
Missing information in imbalanced data stream: fuzzy adaptive
imputation approach

Bohnishikha Halder1 & Md Manjur Ahmed1
& Toshiyuki Amagasa2 & Nor Ashidi Mat Isa3 & Rahat Hossain Faisal1 &

Md. Mostafijur Rahman4

Accepted: 4 August 2021
# The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021

Abstract
From a real-world perspective, missing information is an ordinary scenario in data stream. Generally, missing data generate
diverse problems in recognizing the pattern of data (i.e., clustering and classification). Particularly, missing data in data stream is
a challenging topic. With imbalanced data, the problem of missing data greatly affects pattern recognition. As a solution to all
these issues, this study puts forward an adaptive technique with fuzzy-based information decomposition method, which simul-
taneously solves the problem of incomplete data and overcomes the imbalanced data stream in a dataset. The main purpose of the
proposed fuzzy adaptive imputation approach (FAIA) is to represent the effect of missing values in imbalance data stream and
handle the missing data problem in imbalance data stream. FAIA is a single pass method. It considers adaptive selection of
intervals based on all observed instances by using the interrelationship of attributes to identify correct interval for computing
missing instances. Here, the interrelationship of two attributes means one attribute’s value of an instance depends on another
attribute’s value of the same instance. In FAIA, after measuring all interval distances from a certain missing value, the least
distance is selected for this missing value. Synthetic data of minority class are generated using the same process of missing value
imputation for balancing data that is called oversampling. Instances of the datasets are divided into the chunks in data stream to
balance data without any ensemble of previous chunks because missing values may misguide the future chunks. To demonstrate
the performance of FAIA, the experiment is divided into three parts: missing data imputation, imbalanced information for offline
data for data stream, and imbalanced information with missing value for offline data. Eleven numerical datasets with different
dimensions from various repositories are considered for the computing performance of missing data imputation and imbalanced
data without data stream. Four different datasets are also used to measure the performance of imbalanced data stream. In
maximum measuring cases, the proposed method outperforms.
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1 Introduction

Missing data essentially refer to the absence of certain informa-
tion from a dataset. When a dataset has missing data, several
problems must be addressed to obtain the desired output. In
real-life scenarios, missing information is normal. Missing in-
formation may result in outside or inside disturbances of sys-
tems and communication structures, such as sensor fault and
malicious attack [1]. Medical diagnosis, biological research
with DNA microarrays, and industrial fields are accustomed
to incomplete data [2]. Imbalanced data represent another com-
mon problem in a dataset. When one class has outnumbered
instances than another, then data imbalance exists [3]. Data
stream pertains to the continuous and sequential reading of data
items for pattern recognition [4]. Examples of data stream are
wireless sensor network, web click stream, and scientific data.
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In recent years, concept drift with imbalanced data stream is
one of the most challenging issues in data mining [5].
Recognizing a pattern is more challenging with missing data.

Data stream is a dynamic process in which data are collected
over time, and when these data change over time, concept drift
occurs [4]. Data distribution, class prior, class-conditional prob-
ability, and posterior probability are four components that cause
concept drift [5]. These four types of drifts may be present in
data stream simultaneously. To solve this problem, several en-
semble methods are considered, and all of them are easy and
high performing [6]. Another two problems in a data stream are
incomplete data and imbalanced data.

Incomplete data generate a biased effect on the quality of
classification in a dataset [7] (i.e., imbalanced data). Addressing
this problem is a means to enhance the performance of pattern
recognition. Deletingmissing data instances (i.e., complete case
analysis) or imputing missing data on the basis of observed
instances (i.e., recovery of missing values) can overcome the
problem [8]. Recovering missing data shows better results than
deleting them. The three ways to estimate missing data are
interpolation, imputation, and matrix completion [9, 10].
Many machine learning imputation techniques are available,
and each provides better results than the other. Among these
techniques, k-nearest neighbors (KNN) is an easy and lazy
instance-based method [11]. In KNN, k number of closer dis-
tance instances are considered to measuremissing values [1]. In
some cases where rate of missing data is high, measuring miss-
ing data is impossible with KNN method. By contrast, some
methods weight these distances on the basis of mutual informa-
tion (MI) or gray relational coefficient (GRA) [1, 12].

Imbalanced data also occur commonly in real world. The
high number of instances in one class is called majority class,
and the least number of instances in another class is called
minority class. In training phase, the overall performance is
very poor for a small number of instances in minority class in
datasets [3]. To improve the performance, several imbalance
methods are available to alleviate the aforementioned problem
in training phase. A basic solution s random oversampling
(ROS), wherein randomly instances are selected from minor-
ity class that may face overfitting problem [13]. Synthetic
minority oversampling technique (SMOTE) generates syn-
thetic instances of minority class using “feature space” [5].
Specifically, SMOTE faces borderline issues to create new
instances. Therefore, borderline-SMOTE selects instances
that are very close to majority class [6].

Many cost-sensitivemethods consider cost during learning,
but all of them overlook missing information. Fuzzy-based
information decomposition (FID) [3] solves both problems
simultaneously. FID [3] considers two issues in which data
imbalance is reduced by oversampling of minority class and
missing data of minority class is imputed to obtain proper
outcome. The outcome of this existing method is better than
those of other methods. In addition, FID [3] shows the

importance of imputing missing values. For estimating the
missing value, FID considers all instances in the same attri-
bute as a distinct column vector. However, for most datasets,
FID does not consider the interrelationship among attributes
of each instance. Such an interrelationship is basically the
relationship among attributes for classifying a specific in-
stance. For example, the Iris dataset [14] has three classes of
data (setosa, versicolor, and virginica) and four attributes (se-
pal length, sepal width, petal length, and petal width). For
I. setosa, the attribute petal width value is between 0.1 cm
and 0.6 cm, and the petal length value is between 1 cm and
1.9 cm. For I. versicolor, the attribute petal width value is
between 1 cm and 1.8 cm, and the petal length value is be-
tween 3 cm and 5.1 cm (though most have a petal length
ranging between 3 cm and 4.9 cm). Similarly, for
I. virginica, the petal width value is between 1.8 cm and
2.5 cm (except one), and the petal length value is between
4.8 cm and 6.9 cm (except one). A relationship exists between
petal width and length, that is, if the petal width is between
0.1 cm and 0.6 cm and the length is from 3 cm to 5.1 cm, then
the flower is I. setosa. The problem is that FID [3] only uses
single attributes values for imputing missing instances, so the
imputed missing data sometimes create confusion. Moreover,
at the time of interval selection, the sequential manner may
divert to choose correct intervals.

For data stream, the solution of imbalanced data with con-
cept drift is trickier. The two types of solutions are online
based and chunk based. Under the online-based solution, the
prediction method is updated for each sample. On the con-
trary, a number of samples are combined in a certain time
and based on that, the classification process that takes place
is known as a chunk-based approach [5]. Online-based ap-
proach is regarded difficult because it processes an instance
at a time [15], and it may face false alarms, delays on the
detectors, or even missed detections situations [5].
Chunk-based leaning may be inappropriate when memory is
limited and high speed is a main requirement [15]. Moreover,
both approaches ignore missing values in data stream.
Therefore, we propose a chunk-based missing data imputation
method for imbalanced data stream. The limited memory
problem for chunk-based learning is solved by avoiding pre-
vious data chunks details. The proposed fuzzy adaptive impu-
tation approach (FAIA) for missing data uses adaptive interval
selection to weight instances for imputing missing data and
balancing data. Unlike FID method [3] for missing data im-
putation, FAIA also imputes missing data for majority class.
FAIA considers adaptive selection of intervals based on the
interrelationship of attributes to identify the correct interval for
weighting the observed instances for imputing missing value.
For example, from the same Iris dataset [14], which has a
missing instance with four attributes, and one is missing
among these four attributes. FAIA computes distances of all
attributes of observed instances from the missing instance’s
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attributes besides using the FID method. The measured dis-
tances aid to find the closest observed instances. After mea-
suring all intervals of distances, the least distance is selected
for a certain missing value, making the FAIA adaptive. This
adaptive selection minimizes the sequential increasing issue
for imputing missing value. To solve the imbalance problem,
given some missing values in the data stream, the previous
chunks histories are not that much important for balancing the
recent chunk of data that can misguide the current data. As
such, FAIA is a single pass method.

2 Related works

Classifying data from incomplete and imbalanced data
streams is challenging because missing data must be imputed
and imbalanced data with concept drift should be balanced.
Researchers already found several ways to attenuate the issues
of missing data and nonstationary imbalanced data streams
separately. For missing data, the methods are often divided
into “complete case analysis” or “recovery of missing values”
[3]. In complete case analysis, only observed instances are
considered. With an outsized missing rate, crucial information
is overlooked which cannot provide a satisfying output. A
correct missing data imputation method may be a better deci-
sion than case deletion. These imputation methods may be in
forms of single imputation, multiple imputations, fractional
imputation, or iterative imputation method [1]. Recovering
missing values by means or mode of observed values may
be a basic technique for single imputation. Hot deck (HD)
and cold deck (CD) are almost similar single imputation
methods, except HD uses input vector with similar pattern,
and CD’s source dataset differs from the current dataset. For
example, in a survey context, the external source can be a
previous realization of the same survey [8, 12]. Consistent
with the article [11], single imputation weakens the uncertain-
ty of the imputed data. By contrast, multiple imputation re-
stores the natural validities and solves the uncertainty, but the
data need to keep knowledge about missing mechanism. In
comparison, iterative imputation methods can use all useful
information, including missing information [1].

Statistical imputation methods and soft computing with
machine learning technologies are other two representative
imputation methods. Expectation maximization (EM), regres-
sion imputation (RI), MI-algorithm, and fuzzy rough set are
examples of statistical imputation method. EM is an iterative
algorithm that can be used in machine learning and data min-
ing [8]. In RI, multiple regression imputation method is used
with the parametric and non-parametric methods to impute
missing data [1]. For the parametric method, if incomplete
data cannot be modeled parametrically, then performance will
be very low [1].

