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Abstract—Identifying and segmenting brain tumors using 

multi-sequence 3D volumetric MRI scans is time-consuming 

and challenging. Deep learning-based automatic image 

segmentation approaches are promising solutions to segment 

brain tumors from MRI 3D reconstructed images. However, T1, 

T1c, T2, and FLAIR modalities, along with High Graded 

Gliomas (HGG) and Low Graded Gliomas (LGG), make 

automatic brain tumor segmentation using deep learning a 

challenging task. A novel Nested Deep Neural Network (NDNN) 

has been designed, implemented, and experimented with in this 

paper, along with an innovative Multimodality Fusion Network 

(MFS Net). The proposed network segments brain tumors from 

3D volumetric images and imposes the extracted feature map on 

the 3D region with 90.02%, 85.11%, and 85.41% dice score for 

Whole Tumor (WT), Core Tumor (CT), and Enhancing Tumor 

(ET) respectively. The novel architecture, innovative 

multimodality fusion, and outstanding performance of the 

proposed methodology have been studied, demonstrated, and 

compared in this paper. 

Keywords—Brain Tumor Segmentation, 3D Images, 

Multimodalities Fusion, 3D U-Net, Nested DNN 

I. INTRODUCTION 

The computer-aided automatic medical image segmentation 

and classification have added a new dimension to the 

biomedical engineering and healthcare sector. The 

advancement in Deep Learning has enabled the 

implementation of human-like intelligence in diagnosis, 

which is often challenging because of the lack of resources, 

difficulty accessing proper healthcare facilities, and the 

nature of the reports. Employing deep learning-based human-

like intelligence to automate such diagnosis is a promising 

field of research as it is a potential solution to numerous 

problems related to the healthcare sector. Brain tumor 

segmentation is one of them. Functionalities and anomalies 

related to the brain are crucial for any living being. It is 

essential to analyze 3D brain images to segment brain tumors 

because the shape, volume, and depth are important to 

diagnose and prescribe appropriate treatment [1]. 

 

The 3D MRI of the brain is recorded in multimodalities. 

Different modality contains different type of information.  

 

That is why it is essential to consider all modalities while 

diagnosing brain tumors. Analyzing every modal, merging 

various factors belonging to these modalities, and diagnosing 

the appropriate state of the tumor is a time-consuming and 

challenging task [2]. Computer-aided systems to fuse 

multimodalities of MRI scans into a single 3D volumetric 

image which preserves the information of every modal but 

minimizes the complexities of multimodal is a promising 

solution to biomedical engineering. Numerous approaches 

have been developed and experimented with acceptable 

results [3]. However, different methods with multiple tuning 

parameters dependent on numerous variables lead to 

multimodality fusion in different directions, from where it is 

challenging to discover an optimized way or the way to 

optimize a particular solution [4]. A deep neural  

 

 

Network efficiently designed for multimodality fusion 

dramatically reduces the operational and optimization 

complexities. 

 

Brain tumors are alarming for patients and their families [5]. 

Proper treatment assisted by advanced equipment is available 

nowadays [6]. However, nothing can be helpful unless the 

brain tumor is diagnosed correctly. Early diagnosis and 

detection of brain tumors help save lives [7]. Multiple factors 

are associated with the early diagnosis of brain tumors, 

including access to proper diagnostic centers, experienced 

and expert radiologists, tumor features, and the tumor's effect 

on a patient's health and daily life. Here the roles of the 

radiologists are crucial. Advanced technology and imaging 

devices are used to scan the brain. The radiologists who 

perform the diagnosis. Without any doubt, the quality of the 

diagnosis depends on radiologists' experience and expertise. 

Using computer-aided deep learning-based automatic 

diagnosis systems is promising in significantly reducing the 

burdens of radiologists, improving the quality of diagnosis, 

and consequently reducing the mortality rate caused by brain 

tumors [8]. However, the reliability and familiarity of such 

systems are yet to reach an acceptable level. Improving the 

performance of the deep learning-based brain tumor 

segmentation process contributes to the adaption of automatic 

brain tumor segmentation using deep learning technology in 

the applied medical sector. 

 

This paper has addressed the research gap and scope of 

multimodal fusion to single voxel and innovated new deep 

neural networks to improve the dice score in prediction. The 

experiment developed and presented in this paper contributes 

in: 

• Multimodal image fusion using a simplified 

inception network for brain tumor MRI modalities 

fusion. 

