-19 model. The existence 
and uniqueness of the model, equilibrium points, and its stability and 
basic reproduction number are presented in section 3. In section 4, nu
merical simulation of the proposed model and sensitivity analysis are 
calculated with suitable parameters values. Finally, in section 5 a brief 
discussion of the model result is elucidated and a concluding remark is 
provided. 

Mathematical model formulation and explanation 

In this section, we developed a compartmental COVID-19 trans
mission dynamics model with the help of a system of ordinary differ
ential equations among the following mutually exclusive compartments. 
Based on different considerations, a significant number of mathematical 
models for COVID-19 transmission dynamics have become omnipresent. 
A series of mathematical models have been analyzed to delineate the 
transmission dynamic pattern of infectious diseases [3,39–41]. We 
considered the total population size among nine mutually exclusive 
compartments: susceptible individuals, S(t), are uninfected people with 
the disease but a chance to be infected; the first dose vaccinated in
dividuals, V1(t), though still have to chance to be infected; second doses 
vaccinated individuals, V2(t), those who have completed the both dose 
vaccination within on time; exposed individuals, E(t), are those who are 
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affected with a disease but have not yet developed respiratory illness; 
mild individuals, M(t), are indicated those who are asymptomatic; 
critical individuals, C(t), are express the COVID-19 symptoms clearly; 
non-hospitalized individuals, NH(t), are not in serious health crisis; 
hospitalized individuals, H(t), are those who are in critical health and 
respiratory crisis; and recovered individuals, R(t), are recovered against 
the disease who were infected. The recovery compartment contains 
those individuals who are already COVID-19 negative after treatment, 
home isolation, no longer contacting with others, or dead case. The 
proposed schematic diagram of our proposed COVID-19 model illus
trates in Fig. 1. 

The total size of the population, N(t) is assumed to be constant and 
well mixed:. 

N(t) = S(t)+V1(t)+V2(t)+E(t)+M(t)+C(t)+NH(t)+H(t)+R(t) (1) 

In this model, all dead individuals are considered as newborns which 
are replaced in the susceptible compartment to keep the population size 
constant. A natural death case includes in all compartments at the 
constant per-capita rate µ and critical health-related deaths, which occur 
at the constant per-capita rate α. Peoples who received the first dose 
vaccine, shift to the vaccinated compartment (V1) from the susceptible 
population (S) with the constant rate ϕ. Among the first dose vaccinated 
population, there is a rate (η) to move susceptible states, whereas the 
remaining populations progress out to the second dose of vaccinated 
population states (V2) with a rate ρ. The full course vaccinated popu
lation moved to the recovery state (R) from the V2 state at a constant rate 
ψ. In our model, we assumed that the net inflow of uninfected popula
tion to susceptible is at a rate of µN. Susceptible individuals are 
decreased with those people who become infected due to contact with 
the coronavirus at a rate β(M + C), where β represents the transmission 
rate of the virus. The infected individuals are then moved to the exposed 
state E. The exposed compartment contains those infected populations 
who are express mild or critical health crises. A number of populations of 
the exposed state transfer to the mild compartment (M) at a rate δ1, 
whereas the remaining populations progress to the critical compartment 
at a per-capita rate δ2. There are also some mild individuals who move to 
the critical compartment at a rate χ due to declining health immunity 
within a few days. Other mild individuals transfer to the non-hospital 
compartment at a rate γ. The population of the critical compartment 
(C) is transmitted to two compartments, named non-hospital and 

hospital, according to the health condition with a per-capita rate ω1 and 
ω2, respectively. The recovery rate of the population from the mild (M), 
non-hospital (NH), and hospital (H) compartments are κ, θ, and σ, 
respectively. 

According to the proposed model, the transmission dynamics of the 
disease is designed with the following dynamic variables. A system of 
nonlinear ordinary differential equations delineates the model as. 

dS
dt

= μN − βS(M+C) − ϕS − μS+ ηV1 (2)  

dV1

dt
= ϕS − ηV1 − ρV1 − μV1 (3)  

dV2

dt
= ρV1 − ψV2 − μV2 (4)  

dE
dt

= βS(M+C) − δ1E − δ2E − μE (5)  

dM
dt

= δ1E − χM − κM − μM − γM (6)  

dC
dt

= δ2E+ χM − ω1C − ω2C − αC − μC (7)  

dNH
dt

= ω1C+ γM − θNH − μNH (8)  

dH
dt

= ω2C − σH − μH (9)  

dR
dt

= κM+ θNH+σH+ψV2 − μR (10)  

with the positive initial conditions:. 

S(0)= S0⩾0,V1(0)=V10⩾0,V2(0)=V20⩾0,E(0)=E0⩾0,M(0)

=M0⩾0,C(0)=C0⩾0,NH(0)=NH0⩾0,H(0)=H0⩾0,R(0)=R0⩾0
(11) 

The existence and positivity of the solution (for all t ≥ 0) of the 
proposed model (2) - (10) with the initial conditions (11) can be easily 
performed.  

Fig. 1. Schematic flow diagram of the disease transmission model.  
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Quantitative analysis of the model 

In this section, we have analyzed the invariant region, non-negativity 
of the solution, the existence of equilibria, disease-free and disease- 
endemic equilibrium points, basic reproduction number, stability anal
ysis, and sensitivity analysis. 

Positive invariance 

We have analyzed the existence of the solution of the system (2) - 
(10) with the initial conditions (11) and investigated the nonnegativity 
condition of the dynamic variable for all t ≥ 0,R9

+. 
To demonstrate the nonnegativity, we assert the following theorem. 