KNN [1], decision tree (DT) [1], self-organizing map
(SOM) [16], and SVM [17] imputation can be categorized
under the machine learning method. SOM is trained without
missing data then imputes missing values [16]. DT can be
applied to impute numerical and categorical data. KNN mea-
sures k nearest neighbors frommissing samples using distance
matric [1]. Some developed KNN imputation methods, such
as sequential (SKNN) [1] and iterative KNN imputation
(IKNNI) [18], are introduced to get more valid results for
missing data. To improve classification with estimated miss-
ing values, [12] considered feature-weighted distance matric
using MI. Authors [1] considered feature relevance and
MI-weighted GRA matric to retrieve missing values. GRA
presents a relationship between a referential observation and
compared observation using gray relational coefficient (GRC)
and gray relational grade (GRG) [1]. On the contrary, author
[11] considered the gray distance to compute the closest
neighbors of missing data. All of these methods try to find
out more accurate missing data from datasets. Some of them
perform better than other methods, but all of them cannot deal
with imbalanced data in datasets.

Imbalance problem is another critical issue in the data min-
ing field where data of several class labels are not balanced. To
solve this problem, several methods are introduced by re-
searchers. All of these methods can be categorized into three
levels, namely, data level, algorithm level, and hybrid approach
[9, 19]. Example of data-level solutions are ROS of minority
class or randomly under-sampling (RUS) of majority class [13],
SMOTE [2], and borderline-SMOTE [20]. Among them,
SMOTE and borderline-SMOTE create synthetic samples for
balancing the data, for examples. Other methods randomly pick
samples from original dataset with replicate manner, which
may lead to an overfitting problem [3]. In majority weighted
minority oversampling technique (MWMOTE), minority sam-
ples are selected in an appropriate manner, and these instances
are clustered to derive correct synthetic data [21]. In
algorithm-level approach, minority class samples are weight-
ed using learning procedure [6]. Adaboost is the first method
under this approach. All of these methods are binary
class-based classifier. Although multi-class imbalance data
methods are available, very few suitable tools can the classi-
fication of multi-class imbalance data easily and properly.
Author [22] solved this problem by introducing a
multi-imbalance software, which consists of 18 algorithms
for multi-class learning. The 18 algorithms are divided into
seven categories; using five binarization techniques, this soft-
ware is implemented for multi-class imbalance data [22].
However, if data are missing in these imbalanced datasets,
then the situation becomes complex. With missing values,
synthetic samples may not be correct for minor class, and
multi-class software may fail to predict appropriate classes;
as a result, the predicted output of the method will be inaccu-
rate [3].
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Imbalance problem in data streams is more challenging.
Several existing ensemble methods can balance the data in each
data chunk with different tricks. With Learn++.NSE method,
SMOTE [2] is considered for balancing the minority data by
creating synthetic data, and it creates individual classifier for
each chunk. Using time-decay and their performance on the
current chunk, classifiers are weighted in [15]. Furthermore,
authors [4] solves the imbalanced data stream problem, and it
is known as Learn++.CDS (Learn++ with concept drift and
SMOTE). Another method [23] combines SMOTE [2] and
Adaboost SVM ensemble integrated with timeweightingmeth-
od for balancing dynamic financial distress prediction model.
To balance the current chunk, uncorrelated bagging (UB) [24]
ensembles minority class samples from previous chunks, and
under samples the majority class samples from current chunk.
In the future, for the concept drift data, majority class can be
converted into minority class. To solve this issue, SERA [25]
uses a selective ensemble method to balance the data distribu-
tion. It preserves minority class data of previous chunk to use
in latest chunk by selecting the most similar data of current
chunk from preservedminority class data. It usesMahalanobis
distance to find similar data from previous chunks. Multiple
selectively recursive approach toward imbalanced stream data
mining (MuSeRA) [26] is the improved version of SERA
[25]. MuSeRA ensembles all hypotheses built over previous
chunk to make predictions. However, these methods do not
consider complex data distribution. The selection-based re-
sampling ensemble (SRE) [4] method calculates the probabil-
ity of minority samples of previous chunks on the basis of
difficulty factors for current data chunk. Nonetheless, to en-
semble previousminority class data, there is an overfitting risk
with majority class in the current data chunk. To overcome
this, gradual resampling ensemble (GRE) [27] uses DBSCAN
cluster to select the minority class samples that do not have
any overlapping problem with the current majority class data.
These existing methods use fixed chunk to classify the data
streams, which becomes a problem when the amount of mi-
nority class data is very low or absent in the current data. As a
result, adaptive chunk-based dynamic weighted majority
(ACDWM) [5] method adaptively chooses the chunk size by
statistical hypothesis tests. It does not need to store any previ-
ous data for its incremental manner.

All of these methods solve the imbalanced data stream
problem by using ensemble method that are regarded as
memory-inefficient methods. If there are missing values in
an imbalanced data stream, then the previous ensemble data
are not that much important because the missing values con-
tain lack of information, and the lacking information at the
previous ensemble data can misguide the processing of cur-
rent data. To solve this issue, imputing missing data and
balancing data for the current chunk are the best solutions.
Although missing data greatly affect imbalanced data streams,
there are not enough methods that consider the effect of both

imbalance and missing data. Existing FID [3] imputes missing
values with oversampling method by creating synthetic in-
stances of minority class using fuzzy based decomposition
[28] system, so it solves the imbalance problem. However,
when it measures missing data, it sequentially increases the
values using fuzzy-based decomposition [28]. This sequential
manner of intervals, which is discussed further in the next
section, sometimes predicts wrong values for missing data.
As a solution, the proposed FAIA improves the sequential
problem by using adaptive selection of intervals with infor-
mation decomposition for data streams.

3 Proposed fuzzy adaptive imputation
approach

3.1 Motivation

Missing data and imbalanced data are common in field with
data stream and without data stream (i.e. offline data), so the
best solution should be one that can solve both problems si-
multaneously and more correctly. Many existing chunk-based
methods for imbalanced data stream exist, but they are not
considered to address the problem of missing data. Fewer
works take into account missing data and imbalanced data
concurrently, and these are not available for data stream.
These issues motivate the proposal of FAIA, a fuzzy adaptive
decomposition approach for imbalanced data stream. FAIA
can address the missing data and imbalanced data problems
in data stream at the same time. It is even as stable for offline
data field as in data stream. This study demonstrates how
effectively FAIA can handle the missing values and imbal-
anced data simultaneously in data stream field.

3.2 Proposed methodology

In this section, the proposed online-based FAIA is presented
in detail. This method not only can impute missing data pre-
sented in dataset but also balance the imbalanced data.
Furthermore, it can be used for data stream that does not make
use of history. The result section reveals how FAIA effective-
ly works in offline dataset as well. For classifying data, deci-
sion tree C4.5 is used in thismethod because it is more popular
for classifying. FAIA is a single pass model wherein previous
data are not considered in the current chunk. Given the miss-
ing data, the single pass model is more suitable than ensemble
model, which considers previous chunks values. In addition,
with missing values, the previous chunks cannot provide de-
tailed information for the current chunk. The proposed FAIA
is divided into two parts: balancing data and imputing missing
data.
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3.2.1 Balancing data

If the number of instances in one class is more than that in
another class, then an imbalance problem arises, whichmisclas-
sifies instances in dataset and reduces the accuracy of classifier.
Many methods are available for balancing a dataset. However,
with missing values, balancing data is more challenging. To
solve this problem, a new oversampling method is generated.

First, |Pm ∣ and |Nm∣, the number of majority and minority
instances, respectively, are computed from the dataset.
Depending on the percentage of oversampling f, the amount
of synthetic minority instances is then generated.

sm ¼ jNmj−jPmjð Þ � f ð1Þ

Here, sm is the number of synthetic instances, and these are
considered as missing values for the minority class. The miss-
ing data are imputed (as described in the following subsec-
tion). Fig. 1 shows the proposed method. Figure 1(a) illus-
trates an arrival data chunk with missing values. The blue
circles represent majority class data without missing values,
and yellow circles present majority class data with missing
values. The black stars are minority class data without missing
values, and yellow stars present minority class data with miss-
ing data. The number of stars is less than that of circles. To
balance the data chunk from data stream, extra yellow stars are
added in the chunk as missing values (Fig. 1(b)). These addi-
tional yellow stars are basically synthetic data which will bal-
ance the chunk of data stream using Eq. (1). After balancing
all missing data in the chunk of data stream, these are imputed.
The green stars are synthetic and partially imputed data in
minority class (Fig. 1(c)). The green circle with yellow are
imputed data in majority class (Fig. 1(c)).

3.2.2 Imputing missing data

With missing values in a dataset, it is difficult to classify
properly because the missing values of a certain instance
may represent vital characteristics for categorizing it under
the correct class. In addition, if the dataset is imbalanced, then

it is more difficult to get correct classes for the data.
Undoubtedly, measuring the missing data is crucial.
However, computing the exact values of missing data is
challenging.

For example, a dataset M has m instances and n attributes
with missing values.

The proposed FAIA uses column vector x with m features
and t numbers of missing values at vector x. Here, column
vector x is basically all the instances’ values in a certain attri-
bute from n.The total missing values are t= sm +N, whereN =
number of missing values present in main data at vector x.
Therefore, t number of missing values must be computed. In
addition,

x ¼ x1;…;NaN ; :…; xi;…;NaN ;…;NaN ;…; xmð ÞT ð2Þ
where xi is a feature value,NaN represents not a number which
is basically considered as missing values, and T is transpose of
the vector. D represents the index set of observed features
values.

D ¼ ijxi≠NaN ; i ¼ 1; 2;…;mf g ð3Þ

Moreover, a and b denote the minimum and maximum
values of the observed data, respectively.

a ¼ min xiji∈Df g; b ¼ max xiji∈Df g ð4Þ

The mean of each column vector is calculated with respect
to all observed value D for entire dataset M .