• Development of a novel Nested Deep Neural 

Network inspired by the 3D U-Net architecture for 

3D brain tumor segmentation. 
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The remaining part of this paper has been organized into four 

following sections. The related research, technological 

viability, and maturity have been highlighted in the second 

section. The third section contains the proposed 

methodology. The experimental results have been compared 

with similar research in the fourth section. Finally, the paper 

has been concluded in the fifth section. 

II. BACKGROUND 

The applications of Deep Learning technology in the medical 

sector have started entering the mainstream instead of being 

confined to papers only [8]. Automatic diagnosis from MRI 

scans is one of these applications. The MRI contains more 

information and a detailed view than X-ray [11]. That is why 

MRI is more prevalent in medical imaging, and it has drawn 

considerable attention from deep learning researchers to 

automate diagnosis using MRI datasets [12]. In brain tumor 

segmentation [13], lung cancer classification [14], breast 

cancer classification [15], and many other diagnoses, deep 

learning algorithms on MRI images are demonstrating 

promising results in improving the quality of diagnosis. The 

research trends and optimistic outputs published in recent 

papers highlight the scope of contributing to the application 

of deep learning in automatic brain tumor segmentation. 

 

MRI scans contain information recorded in modalities [16]. 

Different features are prominent in different modalities. That 

is why it is essential to use all of them while working on MRI 

datasets [17]. However, multimodal data processing is a 

complex task that can be done in multiple ways [18]. These 

complexities pave the path to a new scope of research, 

innovation, and optimization [19]. Numerous approaches 

have been developed to optimally process multimodal data 

and fuse them into a single modality. However, the scope of 

performance improvement and optimization to prevent data 

loss and effectively represent prominent information of 

different modalities is still an open and vibrant field of 

research [20]. Using an inception layer-based network for 

image reconstruction approach in multimodality image 

fusion [21] in combination with residual [22] architecture 

followed by sequential concatenation [23] is a promising 

advancement in multimodality fusion with simplified 

optimization options, which has been proposed in this paper. 

 

An integrating fully convolutional neural networks (FCNNs) 

and Conditional Random Fields (CRFs) based framework 

developed in [24] demonstrates an efficient deep learning 

approach to segment brain tumors from the BraTS2013 and 

BraTS2016 datasets. However, their experiment is confined 

within the 2D domain, which fails to incorporate 3D 

volumetric features addressed in the proposed methodology. 

Another research published in [25] develops a deep neural 

network-based approach to segment brain tumors from both 

fully and weakly annotated. Although both 2D and 3D 

features have been utilized in this research, the obtained dice 

score for Whole Tumor (WT) and Core Tumor (CT) are 87% 

and 77%. The approach proposed in this paper outperforms 

this performance. A unique network designed in [26] 

significantly improves U-Net architecture brain tumor 

segmentation. However, this paper does not include 

recommended image fusion criteria which may lead to 

different results even after recreating the same network. 

Depending on the multimodality fusion process, the same 

network may have different results because of the 

modification of image features addressed in the proposed 

methodology. 

III. METHODOLOGY 

A. Image Dataset Processing 

1) Dataset Description 

In this research, the Brain Tumor Segmentation (BraTS) 2020 

dataset has been used [27]. This dataset contains 3D 

volumetric MRI scans in four different modalities. These 

modalities are T1 weighted (T1), T1 contrast-enhanced 

(T1c), T2 weighted (T2), and T2 Fluid Attenuated Inversion 

Recovery (FLAIR). Each of these modalities is recorded at 

244 × 244  with 155 sequences. That means the dataset 

comprises 3D volumetric MRI scans with  244 × 244 × 155 

dimensions. 

 
Fig. 1. An illustration of the dataset with a single MRI slice at four different 

modalities. Fig.1a is the T1 weighted, b is the T2 contrast-enhanced, c is 

T2 weighted, and d is the FLAIR modality 

The goal of this experiment is to segment Whole Tumor 

(WT), Core Tumor (CT), and Enhancing Tumor (ET). There 

are five classes in the dataset. They are the background, the 

necrosis, the edema, the enhancing tumor, and the non-

enhancing tumor. These three significant regions are 

constructed from the five classes available on the dataset [28, 

29]. The BraTS 2020 dataset maintains the approximate ratio 

of WT, CT, and ET is 12:5:3. Which means 60% of the 

dataset contains WT. Roughly 25% of the dataset includes 

CT. And remaining 15% of the dataset is comprised of ET. 