Theorem 3.1. Solutions of the all dynamic variable (S(t), V1(t), V2(t), 
E(t), M(t), C(t), NH(t), H(t), R(t)) of the system (2)-(10) with the initial 
conditions (11) satisfy S(t) > 0, V1(t) > 0, V2(t) > 0, E(t) > 0, M(t) > 0, C 
(t) > 0, NH(t) > 0, H(t) > 0, and R(t) > 0 for all t > 0, then the system 
(2)-(10) is positively invariant and attracting within R9

+. 

Proof. We choose the Eq. (2) from the proposed model which can be 
written as. 

dS
dt

= μN − βS(M + C) − ϕS − μS + ηV1  

dS
dt

= μN+ ηV1 − τS (12)  

where, τ = β(M + C)+ ϕ+ μ 
Integrating the above equation (12), we get the following expression. 

S(t) =S0exp
(

−

∫ t

0
τ(u)du

)

+(μN+ ηV1)exp
(

−

∫ t

0
τ(u)du

)

∫ t

0

(

exp
∫ s

0
τ(v)dv

)

ds
(13) 

Hence the proof. 

Positive invariance for all variables 
In this section, we perform positive invariance for all other variables. 

From equation (3) of the model, we get. 

dV1

dt
= ϕS − ηV1 − ρV1 − μV1  

⇒
dV1

dt
≥ − (η + ρ + μ)V1 (14) 

Solving the above equation (14), we have the expression. 

V1(t) ≥ V10exp
(

−

∫ t

0
(η + ρ + μ)du

)

> 0 (15)  

which reveals that V1(t) is non-negative for all t, where V10 is the initial 
value (at t = 0). Similarly, we can deduce that solutions trajectories for 
the rest of the dynamic variables of the system remain positive for all t >
0 and they are: 

V2(t) ≥ V20exp
(

−

∫ t

0
(ψ + μ)du

)

> 0 (16)  

E(t) ≥ E0exp
(

−

∫ t

0
(δ1 + δ2 + μ)du

)

> 0 (17)  

M(t) ≥ M0exp
(

−

∫ t

0
(χ + κ + γ + μ)du

)

> 0 (18)  

C(t) ≥ C0exp
(

−

∫ t

0
(ω1 + ω2 + α + μ)du

)

> 0 (19)  

NH(t) ≥ NH0exp
(

−

∫ t

0
(θ + μ)du

)

> 0 (20)  

H(t) ≥ H0exp
(

−

∫ t

0
(σ + μ)du

)

> 0 (21)  

R(t) ≥ R0exp
(

−

∫ t

0
μdu
)

> 0 (22)  

Boundedness 

We analyzed the model (2) - (10) to determine the biological feasible 
solution set. The following theorem assure that the solutions of the 
system are bounded in the set with the non-negative conditions. 

Theorem 3.2. The feasible solution set of the system– (2) - (10) sub
jected to the initial conditions (11) which initiate in R9

+ are uniformly 
bounded in ζ, where ζ = {(S, V1, V2, E, M, C, NH, H, R) єR9

+: S + V1 + V2 
+ E + M + C + NH + H + R = N}is the positively invariant region. 

Proof. Using the non-negative initial conditions (11) in the system– (2) 
- (10), it is observed that each of the dynamical variables remains non- 
negative (from Theorem 3.1). So, adding each of the equations (2) to 
(10), we obtain the total population size, N(t) which satisfies in the 
absence of death case owing to COVID-19 or if there is no critical indi
vidual (i.e., C = 0) [22], then we get. 

dN
dt

=
dS
dt

+
dV1

dt
+

dV2

dt
+

dE
dt

+
dM
dt

+
dC
dt

+
dNH

dt
+

dH
dt

+
dR
dt  

⇒
dN
dt

= μN − μS − μV1 − μV2 − μE − μM − αC − μC − μNH − μH − μR  

⇒
dN
dt

= 0,

Integrating the above equation, we have. 

N(t) = Constant. 

Accordingly, the constant size of the population, we obtain that all 
feasible solutions of each of the dynamical variables i.e., S, V1, V2, E, M, 
C, NH, H, and R are bounded in the invariant region. 

Analysis of equilibria 

In this analysis, we observed two equilibrium points in the system 
which are disease-free equilibrium (DFE) and disease-endemic equilib
rium (DEE). When the basic reproduction number remains below one (i. 
e., R0 < 1) we attain DFE, whereas if the basic reproduction number 
exceeds one (i.e., R0 > 1), we attain DEE [22]. 

Disease-free equilibrium (DFE) point (X0) 
In this section, we determine the DFE point of the system (2)-(10) in 

which disease compartments are considered as zero. In this model, we 
considered nine compartments in which five are infected compartments, 
i.e., E, M, C, NH, H and another four compartments are uninfected states, 
i.e., S, V1, V2, and R. At the infection-free steady state E = M = C = NH =
H = R = 0. Hence, the disease-free equilibrium point is:. 

X0 =
(
S0,V0

1,V
0
2,E

0,M0,C0,NH0,H0,R0)

=

(
μN(ρ + η + μ)

(μ + ρ)(η + μ + ϕ) − ηρ,
ϕμN

(μ + ρ)(η + μ + ϕ) − ηρ,

ϕμρN
((μ + ρ)(η + μ + ϕ) − ηρ )(ψ + μ), 0, 0, 0, 0, 0, 0

)
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Disease-endemic equilibrium (DEE) point (X*) 
Here, we determine the disease-endemic equilibrium point of the 

system (2)-(10) in which the disease spreads in the inhabitants. The 
endemic equilibrium point is discovered by equating zero of each of the 
equations of the system. Considering that every dynamic variable is non- 
zero i.e., S*∕= V1*∕= V2* ∕= E* ∕= M* ∕= C* ∕= NH* ∕= H* ∕= R* ∕= 0. Hence, 
the endemic equilibrium point is:. 