Me ¼ 1

m
∑m

1 xi; xi∈D ð5Þ

Me value is used in all NaN positions according to the
columns. For column vector x, interval I = [a, b] and h denote
step length determined as t. Thus, h = (b − a)/t.

Interval I is divided into t parts to determine the weights for
recovering missing values.

Therefore, I ¼ ⋃ts¼1I s where

I s ¼ aþ s−1ð Þ � h; aþ s� h½ Þ; s ¼ 1; 2; ::; t−1 ð6Þ

Fig. 1 Resampling procedure for data stream using the proposed method: (a) imbalanced data with missing values, (b) balanced data with missing
values, and (c) imputed missing data
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I t ¼ aþ t−1ð Þ � h; aþ t � h½ � ð7Þ

For contribution weighting, the discrete of universe for x,
U = {u1, u2,…, ut} [28] is considered where

us ¼ aþ s−1ð Þ � hþ aþ s� h
2

; s ¼ 1; 2;…; t: ð8Þ

To achieve the goal (a new FAIA), the fuzzy of x is repre-
sented in the following form:

μ : x ×U→ [0, 1] and (xi, us)→ μ(xi, us), where μ(xi, us)
denotes membership degree.

Fuzzy adaptive imputation is calculated as follows:
At first, distances between xi and U = {u1, u2,…, ut} are

calculated using ||xi − us||. The smallest distances are selected,
and this is the first step in making the method adaptive and

finding xið ; usÞ ¼ e−
xi−usj jj j
h . If the number of smallest distances

are more than 1, then μ(xi, us) values are attributed to all of
those U that belongs to the smallest distance. Hence,

μ xi; usð Þ ¼ e−
xi−usj jj j
h ; if min xi−usj jf g > 0

0; Otherwise

(
ð9Þ

The minimum numbers of instances present in the discrete
of universe is determined, with U as Minintances = min {num-
ber of instances uk| k ∈U AND μ(xi, uk) ! = 0.}

To make adaptive information decomposition, the distance
d of discrete of universe,U from each missing valued instance
is measured by using Euclidean distance, as given in Eq. (10).
For each column, the entire row of corresponding instance is
considered with attribute values that aid to find the total min-
imum distance from corresponding missing instances to ob-
served instances. The entire row consists of some attributes,
and these attribute values represent the instance into a specific
class. For a certain class, all instances’ attribute values are
closer than those of other classes. To compare the attribute
relationship, we use Euclidean distance, which is actually
measured as the total distance. If instances belong to the same
class, then the attribute values are the closest than other clas-
ses’ instances. As a result, the total distance will be the
smallest. This is the reason the equation used involves the
interrelationships of attributes.

d xs; usð Þ ¼
n ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

∑n
j¼1 M xs;y jð Þ−M xi;y jð Þð Þ2

q
; if μ xi;usð Þ!¼0

0; otherwise

ð10Þ

Here, yj represents j
th attribute of the dataset, and xs is the

missing value.M(xs, yj) andM(xi, yj) are the attribute values
of corresponding instances in main dataset M. In addition,
us ∈U. Here, for each us if membership function μ(xi, us) is
not equal to 0 then the Euclidean distance d(xs, us) is calculated.

The computed distances d(xs, us) are sorted in an ascending
order for corresponding us. The average of each d(xs, us) is
measured by

A xs; usð Þ ¼ ∑Minintances
i¼1 d xsi; usið Þ
Minintances

ð11Þ

us; psð Þ ¼ min A xs; usð Þf g ð12Þ

Here, ps is the position of all corresponding us values. Thus,
the us is measured adaptively in the proposed FAIA where us
of FID is selected sequentially such that the first element ofU
is considered for the first missing data imputation.

Finally, the information decomposition to retrieve the sth

missing value of x is given as follows:

fms ¼
∑ j∈Dmi; ps

∑i∈Dμ xi; ups
� � ; if ∑i∈Dμ xi; ups

� �
> 0 ð13Þ

Here, x is the mean of all observed feature values, ∑i ∈

Dμ(xi, us) = 0 occurs when no observed feature values contrib-
ute to Is, and mi; ps ¼ μ xi; ups

� �� xi;, ∈D.
Theorem: Let Is = [as, bs], where Is is the s

th closest inter-
val. Then, the corresponding observed missing value fms∈ asð
; bsÞ, which means for adaptive fuzzy imputation, it must re-
main in the range of as to bs. This range is the closest interval
among all intervals (i.e., as≤fms≤bsÞ.

Proof:
As previously mentioned, us is the center of Is, thus ||ai −

us|| = ||bi − us|| . According to Eq. (9), if ||xi − us|| is not the
minimum, then μ(xi, us) = 0. Moreover, if ||xi − us|| is the min-
imum for more than one interval of Is, then the closest interval
must be determined using Eqs. (10) to (12).The missing value
is obtained using adaptive fuzzy imputation based on the pro-
posed FAIA as fms . Thus,

fms ¼
∑ j∈Dμ xi; ups

� �� xi
∑i∈Dμ xi; ups

� � ≤
∑ j∈Dμ xi; ups

� �� bs
∑i∈Dμ xi; ups

� �
Similarly,

fms ¼
∑ j∈Dμ xi; ups

� �� xi
∑i∈Dμ xi; ups

� � ≥
∑ j∈Dμ xi; ups

� �� as
∑i∈Dμ xi; ups

� �

This is how other attributes of a certain instance with miss-
ing value help in choosing the nearest interval for imputing
missing value. This ends the proof. □

The proposed FAIA is described by Algorithms 1 and 2,
which are both used for data stream. However, if offline data
is considered, then only Algorithm 2 is taken into account. At
first, data stream S is considered in Algorithm 1. For each
current data chunk Bm (Bm ∈ S), a certain amount of data is
considered as training data (Pm represents positive data and
Nm represents negative data). To balance the training data,
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how much minority data need to be generated is calculated by
using Eq. (1) at step 3 (in Algorithm 1). To impute missing
data, Algorithm 2 is called at step 4. In Algorithm 2, for each
column ofD,maximum and minimum values are measured at
step 2 for dividing the entire length h into t number of parts to
get intervals using step 5 for corresponding feature vector. For
each missing value, the suitable interval I is selected, and MF
is calculated for imputing missing value. For selecting suitable
interval and making the method adaptive, the first step is iden-
tifying the proper U and its’ MF using Eq. (9) at step 7. The
minimum distance from corresponding missing instance is
then calculated using Eq. (10). This step basically considers
all attributes of instances in dataset M, which actually repre-
sents the interrelationship among attributes for the instance.
The proposed adaptive process is represented in Algorithm 2
from steps 6 to 14. This process is repeated until all missing
values are measured. When all missing values are imputed,
then Algorithm 2 returns these values to step 5 of Algorithm 1
to predict the result. Finally, FAIA not only imputes missing
values but also reduces the imbalance issues in data stream by
oversampling the minority class. By contrast, for the dataset
without streaming (i.e., offline data), the training data is
passed to Algorithm 2 for balancing the data and imputing
the missing data.

4 Iv. Performance evaluation

In this section, the performance of FAIA is evaluated in detail.
The evaluation is divided in three parts. The first part
(Section IV: A) represents the capacity to impute missing
values with several missing rates in dataset. The performance
of FAIA is compared with those of KNN [1] and FID [3].
Although KNN [1] is a basic missing data imputation method,
it is the most popular. FID [1] is a recently published method,
and its imputation capacity can easily be shown from its algo-
rithm. In this part, 11 datasets are used to compare FAIA with
the existing methods. The second part (Section IV: B) mea-
sures how much stable the proposed FAIA is for missing
value imputation for imbalanced information with respect to
data streaming scenario. Two synthetic datasets and two
real-world datasets with different rates of missing values (a
total of four datasets) are used. The third part (Section IV: C)
considers the performance of resampling the minority data
imbalance without data streaming (i.e., for offline data).

A. missing data imputation This section measures the impu-
tation capacity of missing data of the proposed FAIA.

A.1) Datasets: Eleven real-world datasets are used from
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several databases. Table 1 represents the details of all
11 datasets. The size of datasets varies from 161 to
5473, and the attribute ranges from 6 to 60. To measure
the results of datasets, multiple classes of datasets are
considered as binary classes. The smallest class is con-
sidered as the minority class, and remaining other clas-
ses are presented as majority class in the dataset.

A.2) Data Missing Mechanism and Missing Rate:
According to [1], the three types of missingness
mechanisms are as follows:

& In missing completely at random (MCAR) case, missing
information does not rely on either observed or unob-
served data.

& In missing at random (MAR) case, missing information
can be predicted from other observed data in datasets.

& In not missing at random (NMAR) case, missing informa-
tion is slightly complicated to measure. Basically, missing
data depend on unobserved data in datasets.

To measure performance, we follow the process for cre-
ating incomplete datasets that is used in [3, 7]. Datasets
with 5%, 10%, 15%, 20%, and 30% missing values are
considered to evaluate the performance of all existing
methods.

A.3) Performance Measure for Missing Values: The
performance of missing data imputation methods
can be measured in a number of ways. One is the
difference between original and measured values
called RMSE [1]. The difference is the distance be-
tween two values. To compute these distances,
Euclidean distance is used. Most of the missing data
imputation techniques employ this method. When

the RMSE values of a method are smaller than other
existing methods then, the former is considered
much stable.

ð14Þ

Here, ei and ei are the actual and imputed values, respec-
tively. To evaluate the performance of FAIA, its performance
is compared with those of KNN [1] and FID [3] method.
These two methods are used to compare because KNN [1] is
known as a very popular method for missing data imputation,
and the proposed FAIA tries to solve the limitation of FID [3].
FAIA’s main purpose is to solve the missing values in imbal-
anced data and to balance the dataset simultaneously, but re-
cent methods that solve these problems at the same time are
scant. KNN [1] finds the k number of nearest neighbors from
observed instances, and the average result is taken into ac-
count as the value of corresponding missing value.