From this approximate analysis, it has been observed that the 

dataset is highly imbalanced. 

 

2) Inception Network (INet) for Data Processing 

The BraTS-2020 dataset contains MRI slices recorded at four 

different modalities [28]. The reconstructed images used in 

this experiment preserve information from all modalities 

[30]. The accuracy of brain tumor segmentation depends on 

the shape, depth, and volume of the tumor. Different features 

are prominent in different modalities. That is why it is 

essential to preserve information from all possible modalities. 

Brain tumors are in various sizes, shapes, and volumes [31]. 

That is why multi-convolutions have been used instead of 

using single convolution. To process the data inception layer-



based network [32] named Inception Network (INet) has been 

developed. Figure 2 illustrates the network architecture. 

 

 
Fig. 2. The Inception Network (INet) to Process the Data 

 

The INet consists of three types of convolutional masks - 

1 × 1, 3 × 3, and 5 × 5. Input through these masks is further 

processed through a 1 × 1 convolution kernel to merge the 

3D channels into a single channel. The Rectified Linear 

Activation Function (ReLU) [33] has been used as the 

activation function of the INet, and the outputs are 

normalized using instance normalization layers. A 

concatenation layer before the 3D Max pooling layer keeps 

the most prominent features. Finally, the output goes to the 

output layer. This INet is the building block of the NDNN 

proposed in this paper. 

 

3)  Multimodality Fusion Net (MFS) 

Using the INet, the multimodality has been fused to a single 

modality in this experiment. There are four modalities, T1, 

T1c, T2, and FLAIR, in the dataset. Each of these modalities 

contains valuable information related to a brain tumor. 

Ignoring any of these causes a loss of information. A novel 

Multimodality Fusion Net (MFS) has been developed and 

used in this experiment to perform lossless dimensionality 

reduction and multimodality fusion. It is illustrated in figure 

3. The figure demonstrates that it is a network of INet, which, 

in other words, is a Nested Deep Neural Network. 

 

The INet blocks of the first layer of MFS receive T1, T1c, T2, 

and FLAIR modals. This layer converts the inputs into 3D 

volumetric voxels. The voxels created from T1 and T1c are 

concatenated using a concatenation layer. The T2 and FLAIR 

voxels are connected too. At this level, the voxel dimension 

becomes  2 × 144 × 144 × 144. The outputs from the two 

concatenations are again transmitted to two more INet blocks. 

These blocks are designed to handle voxels with 2 × 144 ×
144 × 144 dimensions. After that, the results of these two 

INets are similarly concatenated using another concatenation 

layer. After concatenating, the voxel dimension becomes 

4 × 144 × 144 × 144 . This time the 3D images contain 

information on all four modalities. A 3 × 3  convolutional 

layer reduces the dimension to 4 × 48 × 48 × 48. And this is 

the final output from the MFS Net.  

 
Fig. 3. Multimodality Fusion Net (MFS Net) 

The output from MFS is 3D volumetric data consisting of 

MRI slices which preserve both spatial and depth 

information. At the same time, these data contain the 

information of all four modalities. Because of being 

constructed of INet, the dark MRI slices with no or nominal 

information are rejected during the feature learning. As a 

result, the ambiguous black circles from the reconstructed 

images disappear, which is illustrated in figure 4. 

 



 
Figure 4: Output from MFS Net 

The outputs from MFS Net are ready to feed into the NDNN 

U-Net. 

B. The NDNN-based U-Net Architecture 

The NDNN-based U-Net architecture is inspired by U-Net 

architecture [34], along with an innovative nesting of the INet 

block. The network consists of two parts – The Extractor and 

The Separator.  

1) The Extractor 

The Extractor extracts the brain tumor from the 

dimensionality-reduced image received from MFS Net. It 

uses the INet as a building blocks. Discovering the brain 

tumor pattern, locating the position of the tumor, and 

extracting the shape are the core functionalities of the 

Extractor. Unlike the MFS Net, the tumor extractor uses the 

Residual Network (ResNet) architecture [35]. It is illustrated 

in figure 5. 