X* =
(
S*,V*

1,V
*
2,E*,M*,C*,NH*,H*,R*)

S* =
(δ1 + δ2 + μ)(χ + κ + γ + μ)(ω1 + ω2 + α + μ)

β((ω1 + ω2 + α + μ + χ)δ1 + (χ + κ + γ + μ)δ2 )

V*
1 =

ϕ(δ1 + δ2 + μ)(χ + κ + γ + μ)(ω1 + ω2 + α + μ)
β(η + ρ + μ)((ω1 + ω2 + α + μ + χ)δ1 + (χ + κ + γ + μ)δ2 )

V*
2 =

ρϕ(δ1 + δ2 + μ)(χ + κ + γ + μ)(ω1 + ω2 + α + μ)
β(ψ + μ)(η + ρ + μ)((ω1 + ω2 + α + μ + χ)δ1 + (χ + κ + γ + μ)δ2 )

E* =
(ϕ + μ)(R0 − 1)(χ + κ + γ + μ)(ω1 + ω2 + α + μ)
β((ω1 + ω2 + α + μ + χ)δ1 + (χ + κ + γ + μ)δ2 )

M* =
(ϕ + μ)(R0 − 1)(ω1 + ω2 + α + μ)δ1

β((ω1 + ω2 + α + μ + χ)δ1 + (χ + κ + γ + μ)δ2 )

C* =
(ϕ + μ)(R0 − 1)((χ + κ + γ + μ)δ2 + χδ1 )

β((ω1 + ω2 + α + μ + χ)δ1 + (χ + κ + γ + μ)δ2 )

NH* =
(ϕ+μ)(R0 − 1)((χ+κ+γ+μ)δ2ω1 +(ω1 +ω2 +α+μ)γδ1 +χδ1ω1 )

β(θ+μ)((ω1 +ω2 +α+μ+χ)δ1 +(χ+κ+γ+μ)δ2 )

H* =
(ϕ + μ)(R0 − 1)((χ + κ + γ + μ)δ2 + χδ1 )ω2

β(σ + μ)((ω1 + ω2 + α + μ + χ)δ1 + (χ + κ + γ + μ)δ2 )

Eq. (23) reveals that if R0 > 1 then the disease-endemic equilibrium 
point X*= (S*, V1*, V2*, E*, M*, C*, NH*, H*, R*) ∈ ζ. 

Basic reproduction number (R0) 

The basic reproduction number can be estimated as the spectral 
radius of a next generation matrix (NGM) using disease-free equilibrium 

point [42]. The NGM can be deduced by the product of two matrices T 
and − Σ− 1 where the matrix T represents the infection transmission rate 
in E, M, and C compartments and the matrix Σ delineate all other 
transitions across the compartments. The matrices T and Σ are expressed 
as: 

T =

⎡

⎣
0 βS0 βS0

0 0 0
0 0 0

⎤

⎦, and 

Σ=.

⎡

⎣
− (δ1 + δ2 + μ) 0 0

δ1 − (χ + κ + γ + μ) 0
δ2 χ (ω1 + ω2 + α + μ)

⎤

⎦

The next generation matrix is 

K = T × (-Σ-1)    

The largest magnitude eigenvalue of the next generation matrix (K) 
denotes the basic reproduction number of the disease. So, by calculating 
the characteristic equation, |K − λI| = 0, we can obtain the largest 
magnitude eigenvalue, where λ represents all possible eigenvalues and I 
represent the identity matrix. Hence, the basic reproduction number 
(R0) is obtained as: 

R0 =
S0β((ω1 + ω2 + α + μ + χ)δ1 + (χ + κ + γ + μ)δ2 )

(δ1 + δ2 + μ)(χ + κ + γ + μ)(ω1 + ω2 + α + μ)

=
βμN(ρ + η + μ)((ω1 + ω2 + α + μ + χ)δ1 + (χ + κ + γ + μ)δ2 )

((μ + ρ)(η + μ + ϕ) − ηρ )(δ1 + δ2 + μ)(χ + κ + γ + μ)(ω1 + ω2 + α + μ)

Stability analysis of the equilibrium point 

In this section, we performed the stability analysis of the disease-free 
equilibrium (DFE) and disease-endemic equilibrium (DEE). 

Theorem 3.3. The disease-free equilibrium, X0 =

(
S0,V0

1,V0
2, 0,0, 0,0, 0,0

)
, of the system (2– 10) is locally asymptotically 

stable if R0 < 1 and unstable if R0 > 1. 

Proof. To determine the stability of DFE i.e.,X0 =
(
S0,V0

1,V0
2, 0,0, 0,0, 0,0

)
, we calculate the Jacobian matrix of the sys

tem (2) – (11), which is designate as:  

R* =

(ϕ + μ)(R0 − 1)(ψ + μ)
(
((χ + κ + γ + μ)δ2 + χδ1 )((σ + μ)θω1 + (θ + μ)σω2 )

+(ω1 + ω2 + α + μ)((θ + μ)κ + γθ )(σ + μ)δ1

)

+
ψρϕ(δ1 + δ2 + μ)(χ + κ + γ + μ)(ω1 + ω2 + α + μ)(σ + μ)(θ + μ)

(ρ + η + μ)
μβ(σ + μ)(θ + μ)(ψ + μ)((ω1 + ω2 + α + μ + χ)δ1 + (χ + κ + γ + μ)δ2 )

(23)   

K =

⎡

⎢
⎢
⎢
⎢
⎣

S0β((ω1 + ω2 + α + μ + χ)δ1 + (χ + κ + γ + μ)δ2 )

(δ1 + δ2 + μ)(χ + κ + γ + μ)(ω1 + ω2 + α + μ)
S0β(ω1 + ω2 + α + μ + χ)

(χ + κ + γ + μ)(ω1 + ω2 + α + μ)
S0β

(ω1 + ω2 + α + μ)
0 0 0

0 0 0

⎤

⎥
⎥
⎥
⎥
⎦
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At the infection-free equilibrium point(X0), the Jacobian matrix is in 
form.  

