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Abstract—Diseases of the mustard plant are a major threat 

to the quality production of mustard oil, but rapid recognition 

of these diseases becomes cumbersome due to the absence of 

expert identification infrastructures. This study introduced an 

improved diagnosis method for diseases of the mustard plant 

using deep convolutional neural networks (CNNs) to ensure 

sustainable improvement in mustard farming.  First, the 

mustard plant dataset of nine classes is built using eleven image 

augmentation techniques that contain 47760 images of leaf, 

stem, and pod. Afterward, a CNN architecture, namely, MPNet, 

is designed and trained from scratch in this study that consists 

of deep separable convolutional layers and inception modules, 

which realize 97.11% accuracy in recognizing 2388 test images. 

The recognition performance of MPNet is also compared with 

four state-of-the-art CNNs, where MobileNetV2 acquired 

92.83% test accuracy. The results authenticate that the 

proposed MPNet can competently recognize diseases of the 

mustard plant. 

Keywords—Deep Learning, Convolutional Neural Networks, 

Transfer Learning, Deep Separable Convolution, Inception, 

Mustard Plant Disease, Smart Agriculture 

I. INTRODUCTION 

Mustard oil is widely used for cooking in Bangladesh, 
India, and Nepal, which is made from seeds of the mustard 
plant (binomial name: Brassica nigra). The cultivation of 
mustard plants is one of the most profitable farming for its 
high market and economic value [1]. However, different types 
of diseases occur repeatedly during mustard plant farming, 
which causes substantial financial losses. For sustainable 
development in agriculture, accurate and early recognition of 
diseases of the mustard plant is of high importance, as well as 
for minimizing financial losses and reducing the use of 
pesticides. In recent years, disease recognition of several crops 
using deep learning approaches has become a research hotspot 
in modern agriculture to enhance production [3]. 

In mustard plant farming, visual recognition is utilized for 
disease identification due to the absence of automated 
approaches, which is a highly laborious and time-consuming 
task. In computer vision, CNNs are now widely applied for 
image classification, which significantly improved the 
recognition ability of automated identification approaches. In 
traditional machine learning (ML) approaches, complex 
image processing is required for extracting features from 
images, which is an extremely troublesome task [7] [12]. On 
the other hand, CNNs automatically extract features from 
images and also provide remarkably higher accuracy than ML 
approaches. CNNs are crucial for the efficient identification 

of crop diseases, and also demonstrated significant 
performance in classifying crop diseases recently in different 
studies. Pre-trained CNNs are also extensively used in several 
studies for classifying crop diseases. 

White rust, leaf spot, blackleg, fusarium wilt, stem rot, and 
pod spot are the six common types of diseases of mustard 
plants, which intensely affect the yield of mustard plants [2]. 
By performing eleven different image augmentation 
techniques (IAT), a total of 45372 images were generated. 
IAT helps to reduce the overfitting phenomenon of CNNs by 
creating sufficient images for the learning of CNNs [14]. All 
images were randomly divided into training, validation, and 
testing images after performing IAT, where the training, 
validation, and testing set contains 38211, 7161, and 2388 
images, respectively. The distinctions among disease 
symptoms significantly contribute to the efficient recognition 
of different mustard plant diseases. Motivated by the recent 
breakthroughs of CNNs in identifying crop diseases, an 
efficient recognition model is addressed in this study, which 
is based on an improved CNN architecture that is designed 
using deep separable convolutional layers (DSCL) and 
inception modules (IM). DSCL requires less computing 
resources than the traditional convolutions but provides a 
higher speed of training, and also reduces overfitting by 
decreasing parameters [14]. On the other hand, IM uses 
parallel layers of several convolutions, which helps a network 
in extracting features efficiently with less overfitting and 
consumption of computing resources. Moreover, the 
recognition performance of the addressed network, namely, 
Mustard Plant Network (MPNet), was compared with four 
pre-trained models, which were utilized using the transfer 
learning approach on the mustard plant dataset. In this study, 
the MPNet model acquired 97.11% accuracy, where 
MobileNetV2, DenseNet121, VGG19, and ResNet50 
obtained 92.83%, 91.37%, 90.24%, and 88.02% accuracy on 
the test images of the mustard plant dataset. MPNet exhibited 
significant robustness and recognition performance than pre-
trained models in several experimental studies, which strongly 
illustrates that the addressed model can effectively recognize 
diseases of mustard plants. The major contributions of this 
study are summarized as follows: 

• The mustard plant dataset is generated for providing 
significant generalization ability to the addressed CNN 
architecture. All images were collected from several 
mustard plant fields with intricate and identical 
backgrounds. IAT is used in this dataset for increasing 
robustness and preventing the overfitting of CNNs 
during the training phase.