 

 
Fig. 5. The Tumor Extractor 

The residual network helps prevent vanishing gradient or 

exploding gradient problems. At the same time, it allows 

skipping connection and conveys the signal of a particular 

layer to another layer [36]. Because of these advantages, the 

ResNet architecture with INet as a building block has been 

used as a tumor extractor.  

 

The INet has been specially designed to fuse multimodalities 

into a single modality. One of the purposes of this network is 

to perform the lossless conversion. As a result, it emphasizes 

most of the features. The network tends to be overfitted with 

a robust correlation among features. The distributed 3% 

dropout layers after every INet layer prevents overfitting by 

weakening the correlation. After every INet layer, a 3% 

dropout layer has been added to prevent overfitting [37]. 

 

2) The Separator 

The proposed Separator has been designed to improve the 

dice score. An ensemble U-Net architecture has been 

employed to separate the tumors from the 3D brain images. 

The experimental result with generic ensemble U-Net fails to 

generate the expected output. A Compact Node (cNode) 

ensemble U-Net architecture has been designed, 

implemented, and used in this paper to improve performance. 

a) The Compact Node (cNode) Formation 

The cNode consists of INet followed by a ResNet. Both of 

these networks have dynamic dimension processing 

capability. It is illustrated in figure 6. 

 
Fig. 6. Compact Node 

The dimensions of the images change after processing them 

through INet and ResNet blocks. Using these two networks 

separately creates dimension-related complexity. However, 

when they are used as the building block of the ensemble U-

Net, the different dynamic resolution imposes additional 

challenges. A Dynamic Resolution Control (DRC) layer has 

been added after the input layer of INet and before the output 

layer of the ResNet to tackle these challenges. The DRC 

keeps track of the input and output dimensions and makes 

these data accessible for the ensemble U-net. 

b) Ensemble U-Net Architecture 

The ensemble U-Net architecture illustrated in figure 7 

consists of cNode, downsample, expansion, concatenation, 

and tensor addition node. It receives the input from the MFS 

Net through a cNode and a tensor addition node. After that, 

the signals are processed through multiple cNode and 

downsample nodes. The processed signals from cNode are 

also transmitted to the concatenation node before sampling 

them down. It ensures that the signal's shape, depth, and 



volume are preserved. At the same time, through repeated 

convolution processed by the cNode, extract the features. The 

right chain of the U-Net expands the signal received from 

cNode after downsampling. In every expansion layer, the 

extracted but downsampled layers are upsampled and 

imposed on the actual volumetric signal through 

concatenation layers. The repetition of this process results in 

feature superimposes on a 3D volumetric image. 

 

One of the drawbacks of the architecture, which has been 

observed during the experiment, is the overfitting problem 

due to the presence of numerous prominent features. As a 

result, the evaluation accuracy of the network drastically falls 

for the test dataset. This problem has been resolved by adding 

a 3% dropout layer in series with three cNode before sending 

signals processed by them to the ensemble network. The 

processed signals from cNode are further processed through 

a 1 × 1 convolutional layer. Then the signal is upsampled 

again as the convolutional layer downsamples the signals. 

Finally, it is concatenated with the similarly processed signal 

immediately next to it. After repeating it for the last three 

cNode, the final signals from the final expansion layer are 

concatenated with the cNode. This concatenated signal is 

processed through the Sigmoid activation function. And the 

final output is one of the three classes WT, CT, or ET.  

Fig. 7. The architecture of the cNode-based Ensemble 3D U-Net 



IV. EXPERIMENTAL RESULTS & COMPARISON 

A. Dataset Splitting & Validation 

The BraTS 2020 data set has been used to train and test the 

network, which is consisted of 3D volumetric MRI scans 

recorded in four different modalities, T1, T1c, T2, and 

FLAIR, with 244x244x155 dimensions. Different modalities 

of this dataset demonstrate different tumor features. In this 

experiment, scans of 150 patients were used. These data are 

labeled with background, necrosis, edema, enhancing tumor, 

and non-enhancing tumor. Based on these five labels, the 

three tumor regions, Whole Tumor (WT), Core Tumor (CT), 

and Enhancing Tumor (ET), are detected. The purpose of 

training the NDNN is to classify and locate the WT, CT, or 

ET region. The dataset has been split at a 7:3 ratio for training 

and testing. No other dataset has been used neither in training 

nor in the testing phase to restrict the experiment within the 

context of the BraTS2020 dataset. The k-fold cross-

validation has been used at k = 5 to evaluate and optimize the 

network's learning process. 