A.4) Result for Missing Value Imputation: Fig. 2
shows the RMSE values of all datasets, which are
mentioned in Table 1. Figure 2(a) represents the
RMSE of KC1 dataset with 5%, 10%, 15%, 20%,
and 30% missing values. The outputs of the pro-
posed FAIA are much lower than those of KNN
[1] and FID [3]. Using Eqs. (9), (10), (11), and
(12) makes the proposed FAIA adaptive by consid-
ering the attribute values of corresponding missing
instances. These attribute values not mentioned in
FID [3] denote an interrelationship. Equation (10)
measure distances from a certain missing instance to
all observed instances that belong to different MFs.
By using Eq. (11), the average values are calculated,
and finally, using Eq. (12), the minimum distance
and corresponding us are selected. Thus, FAIA
adaptively selects us and based on this value, the
missing data are computed for the corresponding
instance using Eq. (13). In addition, when missing
values are more than 20%, KNN cannot impute the
missing values because of the missing data of each
row. This problem is created when instances are less
but the rate of missing data is high. In Fig. 2(b), the
proposed FAIA provides lower RMSE than KNN
[1] and FID [3]. Similar to the previous figure, when
missing values are more than 10%, then KNN can-
not imputemissing values because instances are less
but the rate of missing data is high. Similar to the
previous reason, Figs. 2(c), 2(d), 2(e), 2(f), and 2(g)
indicate that FAIA provides better results than KNN
and FID. For KNN, when missing values are more
than 20%, 20%, 10%, and 20% in PC1, PC3, Sonar,
and Wine datasets, respectively, it cannot impute

Table 1 Database information for missing data imputation and offline
data with missing values

舃Data Number 舃Data Name 舃#SIZE 舃#Attributes

舃1 舃KC1 舃2109 舃18

舃2 舃MC2 舃161 舃39

舃3 舃PC1 舃1109 舃21

舃4 舃PC3 舃1563 舃37

舃5 舃Sonar 舃208 舃60

舃6 舃Vehicle 舃846 舃18

舃7 舃Wine 舃168 舃14

舃8 舃Glass (1) 舃214 舃9

舃9 舃Glass (2) 舃214 舃9

舃10 舃Page Block (1) 舃5473 舃10

舃11 舃Page Block (2) 舃5472 舃10
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the missing values for the same reasons. In Figs. 2
(h) and 2(i), FID and the proposed FAIA obtain
much closer results, thus showing the significance
of the proposedmethod because FAIA is considered
as the algorithm for data stream. Figures 2(j) and 2
(k) show differences from previous results. When
the rate of missing data is increasing, FAIA pro-
vides almost the same or higher values than KNN
but better than FID. The overall observation con-
cludes that the proposed FAIA can reduce the prob-
lem of missing data.

B. data stream with missing values This section measures the
stability of the proposed FAIA for imputing missing values in
imbalanced information when considering data stream.

B.1) Datasets: The datasets used in this experiment are two
synthetic datasets and two real-world datasets. Two

synthetic datasets are SEA [29] and Hyperplane [29].
The SEA dataset has three attributes, and among them,
third is considered as noise [4], and two are relevant.
This dataset has 60,000 instances with two classes.
Concept drift is also considered in this dataset. The
Hyperplane [29] generator contains an incremental
drift. It generates 200,000 instances with 10 attributes
and two classes. Weather and Electricity market
datasets are the two real-world datasets, and these are
used to measure and compare the stability of the
existing methods w.r.t the proposed FAIA. Weather
dataset consists of weather details of the Offutt Air
Force Base in Bellevue, Nebraska in the period of
1949–1999 [29]. This dataset comprises 18,159 in-
stances, eight features, and two classes (1,0).
Electricity market dataset contains information of the
Australian New South Wales Electricity Market with
45,312 instances, eight features, and two classes (1,0)
[29]. Table 2 shows the details about the datasets used
for data stream.

(a) KC1 dataset (b) MC2 dataset

(c) PC1 dataset (d) PC3 dataset

(e) Sonar dataset (f) Vehicle dataset

Fig. 2 RMSE values with different percentages of missing data: (a) KC1 dataset, (b) MC2 dataset, (c) PC1 dataset, (d) PC3 dataset, (e) Sonar dataset, (f)
Vehicle dataset, (g) Wine dataset, (h) Glass (1) dataset, (i) Glass (2) dataset, (j) Page Block (1) dataset, and (k) Page Block (2) dataset
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B.2) Performance Measure for the Imbalanced Data
Stream: The performances of imbalanced data
stream methods can be measured in many ways,
but all measuring models do not prove a favorable
matric. In this case, three common performance
measurement methods are used. They are area under
the receiver operating characteristic (ROC) curve,

AUC [30], F-measure [31] and Geometric mean
(GM) [4].

AUCmeasures which method provides better classification
performance [13] using the true positive rate (TP rate) and
false positive rate (FP rate), and this is calculated from the
confusion matrix [3].

AUC ¼ 1þ TPrate−FPrate

2
ð15Þ

Here, TPrate ¼ TP
TPþFN, and FPrate ¼ FP

FPþTN

F-measure is calculated by the precision and recall [31–33].
The F-measure is computed by the following rule:

F−measure ¼ β þ 1ð Þ � precision� recall
β � precisionþ recallð Þ ; ð16Þ

Table 2 Database information for data stream with missing values

舃Data Number 舃Data Name 舃#SIZE 舃#Attributes

舃1 舃SEA 舃60,000 舃03

舃2 舃Hyperplane 舃200,000 舃10

舃3 舃Weather 舃18,159 舃08

舃4 舃Electricity market 舃45,312 舃08

Table 3 Confusion Matrix [33]
舃Predicted Values 舃Predicted Positive 舃Predicted Negative
舃Actual Values

舃Actual Positive 舃TP (number of True Positive) 舃FN (number of False Negative)

舃Actual Negative 舃FP (number of False Positive) 舃TN (number of True negative)

(g) Wine dataset (h) Glass (1) dataset

(i) Glass (2) dataset (j) Page Block (1) dataset

(k) Page Block (2) dataset

Fig. 2 continued.
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where β is a constant. For this experiment, β is considered as
1. Precision and recall are defined as follows in Table 3:

precision ¼ TP
TPþFP and recall ¼ TP

TPþFN

G-mean evaluates the accuracy of the method based on the
ration of positive accuracy and negative accuracy in the con-
fusion matrix [4].

GM ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

TP
TP þ FN

� TN
TN þ FP

r
ð17Þ

B.3) Setting of Experiments:Many methods are used to
solved imbalanced data streaming problems.

Fig. 3 AUCvalues for Electricity market dataset with different rates ofmissing values: (a) AUC values for 500 data chunk, (b) AUC values for 1000 data
chunk, (c) AUC values for 1500 data chunk, and (d) AUC values for 2000 data chunk

Fig. 4 AUC values for Weather dataset with different rates of missing values: (a) AUC values for 500 data chunk, (b) AUC values for 1000 data chunk,
(c) AUC values for 1500 data chunk, and (d) AUC values for 2000 data chunk
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However, these methods only focus on balancing
the data and overlook missing information although
it is a vital issue to solve imbalanced data. Therefore,
the proposed FAIA concurrently focus on missing
values and imbalanced dataset, and thus adaptive
imputation is considered. For measuring the stability
of the proposed FAIA, existing methods like SERA
[25], SMOTE [2], and FID [3] are considered. Here,

SMOTE [2] solves imbalance problem chunk by
chunk. SMOTE creates synthetic minority class data
to balance the chunk at each time. Although
SMOTE [2] and FID [3] are offline-based imbalance
data methods, these are considered to show how
effective they are at data stream field. The chunk
sizes are 500, 1000, 1500, and 2000. The chunk
sizes are taken manually. Basically, there is no need

Fig. 5 AUC values for Hyperplane dataset with different rates of missing values: (a) AUC values for 500 data chunk, (b) AUC values for 1000 data
chunk, (c) AUC values for 1500 data chunk, and (d) AUC values for 2000 data chunk

Fig. 6 AUC values for SEA dataset with different rates of missing values: (a) AUC values for 500 data chunk, (b) AUC values for 1000 data chunk, (c)
AUC values for 1500 data chunk, and (d) AUC values for 2000 data chunk
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to determine appropriate chunk size because the
chunk size, which is be discussed in the next section
in depth, has no effect on the outcome. The
oversampling rate used in the method is 500%,
which mean 500% minority samples are added into
the main dataset [3]. SERA [25] is an ensemble
method for imbalanced data stream. It selects
minority samples that are nearest to the current
minority class to balance the recent chunk. The
post-balance ratio f is 0.3, k = 10 is the ensemble
members for enriching the training set in the
current chunk. For each chunk, 9.09% samples
are considered as training data. Similar to the
proposed FAIA, FID [3] takes into account both
missing values and imbalance problem. As FAIA
imputes missing values, the previous chunk’s in-
formation is unnecessary. Therefore, FAIA im-
putes missing values and balances the current
chunk distribution using Algorithms 1 and 2.
All methods including FAIA are implemented
in MatLab R2020. For classifying the samples,
DT C4.5 is used. The results are computed using
500, 1000, 1500, and 2000 chunk size. Two-fold
cross validation is used to train data for SMOTE
[2], FID, [3] and the proposed FAIA.

B.4) Result for Data Stream with Missing Data: Fig. 3
shows the AUC values for Electricity market dataset
with different missing values. The figure clear reveals

how important measuring missing data is. Although
SERA [25] and SMOTE [2] are traditional methods,
these remain popular in this related field. The main
motivation of the proposed method in to show the ef-
fectiveness of imputing missing data and balancing the
data in data streams simultaneously. In recent methods,
either only missing data or data imbalance problem is
solved. These methods do not work on both problems
simultaneously, so the proposed method may be new
for this data stream field. The traditional methods are
used for comparison to show howmuch effective FAIA
is in this field.