Now, we have to exhibit that all the eigenvalues of J(X0) are nega
tive. The 9th column contains only the diagonal element − µ which in
dicates that − µ is one negative eigenvalue, whereas the remaining 
eigenvalues can be determined from the sub-matrix, J1(X0). However, 
J1(X0) matrix can be formed by eliminating the 9th row and 9th column 
of J(X0). Which gives,.  

In a similar way, the 3rd, 7th and 8th columns contain only the di
agonal terms − (ψ +µ), − (θ+µ), − (σ+µ), respectively, which form the 
negative eigenvalues. The rest of the eigenvalues can be evaluated from 
the reduced sub-matrix, J2(X0) formed by eliminating the 3rd, 7th and 
8th rows as well as corresponding columns from J1(X0).  

This matrix can be written in block form as: 

J2
(
X0) =

[
A1 A2
A3 A4

]

,whereA1 =

[
− (ϕ + μ) η

ϕ − (ρ + η + μ)

]

,A2

=

[
0 − βS0 − βS0

0 0 0

]

A3=

⎡

⎣
0 0
0 0
0 0

⎤

⎦, andA4=

⎡

⎣
− (δ1+δ2+μ) βS0 βS0

δ1 − (χ+κ+γ+μ) 0
δ2 χ − (ω1+ω2+α+μ)

⎤

⎦

SinceA3 =

⎡

⎣
0 0
0 0
0 0

⎤

⎦, then we obtain, 

J =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

− β(M + C) − ϕ − μ η 0 0 − βS − βS 0 0 0
ϕ − (ρ + η + μ) 0 0 0 0 0 0 0
0 ρ − (ψ + μ) 0 0 0 0 0 0

− β(M + C) 0 0 − (δ1 + δ2 + μ) βS βS 0 0 0
0 0 0 δ1 − (χ + κ + γ + μ) 0 0 0 0
0 0 0 δ2 χ − (ω1 + ω2 + α + μ) 0 0 0
0 0 0 0 γ ω1 − (θ + μ) 0 0
0 0 0 0 0 ω2 0 − (σ + μ) 0
0 0 ψ 0 κ 0 θ σ − μ

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

J(X0) =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

− (ϕ + μ) η 0 0 − βS0 − βS0 0 0 0
ϕ − (ρ + η + μ) 0 0 0 0 0 0 0
0 ρ − (ψ + μ) 0 0 0 0 0 0
0 0 0 − (δ1 + δ2 + μ) βS0 βS0 0 0 0
0 0 0 δ1 − (χ + κ + γ + μ) 0 0 0 0
0 0 0 δ2 χ − (ω1 + ω2 + α + μ) 0 0 0
0 0 0 0 γ ω1 − (θ + μ) 0 0
0 0 0 0 0 ω2 0 − (σ + μ) 0
0 0 ψ 0 κ 0 θ σ − μ

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

J1(X0) =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

− (ϕ + μ) η 0 0 − βS0 − βS0 0 0
ϕ − (ρ + η + μ) 0 0 0 0 0 0
0 ρ − (ψ + μ) 0 0 0 0 0
0 0 0 − (δ1 + δ2 + μ) βS0 βS0 0 0
0 0 0 δ1 − (χ + κ + γ + μ) 0 0 0
0 0 0 δ2 χ − (ω1 + ω2 + α + μ) 0 0
0 0 0 0 γ ω1 − (θ + μ) 0
0 0 0 0 0 ω2 0 − (σ + μ)

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

J2(X0) =

⎡

⎢
⎢
⎢
⎢
⎣

− (ϕ + μ) η 0 − βS0 − βS0

ϕ − (ρ + η + μ) 0 0 0
0 0 − (δ1 + δ2 + μ) βS0 βS0

0 0 δ1 − (χ + κ + γ + μ) 0
0 0 δ2 χ − (ω1 + ω2 + α + μ)

⎤

⎥
⎥
⎥
⎥
⎦
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det (A1 - λI)× det (A4 - λI) = 0. 

Now we can implement the Routh-Hurwitz stability criterion directly 
and independently to the matrices A1 and A4. We need to demonstrate 
that the trace of the both matrix is negative and the determinant is 
positive for the (2 × 2) A1 matrix as well as negative for the (3 × 3) A4 
matrix. So, from the (2 × 2) A1 matrix, we have 

trace(A1) =− (ϕ + μ) − (ρ + η + μ) < 0,

and det(A1) =(ϕ + μ)(ρ + η + μ) − ηϕ = ϕ(ρ + μ)+ μ(ρ + η + μ) > 0 
For (3x3) A4 matrix, we get 
Condition (1): 
trace(A4) = − (δ1 +δ2 +μ) − (χ+κ+γ+μ) − (ω1 +ω2 +α+μ) < 0,
Condition (2): 

Sum of minors of matrix A4 along diagonal, 

= (δ1 + δ2 + μ)(χ+ κ+ γ+ μ)+ (δ1 + δ2 + μ)(ω1 +ω2 +α+ μ)
+ (χ+ κ+ γ+ μ)(ω1 +ω2 +α+ μ)
− βS0(δ1 + δ2)

for R0 < 1. 
Condition (3): 

det(A4) = S0β((ω1 + ω2 + α + μ + χ)δ1 +(χ + κ + γ

+ μ)δ2 ) − (δ1 + δ2 + μ)(χ+ κ+ γ+ μ)(ω1 +ω2 +α+ μ)

=
S0β((ω1 + ω2 + α + μ + χ)δ1 + (χ + κ + γ + μ)δ2 )

(δ1 + δ2 + μ)(χ + κ + γ + μ)(ω1 + ω2 + α + μ) − 1 

= R0 − 1 < 0 for any values of R0 < 1. 
Hence, the disease-free equilibrium X0 is locally asymptotically 

stable if R0 < 1. If either R0 > 1, X0 will be unstable i.e., the charac
teristic equation has at least one positive root with real part. 