B. Best Optimizer Selection 

Three different optimization functions at five different 

configurations have been experimented with in this research 

to ensure the optimized learning progress and best 

performance. The training loss and validation error for 

RMSProp [38], Adam at 𝛽1 = 0.9 , Adam at 𝛽1 = 1 , 

QHAdam at 𝑉1 = 0.75, 𝛽1 = 0.9 , and QHAdam at 𝑉1 =
1, 𝛽1 = 1[39] has been illustrated in figure 8. 

 
Fig. 8. The validation error and training loss for different optimizers at 

different configurations 

According to the experimental observation, the QHAdam is 

the optimum performing optimizer. That is why the QHadam 

has been used in this paper.  

C. Evaluation Metrics 

The literature review suggests that the Dice Coefficient, also 

known as the F1-score, is a widely used evaluation metric for 

3D brain tumor segmentation [40, 41, 42]. It has been defined 

in equation 1. 

𝐷𝑖𝑐𝑒 𝑐𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡 =  
2 × 𝑇𝑃

2 × 𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁
                          (1) 

 

The Intersection-Over-Union (IOU) at Jaccard Index is 

another practical evaluation criterion defined by equation 2.  

𝐼𝑂𝑈 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁
                                                         (2) 

 

In Equations 1 and 2, TP, FP, and FN are the abbreviations 

for True Positive, False Positive, and False Negative, 

respectively. The classes of the BraTS2020 dataset are not 

evenly distributed among the dataset. As a result, the 

Weighted Average (WA) of IOU loss and dice loss has been 

used to ensure a common ground for every class. The Dice 

Loss (DL) is defined by equation 3. 

𝐷𝐿(𝑎, ℎ(𝑎) ) = (1 −
2. 𝑎. ℎ(𝑎)

|𝑎|2 − |ℎ(𝑎)|2
) × 100%               (3) 

In equation 3, the a is the actual label on the dataset. The h(a) 

is the prediction from the network. This equation gives the 

dice loss on a percentage scale. The IOU Loss (IOUL) is 

calculated using equation 4. 

𝐼𝑂𝑈𝐿(𝑎, ℎ(𝑎) ) = (1 −
𝑎. ℎ(𝑎)

𝑎 + ℎ(𝑎) − 𝑎ℎ(𝑎)
)

× 100%                                                       (4) 

The IOUL is also calculated on a percentage scale. The WA 

is measured using equation 5. 

𝑊𝐴(𝑎, ℎ(𝑎)) = 0.5 (𝐷𝐿(𝑎, ℎ(𝑎)) + 𝐼𝑂𝑈𝐿(𝑎, ℎ(𝑎)))    (5) 

The Hausdorff95 has also been used as an evaluation criterion 

in this experiment [43]. 

D. Results & Comparison 

The proposed network segments the WT, CT, and ET with 

89.36%, 87.4%, and 86.33% dice scores, which are illustrated 

in figure 9.  

 

 
Fig. 9.: The segmented WT, CT, and ET region. The region in red is the 

CT. The yellow region is the ET. And the green region, including the red 

and yellow regions, is the WT. The tumors were segmented first, and then 

different colors were applied manually to identify the regions.  

The network has been trained with 92.11% validation 

accuracy at the 200th epoch. It takes 22 minutes to complete 

the training. For both Adam and QHAdam, the training loss 

and validation loss fall rapidly for the first 28 epochs. After 

the 150th epoch, there are minor changes in the learning curve. 

However, eventually, it becomes nearly constant, and the 

network gets trained at the 200th epoch with 92.11% 

validation accuracy and 7.89% validation error. The dice 

score, sensitivity, specificity, and Hausdorff95 for both the 

training and validation phase have been tabulated in table 1. 



 

The performance has been compared with an optimized 

standard 3D U-Net architecture to the network's performance, 

which has been tabulated in table 2. 