Finally, all figures with different data chunks with different
missing values show that FAIA achieves better results. Every
time, SERA shows lower output because it considers previous
data chunk with missing values. In addition, for each figure,
when the rate of missing data is increasing, FAIA provides
higher results than others because it considers the interrela-
tionship, which is calculated using Eqs. (9), (10), (11), and
(12). For Weather dataset in Fig. 4, when the chunk size is
equal to 500, FID and SMOTE provide higher result than
FAIA because the interrelationship among attribute data do
not provide much vital details or some observed instances’
attribute values create large distances using Eq. (10) for cor-
respondingmissing instance. These large distances are created
because of some values of specific attributes in the same

Fig. 7 Effect of different chunks on the proposed FAIA: (a) AUC values for Electricity market dataset, (b) AUC values for Weather dataset, (c) AUC
values for Hyperplane dataset, and (d) AUC values SEA dataset with different percentage of missing data
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classes that are not related to the corresponding attributes of
the missing instance. When the chunk sizes are 1000, 1500,
and 2000 with lower rate of missing data, then initially FAIA
provides lower or almost close results to SMOTE and FID
(Fig. 4), but when the rate increases the AUC values improve
with respect to SMOTE and FID. This happens because of the
interrelationship of attributes, which provide detailed informa-
tion about missing values. FAIA does not consider the previ-
ous chunk, so it is a one pass method that improves the time
complexity and memory efficiency. Unlike the proposed
FAIA, SERA in Fig. 4 always gives lower results than other
methods because of the previous incomplete chunk data are
ensembled.

Figure 5 shows that FAIA constantly obtains good results
for all chunks when considering Hyperplane dataset.
However, in Fig. 6, FAIA initially provides higher results than
SERA, but when the rate of missing data increases, the AUC

values decrease. Thus, for the SEA dataset, the proposed
FAIA becomes overfitted if chunk size increases, and this
happens because of the attribute numbers. The SEA dataset
only has three attributes, and when the rate of missing data
increases, FAIA fails to gain more information from the attri-
butes for corresponding missing instances because the values
of the third attribute in this dataset are considered as noise [4].
The distances measured using Eq. (10) misleads Eqs. (11) and
(12) in choosing the correct us. As a result, when the rate of
missing data is high and because noise is presented in the
dataset, the proposed FAIA provide less AUC values.
Nonetheless, this only happens when the rate of missing data
is high.

Figure 7 shows the impact of different data chunks on the
proposed FAIA with several rates of missing data. The results
are almost similar for all of the data chunks. In all datasets,
FAIA provides the closest or more similar values for 1500 and

Fig. 8 Previous chunk’s effect on the proposed FAIA: (a) AUC values
for Electricity market dataset with 5%missing values, (b) AUC values for
Electricity market dataset with 10% missing values, (c) AUC values for

Electricity market dataset with 15% missing values, (d) AUC values for
Electricity market dataset with 20% missing values, and (e) AUC values
for Electricity market dataset with 30% missing values
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2000 data chunks. For 1000 and 500 data chunks, the results
vary, but the difference is very negligible. Figure 7 implies
that chunk size of chunk-based learning in data stream has no
effect on FAIA. The effect of previous data chunk on the
proposed FAIA is also considered in Fig. 8 for Electricity
market dataset. For comparing the results by using the minor-
ity instances of previous chunk, Algorithm 3 is considered.
Here, Kp stores previous data chunk’s minority instances.
When the new chunk arrives, the previous chunk’s minority
class data are used to balance the current chunk at the step 4 of
Algorithm 3. The process of using previous chunk is present-
ed in Algorithm 3. Finally, Fig. 8 presents that when FAIA
considers previous data chunk with different missing values, it
always provides better result because of the missing values.

The missing values of previous chunks mislead the current
processing chunk, and this is the main reason that the previous
chunk is not considered in FAIA. FAIA provides convincing
output for AUC values because of imputing missing values in
imbalanced information when considering data stream.

Table 4 shows the F-Measure, and its mean and standard
deviation values with different chunk sizes and rates of miss-
ing data. For Electricity market dataset, FAIA continuously
provides higher results than other existing methods. For
Weather dataset, Hyperplane dataset, and SEA dataset,
FAIA gives better or sometimes slightly lower result. For
example, in Weather dataset where chunk size is 1500 and
missing value is 20%, the best result is 0.70 for SERA; 0.68,
FAIA. Furthermore, FAIA is a one pass algorithm and does

Table 4 F-Measure

舃Data Name 舃Percentage of
Missing Value

舃FAIA 舃FID [3] 舃SMOTE [2] 舃SERA [25]

舃Chunk Size 舃500 舃1000 舃1500 舃2000 舃500 舃1000 舃1500 舃2000 舃500 舃1000 舃1500 舃2000 舃500 舃1000 舃1500 舃2000

舃Electricity
market
dataset

舃5% 舃0.85 舃0.82 舃0.82 舃0.83 舃0.84 舃0.826 舃0.817 舃0.82 舃0.76 舃0.75 舃0.75 舃0.75 舃0.65 舃0.64 舃0.63 舃0.63

舃10% 舃0.80 舃0.78 舃0.77 舃0.77 舃0.79 舃0.77 舃0.766 舃0.76 舃0.70 舃0.69 舃0.70 舃0.69 舃0.63 舃0.62 舃0.59 舃0.64

舃15% 舃0.76 舃0.74 舃0.73 舃0.73 舃0.75 舃0.72 舃0.71 舃0.70 舃0.64 舃0.63 舃0.64 舃0.62 舃0.62 舃0.62 舃0.59 舃0.62

舃20% 舃0.73 舃0.70 舃0.69 舃0.67 舃0.70 舃0.66 舃0.65 舃0.64 舃0.61 舃0.59 舃0.58 舃0.59 舃0.59 舃0.60 舃0.58 舃0.598

舃30% 舃0.65 舃0.62 舃0.61 舃0.61 舃0.61 舃0.58 舃0.56 舃0.53 舃0.56 舃0.53 舃0.53 舃0.52 舃0.57 舃0.57 舃0.53 舃0.55

舃Mean 舃0.758 舃0.732 舃0.724 舃0.722 舃0.738 舃0.711 舃0.701 舃0.69 舃0.65 舃0.64 舃0.64 舃0.63 舃0.61 舃0.61 舃0.58 舃0.61

舃Standard
Deviation

舃0.075 舃0.077 舃0.08 舃0.086 舃0.088 舃0.096 舃0.1 舃0.111 舃0.08 舃0.09 舃0.09 舃0.09 舃0.03 舃0.03 舃0.04 舃0.04

舃Weather
dataset

舃5% 舃0.76 舃0.76 舃0.75 舃0.76 舃0.73 舃0.75 舃0.74 舃0.73 舃0.69 舃0.70 舃0.69 舃0.69 舃0.67 舃0.73 舃0.70 舃0.76

舃10% 舃0.72 舃0.73 舃0.73 舃0.73 舃0.71 舃0.71 舃0.71 舃0.71 舃0.64 舃0.66 舃0.64 舃0.64 舃0.69 舃0.72 舃0.71 舃0.74

舃15% 舃0.70 舃0.71 舃0.70 舃0.70 舃0.67 舃0.65 舃0.68 舃0.69 舃0.62 舃0.63 舃0.60 舃0.59 舃0.72 舃0.73 舃0.73 舃0.72

舃20% 舃0.67 舃0.67 舃0.68 舃0.66 舃0.64 舃0.64 舃0.64 舃0.64 舃0.60 舃0.60 舃0.58 舃0.58 舃0.71 舃0.74 舃0.70 舃0.73

舃30% 舃0.61 舃0.62 舃0.61 舃0.62 舃0.58 舃0.61 舃0.59 舃0.60 舃0.54 舃0.56 舃0.53 舃0.51 舃0.70 舃0.73 舃0.74 舃0.77

舃Mean 舃0.69 舃0.7 舃0.69 舃0.69 舃0.67 舃0.67 舃0.67 舃0.67 舃0.62 舃0.63 舃0.61 舃0.60 舃0.7 舃0.73 舃0.72 舃0.74

舃Standard
Deviation

舃0.06 舃0.05 舃0.05 舃0.06 舃0.06 舃0.06 舃0.06 舃0.05 舃0.05 舃0.05 舃0.06 舃0.07 舃0.02 舃0.01 舃0.02 舃0.02

舃Hyperplane
dataset

舃5% 舃0.67 舃0.69 舃0.70 舃0.71 舃0.61 舃0.64 舃0.64 舃0.66 舃0.56 舃0.57 舃0.58 舃0.59 舃0.64 舃0.67 舃0.69 舃0.69

舃10% 舃0.64 舃0.66 舃0.66 舃0.67 舃0.57 舃0.58 舃0.59 舃0.60 舃0.51 舃0.51 舃0.52 舃0.44 舃0.63 舃0.65 舃0.67 舃0.68

舃15% 舃0.61 舃0.62 舃0.63 舃0.63 舃0.52 舃0.54 舃0.54 舃0.54 舃0.46 舃0.47 舃0.47 舃0.48 舃0.62 舃0.64 舃0.66 舃0.66

舃20% 舃0.58 舃0.59 舃0.59 舃0.49 舃0.48 舃0.48 舃0.44 舃0.49 舃0.42 舃0.43 舃0.43 舃0.44 舃0.60 舃0.62 舃0.64 舃0.65

舃30% 舃0.51 舃0.52 舃0.51 舃0.52 舃0.40 舃0.40 舃0.40 舃0.40 舃0.36 舃0.36 舃0.37 舃0.37 舃0.58 舃0.69 舃0.61 舃0.62

舃Mean 舃0.60 舃0.62 舃0..62 舃0.60 舃0.52 舃0.53 舃0.52 舃0.54 舃0.46 舃0.49 舃0.47 舃0.46 舃0.61 舃0.65 舃0.65 舃0.66

舃Standard
Deviation

舃0.06 舃0.07 舃0.07 舃0.1 舃0.08 舃0.09 舃0.1 舃0.1 舃0.08 舃0.08 舃0.08 舃0.08 舃0.02 舃0.03 舃0.03 舃0.03