Theorem 3.4. The disease-endemic equilibrium point, X*, of the 
system (2)-(10) is locally asymptotically stable if R0 > 1. 

Proof: We obtain the Jacobian matrix of the system (2) – (10) at X*=
(S*, V1*, V2*, E*, M*, C*, NH*, H*, R*) which can be expressed as:   

The 9th column of J(X*) contains the diagonal element − µ which 
indicates that − µ is one negative eigenvalue, whereas the remaining 
eigenvalues can be determined from the sub-matrix, J1(X*). J1(X*) 
matrix can be formed by eliminating the 9th row and 9th column of J 
(X*). Which gives,   

In a similar way, the 3rd, 7th and 8th columns contain only the di
agonal terms − (ψ +µ), − (θ+µ), − (σ+µ), respectively, which form the 
negative eigenvalues. The rest of the eigenvalues can be evaluated from 
the reduced sub-matrix, J2(X*) formed by eliminating the 3rd, 7th and 

= (δ1 + δ2 + μ)(ω1 +ω2 + α+ μ)
(

1 −
R0(χ + κ + γ + μ)(δ1 + δ2)

((ω1 + ω2 + α + μ + χ)δ1 + (χ + κ + γ + μ)δ2 )

)

+(δ1 + δ2 + μ)(χ+ κ+ γ+ μ)+ (χ+ κ+ γ+ μ)(ω1 +ω2 +α+ μ) > 0,

J(X*) =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

− β(M* + C*) − ϕ − μ η 0 0 − βS* − βS* 0 0 0
ϕ − (ρ + η + μ) 0 0 0 0 0 0 0
0 ρ − (ψ + μ) 0 0 0 0 0 0

− β(M* + C*) 0 0 − (δ1 + δ2 + μ) βS* βS* 0 0 0
0 0 0 δ1 − (χ + κ + γ + μ) 0 0 0 0
0 0 0 δ2 χ − (ω1 + ω2 + α + μ) 0 0 0
0 0 0 0 γ ω1 − (θ + μ) 0 0
0 0 0 0 0 ω2 0 − (σ + μ) 0
0 0 ψ 0 κ 0 θ σ − μ

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

J1(X*) =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

− β(M* + C*) − ϕ − μ η 0 0 − βS* − βS* 0 0
ϕ − (ρ + η + μ) 0 0 0 0 0 0
0 ρ − (ψ + μ) 0 0 0 0 0

β(M* + C*) 0 0 − (δ1 + δ2 + μ) βS* βS* 0 0
0 0 0 δ1 − (χ + κ + γ + μ) 0 0 0
0 0 0 δ2 χ − (ω1 + ω2 + α + μ) 0 0
0 0 0 0 γ ω1 − (θ + μ) 0
0 0 0 0 0 ω2 0 − (σ + μ)

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦
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8th rows as well as corresponding columns from J1(X*).   

Fig. 2. Reported Bangladesh COVID-19 month-wise incidence data (red dot) 
and the corresponding best fit (blue solid curve). (For interpretation of the 
references to colour in this figure legend, the reader is referred to the web 
version of this article.) 

Table 1 
Description and estimated value of the model (2–10) parameters.  

Parameters Description Estimated 
value 

References 

N Total population 163,046,161 [45] 
μ Natural death rate 1

70
per year [46] 

η Progression rate from V1 to S 0.095 [3] 
ϕ First dose vaccination rate 0.64 Fitted 
β Transmission rate 1.0× 10− 6 Fitted 
ρ Second dose vaccination rate 0.001 Fitted 
ψ Recovery rate due to the second 

dose of vaccine 
0.8 [3] 

δ1 Progression rate from E to M 0.007 Fitted 
δ2 Progression rate from E to C 3.05× 10− 5 Fitted 
χ Progression rate from M to C 0.3 [34] 
α Disease death rate only for critical 

compartment 
0.125 [3] 

γ Progression rate from M to NH 0.99 Fitted 
κ Progression rate from M to R 0.02 [34] 
ω1 Progression rate from C to NH 0.13 [47] 
ω2 Progression rate from C to H 0.87 Fitted 
θ Recovery rate from NH to R 1/42 [30] 
σ Recovery rate from H to R 1/21 [30]  

J2(X*) =

⎡

⎢
⎢
⎢
⎢
⎣

− β(M* + C*) − (ϕ + μ) η 0 − βS* − βS*

ϕ − (ρ + η + μ) 0 0 0
β(M* + C*) 0 − (δ1 + δ2 + μ) βS* βS*

0 0 δ1 − (χ + κ + γ + μ) 0
0 0 δ2 χ − (ω1 + ω2 + α + μ)

⎤

⎥
⎥
⎥
⎥
⎦

Fig. 3. Association between Mild cases (M*) and the corresponding model 
parameters β, η, ϕ, δ1, δ2, ρ, ω1, ω2, α, χ, κ and γ. 