 

Table 2: Performance of Regular 3D U-Net VS. Proposed 

Network 

Dataset Loss Function Dice Score (%) 

WT CT ET 

Standard 3D 

U-Net 

DL 72.5 12.44 0 

IOUL 59.89 9.35 0 

AW 67.22 16.34 0 

Proposed 

NDNN 

DL 91.43 88.10 82.06 

IOUL 87.29 86.80 84.65 

AW 89.36 87.4 86.33 

 

The comparison made in table two shows that the proposed 

network performs better than the standard 3D U-Net even 

after parameter optimization. This comparison is illustrated 

in figure 10. It shows the proposed novel architecture 

outperforms standard 3D U-Net. 

 
Figure 10: Performance comparison between proposed network 

and standard 3D U-Net with optimized parameters 

The proposed network has been compared with five other 

papers to validate the performance further. The comparison 

has been listed in table 3 

 

Table 3: Proposed paper VS. other similar papers on the same 

dataset 

Dataset Author Dice Score (%) 

WT CT ET 

BraTS 

2020 

Lucas Fidon et al. 

[44] 

88.9 84.1 84.1 

Théophraste Henry 

et al. [45] 

79 89 84 

Fabian Isensee [46] 88.95 85.06 82.03 

Yixin Wang [47] 89.10 84.20 81.60 

Parvez Ahmad [48] 89.12 84.74 79.12 

Proposed 90.02 85.11 84.41 

 

The proposed novel architecture to segment brain tumors 

performs better than regular 3D U-Net architecture. 

Moreover, the proposed methodology outperforms existing 

research. It has been observed dice score of CT of 

Théophraste Henry et al. is 3.89% higher than the proposed 

paper. However, the comparing paper suffers from poor 

performance in the WT region. Considering the overall 

performance, this paper's network architecture and innovative 

methodology perform better than existing solutions. The 

proposed NDNN-based U-net has experimented with BraTS 

2015, 2016, 2017, and 2020 datasets. The training 

performance of the network on these datasets has been listed 

in table 4. 

 

Table 4: Performance comparison of the proposed network 

on different datasets. 

Method Dataset ET WT TC 

Proposed 

Method 

BraTS 2015 0.84 0.91 0.81 

BraTS 2016 0.84 0.92 0.81 

BraTS 2017 0.86 0.93 0.85 

BraTS 2020 0.85 0.94 0.84 

 

The ribbon graph illustrated in figure 11, which represents the 

performance variation of the proposed network for different 

datasets, demonstrates the nominal differences among ET, 

WT, and TC. It proves negligible differences among the 

proposed network's performances for different datasets. The 

standard deviation in performance for ET, WT, and TC for 

different datasets are 0.0083, 0.011, and 0.018, respectively. 

 
Figure 11: The performance variations for different datasets 

The performance analysis based on the experimented results 

on multiple evaluation criteria and comparisons establishes 

the superiority of the proposed network in 3D brain tumor 

segmentation. 

  Dice Sensitivity Specificity Hausdorff95 

ET WT TC ET WT TC ET WT TC ET WT TC 

Training 0.85 0.94 0.84 0.78 0.93 0.80 0.96 0.97 0.93 42.80 12.14 18.63 

Validation 0.82 0.92 0.88 0.77 0.91 0.79 0.95 0.96 0.92 49.55 11.47 34.22 

 

Table 1: Performance evaluation in both training and validation phase 



V. CONCLUSION AND DISCUSSION 

The novel concept of using NDNN-based U-Net architecture 

paves the path to uplifting the performance of computer-aided 

automatic brain tumor segmentation to a new level. Although 

the complexity of the proposed network is much higher than 

existing researchers, the network's performance compensates 

for the computation complexity. 3D brain tumor 

segmentation, unlike 2D object segmentation, is a 

challenging and complicated task. Both shape, volume, and 

depth must be considered while working with 3D brain tumor  

segmentation. Moreover, the multimodalities in the MRI 

images include additional difficulties. This paper proposed 

and experimented with an efficient MFS Net to fuse the 

multimodalities into a single lossless modality. Then the 

single modality scans are used to train a nested network 

consisting of cNode, which paves the path to include 

multidimensional computation load in nodes of a deep neural 

network with the demonstration of better performance than 

existing solutions. Altogether, the proposed methodology 

contributes to the further develop the computer-aided 

automatic brain tumor segmentation process with a novel 

NDNN-based U-Net architecture that performs better than 

existing published literature.  
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