舃SEA dataset 舃5% 舃0.66 舃0.68 舃0.68 舃0.68 舃0.59 舃0.62 舃0.63 舃0.64 舃0.62 舃0.63 舃0.64 舃0.65 舃0.62 舃0.66 舃0.68 舃0.68

舃10% 舃0.62 舃0.64 舃0.64 舃0.65 舃0.54 舃0.57 舃0.58 舃0.59 舃0.56 舃0.58 舃0.60 舃0.60 舃0.59 舃0.63 舃0.65 舃0.67

舃15% 舃0.58 舃0.60 舃0.61 舃0.62 舃0.49 舃0.52 舃0.53 舃0.53 舃0.52 舃0.54 舃0.55 舃0.56 舃0.56 舃0.60 舃0.62 舃0.62

舃20% 舃0.54 舃0.56 舃0.56 舃0.55 舃0.45 舃0.46 舃0.46 舃0.47 舃0.47 舃0.49 舃0.49 舃0.50 舃0.53 舃0.57 舃0.59 舃0.60

舃30% 舃0.50 舃0.45 舃0.46 舃0.43 舃0.36 舃0.35 舃0.37 舃0.37 舃0.39 舃0.39 舃0.39 舃0.40 舃0.48 舃0.48 舃0.53 舃0.54

舃Mean 舃0.58 舃0.59 舃0.59 舃0.59 舃0.49 舃0.50 舃0.51 舃0.52 舃0.51 舃0.53 舃0.53 舃0.54 舃0.56 舃0.59 舃0.61 舃0.62

舃Standard
Deviation

舃0.06 舃0.09 舃0.08 舃0.1 舃0.09 舃0.1 舃0.1 舃0.1 舃0.09 舃0.09 舃0.1 舃0.1 舃0.05 舃0.07 舃0.06 舃0.06

5575Missing information in imbalanced data stream: fuzzy adaptive imputation approach



not consider the previous information (see RMSE and AUC
comparisons from Figs. 2, 3, 4, 5, and 6). Therefore, FAIA
provides overall good result than existing methods with miss-
ing values.

Table 5 represents the G-mean with different rate of miss-
ing data. It also represents its mean and standard deviation
values with different chunk sizes. As same as F-measure, for
electricity market dataset, FAIA continuously provides better

Table 5 G-mean

舃Data Name 舃Percentage of
Missing Value

舃FAIA 舃FID [3] 舃SMOTE [2] 舃SERA [25]

舃Chunk Size 舃500 舃1000 舃1500 舃2000 舃500 舃1000 舃1500 舃2000 舃500 舃1000 舃1500 舃2000 舃500 舃1000 舃1500 舃2000

舃Electricity market
dataset

舃5% 舃0.87 舃0.85 舃0.85 舃0.85 舃0.86 舃0.85 舃0.84 舃0.84 舃0.66 舃0.78 舃0.78 舃0.78 舃0.65 舃0.65 舃0.78 舃0.65

舃10% 舃0.83 舃0.81 舃0.80 舃0.80 舃0.82 舃0.80 舃0.80 舃0.79 舃0.74 舃0.73 舃0.74 舃0.73 舃0.70 舃0.64 舃0.64 舃0.67

舃15% 舃0.79 舃0.77 舃0.76 舃0.76 舃0.78 舃0.75 舃0.75 舃0.74 舃0.70 舃0.68 舃0.69 舃0.68 舃0.63 舃0.62 舃0.63 舃0.64

舃20% 舃0.76 舃0.74 舃0.73 舃0.71 舃0.74 舃0.71 舃0.70 舃0.69 舃0.67 舃0.65 舃0.65 舃0.65 舃0.60 舃0.62 舃0.62 舃0.61

舃30% 舃0.70 舃0.68 舃0.66 舃0.66 舃0.67 舃0.64 舃0.62 舃0.61 舃0.63 舃0.60 舃0.60 舃0.60 舃0.59 舃0.58 舃0.58 舃0.58

舃Mean 舃0.79 舃0.77 舃0.76 舃0.76 舃0.77 舃0.75 舃0.74 舃0.73 舃0.68 舃0.69 舃0.69 舃0.69 舃0.63 舃0.62 舃0.65 舃0.63

舃Standard Deviation 舃0.07 舃0.07 舃0.07 舃0.07 舃0.07 舃0.08 舃0.09 舃0.09 舃0.04 舃0.07 舃0.07 舃0.07 舃0.04 舃0.03 舃0.08 舃0.04

舃Weather dataset 舃5% 舃0.65 舃0.66 舃0.66 舃0.66 舃0.65 舃0.66 舃0.66 舃0.65 舃0.66 舃0.66 舃0.66 舃0.66 舃0.52 舃0.59 舃0.58 舃0.57

舃10% 舃0.63 舃0.66 舃0.65 舃0.66 舃0.65 舃0.65 舃0.66 舃0.65 舃0.63 舃0.65 舃0.64 舃0.64 舃0.52 舃0.58 舃0.58 舃0.57

舃15% 舃0.64 舃0.64 舃0.64 舃0.64 舃0.63 舃0.64 舃0.64 舃0.65 舃0.62 舃0.63 舃0.61 舃0.61 舃0.53 舃0.55 舃0.57 舃0.51

舃20% 舃0.62 舃0.63 舃0.63 舃0.62 舃0.62 舃0.62 舃0.62 舃0.61 舃0.60 舃0.61 舃0.60 舃0.60 舃0.48 舃0.54 舃0.55 舃0.54

舃30% 舃0.58 舃0.60 舃0.59 舃0.59 舃0.58 舃0.60 舃0.58 舃0.57 舃0.56 舃0.57 舃0.56 舃0.55 舃0.45 舃0.54 舃0.52 舃0.46

舃Mean 舃0.62 舃0.64 舃0.63 舃0.63 舃0.63 舃0.63 舃0.63 舃0.61 舃0.62 舃0.61 舃0.61 舃0.62 舃0.5 舃0.56 舃0.56 舃0.53

舃Standard Deviation 舃0.03 舃0.02 舃0.03 舃0.03 舃0.03 舃0.02 舃0.03 舃0.03 舃0.05 舃0.04 舃0.06 舃0.04 舃0.03 舃0.02 舃0.03 舃0.04

舃Hyperplane dataset 舃5% 舃0.69 舃0.71 舃0.72 舃0.72 舃0.65 舃0.67 舃0.67 舃0.69 舃0.61 舃0.63 舃0.64 舃0.64 舃0.64 舃0.58 舃0.69 舃0.69

舃10% 舃0.67 舃0.68 舃0.69 舃0.70 舃0.62 舃0.63 舃0.64 舃0.64 舃0.58 舃0.58 舃0.59 舃0.53 舃0.62 舃0.62 舃0.67 舃0.67

舃15% 舃0.65 舃0.66 舃0.66 舃0.69 舃0.59 舃0.60 舃0.60 舃0.60 舃0.54 舃0.55 舃0.55 舃0.56 舃0.60 舃0.64 舃0.65 舃0.66

舃20% 舃0.63 舃0.64 舃0.64 舃0.64 舃0.55 舃0.56 舃0.57 舃0.56 舃0.51 舃0.52 舃0.53 舃0.53 舃0.59 舃0.65 舃0.63 舃0.64

舃30% 舃0.58 舃0.59 舃0.58 舃0.59 舃0.50 舃0.49 舃0.50 舃0.50 舃0.46 舃0.47 舃0.48 舃0.47 舃0.55 舃0.67 舃0.58 舃0.60

舃Mean 舃0.64 舃0.66 舃0..66 舃0.67 舃0.58 舃0.59 舃0.60 舃0.54 舃0.54 舃0.55 舃0.56 舃0.55 舃0.60 舃0.63 舃0.64 舃0.65

舃Standard Deviation 舃0.04 舃0.05 舃0.05 舃0.05 舃0.06 舃0.07 舃0.07 舃0.1 舃0.06 舃0.06 舃0.06 舃0.06 舃0.03 舃0.03 舃0.04 舃0.03

舃SEA dataset 舃5% 舃0.72 舃0.74 舃0.74 舃0.74 舃0.67 舃0.69 舃0.70 舃0.71 舃0.68 舃0.69 舃0.70 舃0.70 舃0.68 舃0.71 舃0.74 舃0.74

舃10% 舃0.69 舃0.69 舃0.71 舃0.71 舃0.62 舃0.65 舃0.65 舃0.66 舃0.63 舃0.65 舃0.67 舃0.69 舃0.66 舃0.69 舃0.71 舃0.73

舃15% 舃0.66 舃0.67 舃0.68 舃0.69 舃0.58 舃0.60 舃0.61 舃0.61 舃0.60 舃0.62 舃0.62 舃0.63 舃0.63 舃0.67 舃0.69 舃0.69

舃20% 舃0.63 舃0.64 舃0.64 舃0.63 舃0.55 舃0.56 舃0.56 舃0.57 舃0.56 舃0.58 舃0.58 舃0.59 舃0.61 舃0.64 舃0.67 舃0.67

舃30% 舃0.59 舃0.55 舃0.55 舃0.54 舃0.47 舃0.47 舃0.48 舃0.48 舃0.50 舃0.50 舃0.50 舃0.51 舃0.56 舃0.57 舃0.62 舃0.62

舃Mean 舃0.66 舃0.66 舃0.66 舃0.66 舃0.58 舃0.59 舃0.6 舃0.61 舃0.59 舃0.60 舃0.61 舃0.62 舃0.63 舃0.66 舃0.69 舃0.69

舃Standard Deviation 舃0.05 舃0.07 舃0.07 舃0.08 舃0.08 舃0.09 舃0.08 舃0.09 舃0.07 舃0.07 舃0.08 舃0.08 舃0.05 舃0.05 舃0.05 舃0.05
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result. For weather and hyperplane dataset, the same scenario
can be noticed in Table 5. But for SEA dataset, the result is
little changed when the chunk size and missing rate are in-
creased because of the third attribute of the dataset is consid-
ered as noise [4]. These noises distract FAIA to compute cor-
rect missing values. Although FAIA not have much differ-
ences to impute correct missing values for SEA dataset, it
proves better result for remaining datasets than other existing
methods.