Fig. 4. Association between Critical cases (C*) and the corresponding model 
parameters β, η, ϕ, δ1, δ2, ρ, ω1, ω2, α, χ, κ and γ. 
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⇒J2(X*) =

⎡

⎢
⎢
⎢
⎢
⎣

− β(M* + C*) − Q η 0 − βS* − βS*

ϕ − A 0 0 0
β(M* + C*) 0 − B βS* βS*

0 0 δ1 − F 0
0 0 δ2 χ − G

⎤

⎥
⎥
⎥
⎥
⎦

where,

A = (ρ+η+μ),B = (δ1 +δ2 +μ),F = (χ+κ+γ+μ),G = (ω1 +ω2 +α+μ),
and Q = (ϕ+μ). 

The characteristic equation of J2(X*) is defined as, 

|J2(X*) − λI | = 0 

⇒

⃒
⃒
⃒
⃒
⃒
⃒
⃒
⃒
⃒
⃒

− β(M* + C*) − Q − λ η 0 − βS* − βS*

ϕ − A − λ 0 0 0
β(M* + C*) 0 − B − λ βS* βS*

0 0 δ1 − F − λ 0
0 0 δ2 χ − G − λ

⃒
⃒
⃒
⃒
⃒
⃒
⃒
⃒
⃒
⃒

= 0 

⇒λ5 + B1 λ4 + B2 λ3 + B3 λ2 + B4 λ + B5 = 0 (25) where, 

O = (ρ + μ), B1 = β(M* + C*) + A + B + F + G + Q  

B2 = ((M* + C*)(A + B + F + G)+ S*(δ1

+ δ2) )β+(F+G)(A+B)+ (B+G+O)Q+(G+Q)F+AB+ ημ   

B3 = 2S*(M*+C*)(δ1+δ2)β2+((M* +C*)(A+B+G)+δ2S* )Fβ+(δ1(Q

+χ)+δ2Q)β+(((M* +C*)(A+B)+δ1S* )G+((M* +C*)B+(δ1

+δ2)S* )A)β+BFG+(A+Q)(BF+FG+BG)+(B+F+G)(OQ+ημ)

B4 =2((δ1 + δ2)A+ δ2F+ δ1(G + χ) )(M* + C*)S*β2 +(A+Q)(δ2F
+ δ1(G + χ) )S*β+(M* +C*)(ABF+AFG+ABG+BFG)β
+BFG(A+Q)+ (βS*δ1 + βS*δ2 +BF+ FG+BG)(OQ+ ημ)

B5 =2A(δ2F+ δ1(G + χ) )(M* + C*)S*β2 +((δ2F + δ1(G + χ) )βS*

+BFG )(OQ+ ημ)+ABFGβ(M* +C*)

From equation (25), it is evident that B1 > 0, B2 > 0, B3 > 0, B4 > 0, 
B5 > 0 if M* and C* > 0. From Eq. (24), it is shown that both M*and C* 
are positive if R0 > 1. Hence, by Routh-Hurwitz stability criterion, the 
disease-endemic equilibrium points X* is locally asymptotically stable 
for R0 > 1. 

Fig. 5. Disease-free equilibrium: R0 < 1. In this case, COVID-19 disease dies 
out (black dot). 

Fig. 6. Endemic equilibrium: R0 > 1. In this case, COVID-19 disease persists in 
the community (black dot). 

Fig. 7. Impact of first dose vaccine (ϕ) on the Mild cases (M).  

Table 2 
Sensitivity indices of R0 for the parameters of our model (2–10).  

Parameters Description Sensitivity index 
(R0) 

β Transmission rate + 1.000 
η Progression rate from V1 to S + 0.742 
ϕ First dose vaccination rate − 0.861 
δ1 Progression rate from E to M + 0.667 
δ2 Progression rate from E to C + 0.0025 
ρ Second dose vaccination rate − 0.048 
ω1 Progression rate from C to NH − 0.024 
ω2 Progression rate from C to H − 0.162 
α Disease death rate only for critical 

compartment 
− 0.023 

χ Progression rate from M to C − 0.018 
κ Progression rate from M to R − 0.015 
γ Progression rate from M to NH − 0.745  
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Numerical analysis of the model 

Estimation of the parameter’s value 

First, COVID-19 infected individual was reported in Wuhan-China. 
The coronavirus transmits rapidly and spreads throughout China and 
after the whole world. The World Health Organization (WHO) has 
declared this situation as a global crisis, known as the Corona pandemic. 
In this section, we calibrated a month-wise reported number of COVID- 
19 cases in Bangladesh with our proposed model and estimate some 
specific parameters. 

The value of the parameters in Eqs. (2)-(10), our considered COVID- 
19 model, is estimated by performing different combinations on the 
actual reported cases in Bangladesh from March 2020 to May 2021 [43]. 
Fig. 2 is shown the incidence data of COVID-19 from March 2020 to May 
2021 (red dot) and the model fitted curve (blue solid curve) by 

employing the MATLAB routine. In particular, the proposed model is 
parameterized to handle the severe and mild health crisis due to COVID- 
19 in terms of the infected populations in Bangladesh. Here, we esti
mated some of the model parameter’s value including transmission rate 
(β), first dose vaccination rate (ϕ), second dose vaccination rate (ρ), 
progression rate from E to M (δ1), progression rate from E to C (δ2), 
progression rate from M to NH (γ) and progression rate from C to H (ω2), 
whereas rest of the parameter’s value was taken from well-established 
literature (see Table 1). The estimation of the parameter’s value is car
ried out with the help of the least-squares method which is implemented 
to minimize the summation of squared errors given by Σ (Z(t, p) - Nac

tual)2, with the proposed COVID-19 model (2)-(10), whereas Nactual is the 
actual number of COVID-19 confirmed cases and Z(t, p) demonstrate the 
solution of the model according to the number of infected individuals 

Fig. 8. Impact of first dose vaccine (ϕ) on the Critical cases (C).  

Fig. 9. Impact of second dose vaccine (ρ) on the Mild cases (M).  

Fig. 10. Impact of second dose vaccine (ρ) on the Critical cases (C).  

Fig. 11. Impact of co-infection (χ) on the Mild cases (M).  
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during time t with the set of estimated parameters, p [44]. 

Evaluate the basic reproduction number (R0) 

The basic reproduction number of any disease illustrates how fast the 
disease becomes spread out into the susceptible populations. The disease 
can spread if the basic reproduction number, R0>1. In this section, our 
goal is to estimate the numerical value of the basic reproduction 
number,R0, of the model (2–10). Substituting the all-relative parame
ter’s value in Eq. (24) from Table 1, we estimated the following result. 

R0 =
βμN(ρ+η+μ)((ω1 +ω2 +α+μ+χ)δ1 +(χ+κ+γ+μ)δ2 )

((μ+ρ)(η+μ+ϕ) − ηρ)(δ1 +δ2 +μ)(χ+κ+γ+μ)(ω1 +ω2 +α+μ)

Hence, the value of the basic reproduction number (R0) is approxi
mately 7.11 which indicates that 7 or 8 susceptible populations can be 
infected by a single infected individual. 

Sensitivity analysis 

In this section, we implemented sensitivity analysis technique to 
determine the significance of each of the model parameters to control 
the SARS-CoV-2 virus transmission. Since this analysis is utilized to 
forecast model parameter’s value about what should be done or avoided, 
so it has significant importance to preclude the transmission of the virus 
from human to human [48]. In this case, our intention is to evaluate the 
sensitivity index of the basic reproduction number (R0) and the partial 
rank correlation coefficients (PRCC) for both Mild cases (M*) as well as 

Critical cases (C*) according to the model parameters. These two ex
pressions are directly linked to reducing disease transmission [40]. That 
evaluation is performed with the help of Latin hypercube sampling, and 
the partial rank correlation coefficients (PRCC): a global sensitivity 
analysis method [22,49]. Here, we performed 100,000 simulations and a 
uniform distribution is allocated for each model parameter from 0 to 5 
times their baseline value. The sign of the PRCCs indicates the increasing 
or decreasing effect on the outcome due to the corresponding increasing 
or decreasing value of each relative parameter. Identifying the signifi
cance of the parameters M*, and C*, by performing that method, we get 
an overall idea about which policies should be imposed to mitigate the 
spread of the disease. The PRCCs for the Mild cases, and Critical cases, 
shown in Figs. 3 and 4, have been determined by using the expressions 
M*, and C* from Eq. (23). 

The association between Mild cases (M*) and Critical cases (C*) with 
the corresponding model parameters β, η, ϕ, δ1, δ2, ρ, ω1, ω2, α, χ, κ and γ 
are depicted in Fig. 3 and Fig. 4, respectively. Results represent that 
parameters β, η, δ1, and δ2 have a positive association with the model 
outcomes in both Mild cases (M*) and Critical case (C*) which indicates 
that the positive aspect of these parameters will accelerate up the value 
of M*, and C*. Moreover, the parameter χ has a positive aspect to soar 
the critical cases (C*). On the other hand, the parameters such as ϕ, ρ, ω1, 
ω2, α, κ, and γ have a negative association with the model outcomes, 
which reveals that increasing these parameters will decrease Mild and 
Critical cases. 

The normalized forward sensitivity index of basic reproduction 
number (R0) with respect to each of the parameter xi can be derived as: 

Yxi
R0

=
∂R0

∂xi
×

xi

R0
(26) 

Using the above expression (26) and the value of the parameter from 
Table 1, we evaluate the sensitivity indices of the parameters for R0 (see 
Table 2). From these indices, it is shown that the following parameters 
(β, η, ϕ, δ1, δ2, ρ, ω1, ω2, α, χ, κ, and γ) have significant importance to 
control the reproduction number. 

Table 2 reveals the sensitivity indices of the basic reproduction 
number (R0) with respect to the corresponding parameters. In the 
sensitivity indices, the most sensitive parameter to spread the disease in 
the community is the transmission rate (β). Other sensitive parameters 
are η, δ1, and δ2. That is, β, η, δ1, δ2 have a great impact to transmit the 
disease if their corresponding values get increased. Hence, increasing (or 
decreasing) the transmission rate (β) of the virus by 100%, the basic 
reproduction number (R0) also increases (or decreases) by 100%. 

On the other hand, the second most significant parameter to prevent 
the disease is the first dose vaccination rate (ϕ). Also, the parameter (γ) 
as the progression rate from a mild case to a non-hospital case has great 
significance to keep under control the disease. Other parameters such as 
ρ, ω1, ω2, α, χ, κ have negative sensitivity indices. The least sensitive 
parameter is the progression rate from a mild case to the recovery stage 
(κ). 

Fig. 12. Impact of co-infection (χ) on the Critical cases (C).  

R0 =

1.0 × 10− 6 ×
1
70

× 163, 046, 161 ×

(

0.001 + 0.095 +
1

70

)

×

((

0.13 + 0.87 + 0.125 +
1
70

+ 0.3
)

× 0.007 +

(

0.3 + 0.02 + 0.99 +
1
70

)

× 3.05 × 10− 5
)

((

0.001 +
1
70

)(

0.095 + 0.64 +
1
70

)

− 0.095 × 0.001
)

×

(

0.007 + 3.05 × 10− 5 +
1
70

)

×

(

0.3 + 0.02 + 0.99 +
1
70

)

×

(

0.13 + 0.87 + 0.125 +
1
70

)

≈ 7.11   
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Numerical simulations 