C. offline data with missing values This section measures the
stability of the proposed FAIA for imputing missing values in
imbalanced information when considering offline data.

C.1) Datasets, Performance Measure, and Experimental
Setting: Datasets from Table 1 are considered for this
experiment. For measuring performance, AUC,
F-Measure and G-mean are used. FID [3] and SMOTE
[2] are compared with the proposed FAIA. SMOTE [2]
is considered because it is the most basic method and
still popular in data balancing. In recent years, scant

works consider missing data and imbalanced data prob-
lem simultaneously. DT C4.5 is considered for classify-
ing data with five-fold cross validation. Similar to the
existing methods, all outputs are computed from the av-
erage values of 10 times the individual measurements.

C.2) Results for Imbalanced Data with Missing Values:
Figs. 9(a), (b), (c), (d), and (e) show the AUC values for
5%, 10%, 15%, 20%, and 30% of missing information,
respectively. Eleven datasets (Table 1) are considered
to represent the result. Three methods, namely, pro-
posed FAIA, FID [3], and SMOTE [2] are compared
with the different rates of missing information. Figure 9
(a) shows that the median values of the proposed FAIA,
FID, and SMOTE are 0.7184, 0.8366, and 0.7506, re-
spectively. FID produces 0.1182 times higher than
FAIA. In Fig. 9(b) with 10% of missing information,
the median value of FAIA is 0.7737, which is lower
than that of FID (i.e., 0.007) and a bit higher than that of
SMOTE (i.e., 0.037). Similarly, in Fig. 9(c) with 15%
missing values, the result of FAIA is 0.0034 and 0.031
times better than those of FID and SMOTE,

(a) AUC value for 5% missing data (b) AUC value for 10% missing data

(c) AUC value for 15% missing data (d) AUC value for 20% missing data

(e) AUC value for 30% missing data 

Fig. 9 Comparison of the existing methods with the proposed FAIA using AUC values
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Table 6 F-Measure

舃Data Name 舃Percentage of missing value 舃FAIA 舃FID [3] 舃SMOTE [2]

舃KC1 舃5% 舃0.901661 舃0.893213 舃0.854078

舃10% 舃0.905302 舃0.897548 舃0.825437

舃15% 舃0.909697 舃0.896796 舃0.781785

舃20% 舃0.912369 舃0.897557 舃0.764599

舃30% 舃0.912899 舃0.905333 舃0.709162

舃Mean 舃0.908386 舃0.898089 舃0.787012

舃Standard Deviation 舃0.004814 舃0.00443 舃0.056046

舃MC2 舃5% 舃0.714476 舃0.680676 舃0.646911

舃10% 舃0.699066 舃0.666569 舃0.617164

舃15% 舃0.685902 舃0.706546 舃0.568212

舃20% 舃0.703901 舃0.648765 舃0.487064

舃30% 舃0.585715 舃0.589769 舃0.489871

舃Mean 舃0.677812 舃0.658465 舃0.561844

舃Standard Deviation 舃0.052497 舃0.043829 舃0.072645

舃PC1 舃5% 舃0.946866 舃0.948048 舃0.931073

舃10% 舃0.954358 舃0.955685 舃0.941155

舃15% 舃0.955183 舃0.950943 舃0.943069

舃20% 舃0.956036 舃0.952647 舃0.946415

舃30% 舃0.959287 舃0.953913 舃0.954249

舃Mean 舃0.954346 舃0.952247 舃0.943192

舃Standard Deviation 舃0.00458 舃0.002919 舃0.008421

舃PC3 舃5% 舃0.893016 舃0.920556 舃0.89656

舃10% 舃0.873522 舃0.919858 舃0.89685

舃15% 舃0.855824 舃0.925925 舃0.907204

舃20% 舃0.819034 舃0.930417 舃0.908337

舃30% 舃0.770987 舃0.93365 舃0.932276

舃Mean 舃0.842477 舃0.926081 舃0.908245

舃Standard Deviation 舃0.048365 舃0.006028 舃0.014534

舃Sonar 舃5% 舃0.722246 舃0.682703 舃0.616333

舃10% 舃0.697351 舃0.703726 舃0.525323

舃15% 舃0.679476 舃0.666125 舃0.520357

舃20% 舃0.637971 舃0.592841 舃0.458558

舃30% 舃0.595566 舃0.53209 舃0.377083

舃Mean 舃0.666522 舃0.635497 舃0.499531

舃Standard Deviation 舃0.050183 舃0.071299 舃0.08862

舃Vehicle 舃5% 舃0.919437 舃0.911649 舃0.88956

舃10% 舃0.883415 舃0.880158 舃0.842643

舃15% 舃0.845192 舃0.847141 舃0.806381

舃20% 舃0.791425 舃0.790189 舃0.746975

舃30% 舃0.730564 舃0.76896 舃0.695316

舃Mean 舃0.834007 舃0.839619 舃0.796175

舃Standard Deviation 舃0.074797 舃0.059842 舃0.076775

舃Wine 舃5% 舃0.962672 舃0.845487 舃0.951243

舃10% 舃0.906128 舃0.845332 舃0.898916

舃15% 舃0.89253 舃0.850445 舃0.871764

舃20% 舃0.88167 舃0.807538 舃0.879386

舃30% 舃0.77102 舃0.647633 舃0.782744

舃Mean 舃0.882804 舃0.799287 舃0.876811

舃Standard Deviation 舃0.069847 舃0.086514 舃0.061052

5578 Halder et al.



respectively. For Fig. 9(d) with 20% missing values,
FAIA is 0.074 and 0.067 times better than FID and
SMOTE, respectively. Finally, for Fig. 9(e) with 30%
missing values, FAIA is 0.037 and 0.025 times better
than FID and SMOTE, respectively. From this obser-
vation, FAIA provides lower AUC values with lesser
missing data, and it performs continuously better when
the rate of missing data increases in imbalanced data. In
addition, the number of attributes affect FAIA. For ex-
ample, for Sonar dataset with 60 attributes and 5%
missing values, the AUC value of FAIA is 0.0305 times
better than that of FID. Similarly, for MC2 with 39
attributes, the AUC value of FAIA is 0.0177 times bet-
ter than that of FID; PC3 with 37 attributes, 0.01288.
Similarly, for Vehicle dataset with 18 attributes, the
AUC value of FAIA is 0.0031 times better than that
of FID; wine dataset with 14 attributes, 0.02167. This

survey summarizes that for FAIA, when the number of
attributes increases, the possibility of AUC also in-
creases for most of the datasets. However, FAIA pro-
vides large inter quartile range because it considers
inter-relation among attributes which is not considered
by other existing methods. All attributes are not impor-
tant and there may have some noises. As a result, some
attributes of some datasets mislead FAIA to find closer
values for missing data. For this reason, some datasets
which are considered in this paper provides little lower
AUC results as compare to others. Therefore, FAIA
shows the large inter quartile range. For data stream,
the same variance is created for dataset SEA because
of noise attribute [4]. Though FAIA provides large inter
quartile range as compare to other existing methods, it
gives higher median values when the missing rate is
increased.

Table 6 (continued)

舃Data Name 舃Percentage of missing value 舃FAIA 舃FID [3] 舃SMOTE [2]

舃Glass (1) 舃5% 舃0.926719 舃0.908813 舃0.925696

舃10% 舃0.934214 舃0.913227 舃0.914068

舃15% 舃0.932868 舃0.904347 舃0.92797

舃20% 舃0.931968 舃0.939177 舃0.928781

舃30% 舃0.929916 舃0.945505 舃0.929161

舃Mean 舃0.931137 舃0.922214 舃0.925135

舃Standard Deviation 舃0.002923 舃0.018774 舃0.006331

舃Glass (2) 舃5% 舃0.968181 舃0.960946 舃0.972345

舃10% 舃0.972514 舃0.95271 舃0.969152

舃15% 舃0.974805 舃0.945187 舃0.975589

舃20% 舃0.968531 舃0.934911 舃0.964275

舃30% 舃0.962293 舃0.948423 舃0.952064

舃Mean 舃0.969265 舃0.948435 舃0.966685

舃Standard Deviation 舃0.004785 舃0.009595 舃0.009179

舃Page Block (1) 舃5% 舃0.978795 舃0.966411 舃0.978266

舃10% 舃0.926197 舃0.957157 舃0.972727

舃15% 舃0.896985 舃0.954063 舃0.966943

舃20% 舃0.953022 舃0.958774 舃0.966159

舃30% 舃0.79736 舃0.948319 舃0.963722

舃Mean 舃0.910472 舃0.956945 舃0.969563

舃Standard Deviation 舃0.070182 舃0.006628 舃0.005881

舃Page Block (2) 舃5% 舃0.95351 舃0.965067 舃0.977017

舃10% 舃0.923556 舃0.957125 舃0.973769

舃15% 舃0.900295 舃0.951785 舃0.971437

舃20% 舃0.864372 舃0.952521 舃0.966971

舃30% 舃0.802897 舃0.944632 舃0.959738

舃Mean 舃0.888926 舃0.954226 舃0.969786

舃Standard Deviation 舃0.058102 舃0.007531 舃0.006704
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Table 7 G-mean

舃Data Name 舃Percentage of missing value 舃FAIA 舃FID [3] 舃SMOTE [2]

舃KC1 舃5% 舃0.520995 舃0.64987 舃0.553865

舃10% 舃0.457171 舃0.635594 舃0.55941

舃15% 舃0.428984 舃0.643185 舃0.559197

舃20% 舃0.426554 舃0.615198 舃0.511429

舃30% 舃0.314589 舃0.592965 舃0.477294

舃Mean 舃0.429659 舃0.627362 舃0.532239

舃Standard Deviation 舃0.07475 舃0.023216 舃0.03669

舃MC2 舃5% 舃0.552558 舃0.598732 舃0.547646

舃10% 舃0.572484 舃0.603087 舃0.57062

舃15% 舃0.571521 舃0.548164 舃0.624973

舃20% 舃0.616786 舃0.514744 舃0.552272

舃30% 舃0.528152 舃0.523538 舃0.53366

舃Mean 舃0.5683 舃0.557653 舃0.565834

舃Standard Deviation 舃0.032552 舃0.041373 舃0.035603

舃PC1 舃5% 舃0.485819 舃0.520938 舃0.480918

舃10% 舃0.483472 舃0.492235 舃0.523708

舃15% 舃0.414816 舃0.419219 舃0.32646

舃20% 舃0.448403 舃0.361621 舃0.297424

舃30% 舃0.33552 舃0.269397 舃0.293483

舃Mean 舃0.433606 舃0.412682 舃0.384399

舃Standard Deviation 舃0.06206 舃0.101524 舃0.109442

舃PC3 舃5% 舃0.952815 舃0.851174 舃0.930438

舃10% 舃0.888814 舃0.844598 舃0.725817

舃15% 舃0.876939 舃0.845009 舃0.862951

舃20% 舃0.866662 舃0.810332 舃0.86722

舃30% 舃0.765556 舃0.677165 舃0.776138

舃Mean 舃0.870157 舃0.805656 舃0.832513

舃Standard Deviation 舃0.067417 舃0.073602 舃0.081059

舃Sonar 舃5% 舃0.566084 舃0.541647 舃0.511021

舃10% 舃0.530187 舃0.51078 舃0.479096

舃15% 舃0.524687 舃0.448969 舃0.474558

舃20% 舃0.536496 舃0.458657 舃0.435151

舃30% 舃0.547373 舃0.24784 舃0.355132

舃Mean 舃0.540965 舃0.441579 舃0.490992

舃Standard Deviation 舃0.016379 舃0.114764 舃0.059977

舃Vehicle 舃5% 舃0.878328 舃0.869622 舃0.87502

舃10% 舃0.845088 舃0.821513 舃0.833254

舃15% 舃0.809449 舃0.791788 舃0.800898

舃20% 舃0.757562 舃0.745789 舃0.741353

舃30% 舃0.71422 舃0.708258 舃0.730489

舃Mean 舃0.800929 舃0.787394 舃0.796203

舃Standard Deviation 舃0.065978 舃0.063124 舃0.061102

舃Wine 舃5% 舃0.712736 舃0.643648 舃0.681449

舃10% 舃0.69638 舃0.578824 舃0.717594

舃15% 舃0.696771 舃0.580022 舃0.689847

舃20% 舃0.651675 舃0.532696 舃0.634674

舃30% 舃0.621771 舃0.467272 舃0.580919

舃Mean 舃0.675867 舃0.560492 舃0.660897

舃Standard Deviation 舃0.037844 舃0.065374 舃0.053757
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Table 6 tabulates F-measure values and its mean and stan-
dard deviation values. For most of the datasets, the proposed
FAIA provides better or almost closer results. However, for
three datasets (PC3, Page Block (1), and Page Block (2)
datasets) in Table 6, FAIA provides lower F-measure than
other methods. The two reason may be less interrelationship
between attributes or imbalance ratio. FAIA considers the
interrelationship between attributes, and adaptive measure is
used to get a closer value for missing information, thus AUC
results are convincing. Furthermore, imbalance ratio is basi-
cally the ratio of the number of minority class and majority
class elements [3]. For the PC3, Page Block (1) and Page
Block (2) datasets, the imbalance ratio is 0.114 because PC3
has 160 elements in minority class and 1403 elements in ma-
jority class. For Page Block (1), the elements in minority and
majority class are 561 and 4913, respectively, which is the
same for Page Block (2). Nevertheless, for the remaining
datasets, FAIA provides better results than FID and SMOTE

because the imbalance ratio is either greater or less but not
equal to 0.114. For example, the imbalance ratio of Sonar
dataset is 0.874 (minority class and majority class elements
are 97 and 111, respectively), which is greater than 0.114 and
that of PC1 dataset is 0.075 (minority class and majority class
elements are 77 and 1032, respectively), which is less than
0.114. If imbalance ratio denoted as ε, then overfitted criteria
ψ is written as

ψ ¼ if ε ¼ 11≈12%; then overfitted
otherwise not overfitted

�
ð18Þ

Although for AUC, this imbalance ratio is not that much
important as F-measure, FAIA presents better output when the
rate of missing data increases.

Table 7 presents the G-mean values with different range of
missing values. Its mean and standard deviation are also

Table 7 (continued)

舃Data Name 舃Percentage of missing value 舃FAIA 舃FID [3] 舃SMOTE [2]

舃Glass (1) 舃5% 舃0.243899 舃0.519502 舃0.266572

舃10% 舃0.154319 舃0.411196 舃0.359968

舃15% 舃0.175633 舃0.527062 舃0.270177

舃20% 舃0.097425 舃0.12075 舃0.016574

舃30% 舃0.134623 舃0.044202 舃0.259154

舃Mean 舃0.16118 舃0.324542 舃0.234489

舃Standard Deviation 舃0.054471 舃0.227296 舃0.128592

舃Glass (2) 舃5% 舃0.615588 舃0.79565 舃0.76212

舃10% 舃0.626266 舃0.811098 舃0.613542

舃15% 舃0.633582 舃0.660986 舃0.622619

舃20% 舃0.623514 舃0.671275 舃0.514604

舃30% 舃0.451219 舃0.444006 舃0.297995

舃Mean 舃0.590034 舃0.676603 舃0.562176

舃Standard Deviation 舃0.077866 舃0.147169 舃0.171991

舃Page Block (1) 舃5% 舃0.871834 舃0.906184 舃0.881816

舃10% 舃0.85877 舃0.854245 舃0.820031

舃15% 舃0.83501 舃0.810476 舃0.762257

舃20% 舃0.813455 舃0.791213 舃0.743625

舃30% 舃0.759722 舃0.728221 舃0.674319

舃Mean 舃0.827758 舃0.818061 舃0.77641

舃Standard Deviation 舃0.044132 舃0.066941 舃0.078599

舃Page Block (2) 舃5% 舃0.885848 舃0.894278 舃0.868918

舃10% 舃0.857029 舃0.855693 舃0.825274

舃15% 舃0.844625 舃0.817668 舃0.780635

舃20% 舃0.792506 舃0.784831 舃0.761721

舃30% 舃0.752511 舃0.719208 舃0.66362

舃Mean 舃0.826504 舃0.814336 舃0.780034

舃Standard Deviation 舃0.053415 舃0.067142 舃0.077193

5581Missing information in imbalanced data stream: fuzzy adaptive imputation approach



considered in this Table 7. According to this Table 7, FAIA
provides better or little lower results than other existing
methods. If we consider the mean values then it can be noticed
that FAIA provides better result except KC1, Glass (1) and
Glass (2) datasets because of interrelationship among attri-
butes of datasets (as discussed before). However, for the most
of the datasets by considering F-measure and AUC values,
FAIA provides higher result than other existing methods.
Moreover, unlike G-mean of offline data (Table 7), the pro-
posed FAIA ismore stable in G-mean values to data streaming
scenario (Table 5) for missing value imputation in imbalanced
information.

5 Discussion

After a lengthy discussion about the proposed FAIA, FAIA
can be concluded as an adaptive method due to its stability on
both offline and data stream fields. It can also be used sepa-
rately for imputingmissing data because it constantly provides
less RMSE value for all used datasets in section a. for offline
imbalance data with missing values, although the average
AUC value for 5% missing data of FAIA is less than those
of FID [3] and SMOTE [2], the proposed method provides
better AUC values for 10%, 15%, 20%, and 30% missing
values. For F-measure values, FAIA provides overall better
results for 8 out of 11 datasets. For offline imbalanced data
with missing values, FAIA can be a better choice when the
rate of missing data is high. For imbalanced data stream with
missing data, the stability of the method can be shown as well
as in the offline field. For AUC values, FAIA obtains better
results than other methods except for the SEA dataset due to
its noise. The main objective of the proposed method is to
represent the effect of missing values in imbalanced data
stream. This study aims to show how FAIA can handle the
missing data problem in imbalanced data stream field. The
results indicate that FAIA achieves this objective

6 Conclusion

Missing information largely affects pattern recognition.
Imbalance problem also increases more with missing values.
For data stream, this problem is more difficult because, for
each chunk, it is difficult to classify imbalanced data with
missing values. The proposed FAIA uses fuzzy decomposi-
tion method with adaptive imputation approach to determine
the interrelationship among instances. FAIA improves the
evaluation efficiency of missing values and the accuracy of
data balancing with data stream (i.e., online data) and offline
data. For measuring the capability of FAIA, performancemea-
surement criteria, namely, AUC, F-measure, G-mean and
RMSE are applied to 11 datasets for offline data and four

datasets for data stream. The output of the proposed FAIA
outperforms those of the existing methods. In addition, KNN
is compared using RMSE measurement, and FAIA produces
better result. However, FAIA is a numerical data imputation
method.Without the interrelationship among attributes, it may
not provide good result in some cases. Nevertheless, the FAIA
provides good result for datasets in which interrelationship
exists among attributes. Using this technique, most of the
imbalanced information with missing data in data stream or
offline data can lead to excellent classification performance.

Further improvements for the proposed FAIA can be ex-
plored. First, imputation of categorical missing values is not
considered in the existing methods. Applying fuzzy system in
categorical data is quite challenging, so another new categorical
data imputation approach can be introduced to deal with it.
Second, FAIA uses binary classification. Multi-classification
can be used to compute more accurate AUC, G-mean and
F-measure by individual measurement of each class with re-
spect to majority class represented in dataset. Some
multi-classification methods are available for imbalanced data,
but these cannot solve the missing data problem. First measur-
ing missing data for each class and then balancing information
of all classes can be the research for multi-classification
method.
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