In this section, we performed numerical simulations of our proposed 
model using the Ordinary Differential Equation (ODE) solvers in Matlab 
programming language to support the analytical results. For illustration 
we have selected baseline parameter values (see Table 1) consistent with 
COVID-19 infection and transmission. In accordance with the analytical 
results we found two equilibrium points: the disease-free equilibrium 
(X0) and a disease-endemic equilibrium (X*). From the numerical per
spectives, the local stability of the disease-free equilibrium and disease- 
endemic equilibrium are investigated through standard dynamical sys
tems analysis methods. Numerical results of the transmission dynamics 
for the equilibrium points of the disease are depicted in Figs. 5 and 6. In 
Fig. 5, we used different initial conditions of all state variables to depict 
the system of trajectories in the disease-free and disease-endemic equi
librium. We found that if the basic reproduction number (R0 < 1) re
mains below one, the disease-free equilibrium is locally asymptotically 
stable which means that the disease will be fade-out from the commu
nity. However, Fig. 6 illustrates the stability of the disease-endemic 
equilibrium (R0 > 1) by depicting system trajectories through the M 
VS C plane originating from different initial conditions. In this system 
the virus persists in the community. 

Figs. 7 and 8 illustrate the effect of the first dose vaccine (ϕ) on the 
mild cases (M) and critical cases (C). From these figures, we observed 
that the infection case in both mild and critical cases can be reduced 
significantly if we increase the first dose vaccination rate sufficiently. 
The first dose vaccine (ϕ) rate has a negative correlation to control the 
outspread (from Table 2). From the public health perspective, the first 
dose vaccine prepares the immune system to fight against COVID-19 
infection in the non-infected human body. The first dose vaccination 
reduces the chance to be infected though there is the possibility to be 
infected by the rate (η). The number of critical cases decreases if we 
increase first dose vaccination rate as shown in Fig. 8. 

Figs. 9 and 10 depict the effect of the second dose vaccine (ρ) on the 
mild cases (M) and critical cases (C), respectively. Analyzing the figures, 
we can conclude that both doses of vaccine have more significance to 
reduce the risk of an outbreak. When the rate of the second dose of 
vaccination (ρ) escalated from 0.001 to 0.1; we observe that both mild 
and critical cases decrease effectively. Moreover, when ρ = 0.1 the 
number of mild and critical cases quickly decreases as shown in Figs. 9 
and 10. We recommended that the second dose vaccine is essential to get 
maximum protection from COVID-19 which triggers continuously the 
immune system to produce a large number of antibodies. 

Patients infected by COVID-19 may also have co-infection and can 
move from Mild case (M) Critical case (C). Among the mild individuals 
who face a sudden serious illness admitted to the hospital and consider 
that people as critical individuals. The co-infection rate (χ) has a nega
tive correlation with the mild cases (M), whereas it has a positive cor
relation with the critical cases (C). From Fig. 11, we observed that mild 
case reduces due to the co-infection with other diseases and move to the 
critical compartment. Since the co-infection (χ) rate has a positive effect 
on the critical case. Therefore, the critical cases increase due to the in
crease of the co-infection which is shown in Fig. 12. 

Discussion and conclusion 

The new-confirmed cases of COVID-19 are increasing throughout the 
world and the transmission of coronavirus disease in human-to-human is 
the most concerning issue. In this situation, protecting public health 
with proper vaccination and imposing optimal strategies with limited 
resources is the highest priority to prevent the disease. Here, we pro
posed a modified SEIR compartmental disease model and examined it 
mathematically to investigate the transmission dynamics of COVID-19 
based on accessible data. 

In this study, we performed analytical and numerical simulations of 
the model and found two equilibrium points: the disease-free equilib

rium point and a disease-endemic equilibrium point. We also estimated 
the basic reproduction number (R0) and showed that both the equilib
rium points of the system are locally asymptotically stable. From that 
analysis, we can conclude that the disease will approximately fade-out 
from the community when the basic reproduction number is less than 
one whereas, the disease persists in the community if the basic repro
duction number is greater than one. 

The proposed mathematical model has considered double doses 
vaccination program since Bangladesh started to provide vaccines to 
people on February 7, 2021. The first dose vaccination (ϕ) rate takes the 
first step to prevent the outbreak of the disease. Those persons who take 
the first dose vaccine, are not facing critical medical conditions. Medical 
experts have recommended getting both doses of the COVID vaccine to 
prevent infection. The second dose vaccine has a significant impact on 
antibody growth which is very essential to protect the COVID-19. The 
second dose vaccine stimulates the memory cells so that the body re
members this injection for the long term. It continuously triggers the 
immune system of the body to produce a large number of antibodies, 
resulting in cell-mediated immunity. 

From the expression of basic reproduction numberR0, we found that 
it has positive correlation with the transmission rate (β), progression 
rate to be again infected (η), progression rate from exposed to mild as 
well as critical cases (δ1 and δ2, respectively). To explore the effect of the 
model parameters in disease transmission, sensitivity analysis has been 
performed which shows that the transmission rate (β) is 100% respon
sible for spreading the disease, presented in Table 2. Therefore, to 
control the disease we impose a strategy to minimize the transmission 
rate of the virus. The most effective strategy is ensuring vaccination 
which has up to 86.1% possibility to preclude the transmission of the 
virus (see Table 2). This study draws special attention to controlling the 
transmission of the virus in the community with the significance of first 
and second-dose vaccination on mild cases and critical cases. To prevent 
the disease transmission from the community, we must have to concern 
about the health cautions such as ware a face mask, maintain a safe 
distance and frequently wash the hands. Further, we numerically 
explored the impact of first and second doses vaccination rates on the 
dynamics of the COVID-19 outbreak. The numerical simulation has 
demonstrated that both dose vaccination has a negative impact on mild 
and critical cases. Therefore, an optimal vaccination program for all 
people, as well as home isolation for infected people, may protect most 
of the population from the outbreak of the virus in Bangladesh. 
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