• For efficient diagnosis of mustard plant diseases, 
MPNet is addressed in this study, which was designed 
using DSCL and IM.  MPNet acquired  97.11% 
recognition accuracy which was higher than state-of-
the-art CNNs, which indicates the effective 
identification capability of MPNet firmly. To the best 
of our knowledge, this is the first study that was 
conducted for mustard plant diseases recognition. 

The rest of this study is structured as follows: Section II 
describes related studies. Section III provides details of the 
mustard plant dataset and CNNs utilized in this study. The 
results obtained in this study are provided and demonstrated 
in Section IV. Finally, this paper is concluded in Section V. 

II. RELATED WORK 

In recent years, plant disease recognition by utilizing ML 
algorithms and CNNs has become an active research topic for 
ensuring sustainability in agriculture. Yan et al. addressed an 
identification algorithm for plant disease using deep learning, 
which obtained 83.57% accuracy, and the Chan-Vese 
algorithm is utilized for segmenting images [3]. The 
recognition efficiency of their introduced algorithm is also 
compared with the ResNet101 model which acquired 42.50% 
accuracy. Mohammad et al. proposed AlexNet for extracting 
features from images and support vector machine (SVM) for 
the classification of maize leaf disease and acquired 95.00% 
accuracy [4]. On the other hand, AlexNet acquired 93.30% 
and 73.30% accuracy with k-Nearest neighbor (KNN), and 
decision tree (DT), respectively. Besides AlexNet, VGG16, 
VGG19, GoogleNet, InceptionV3, ResNet50, and ResNet101 
were also used for feature extraction. SVM, kNN, and DT 
acquired 88.33%, 82.37%, and 74.51% average accuracy. 
Sameerchand et al. introduced a recognition approach using 
CNN for classifying seventy medicinal plants through a 
mobile application and acquired 90.00% accuracy [5]. Vimal 
et al. addressed a recognition method for rice plant disease 
using CNN and SVM and obtained 91.37% accuracy [6]. 
AlexNet was utilized for extracting features and SVM was 
used for performing classification. Three different training-
testing partitions such as 60%-40%, 70%-30%, and 80%-20% 
were used, and acquired 89.45%, 90.39%, and 91.37% 
accuracy, respectively. For classifying rice leaf diseases, 
Muhammad et al. proposed XGBoost which acquired 86.58% 
accuracy [7]. By using hue threshold, affected portions were 
segmented and statistical features include color, shape, and 
texture were extracted from images. On the other hand, SVM 
obtained 81.67% accuracy with the radial basis function, and 
82.00% F1-Score, where XGBoost acquired 87.00% F1-
Score. Debasish et al. introduced a detection method using 
SVM for leaf disease, which obtained 87.60% accuracy [8]. 
The detection performance of SVM was also compared with 
logistic regression (LR) and random forest (RF), where LR 
and RF acquired 67.30% and 70.05% accuracy, respectively. 
Trang et al. addressed an identification approach for mango 
diseases using CNN that acquired 88.46% accuracy where 
three pre-trained CNNs include InceptionV3, AlexNet, and 
MobileNetV2 obtained 78.48%, 76.92%, and 84.62% 
accuracy [9]. For enhancing the quality of images rescaling, 
and center alignment were used, and the golden section search 
technique was utilized to enhance the contrast. Fenu et al. 
addressed a multioutput learning method for diagnosing 
diseases of plant and severity of stress, and five pre-trained 
CNNs include VGG16, VGG19, ResNet50, InceptionV3, 
MobileNetV2, and EfficientNetB0 were used [10]. 

InceptionV3 performed better than others in diagnosing biotic 
stress that obtained 90.68% accuracy, where EfficientNetB0 
performed better than others in diagnosing severity which 
acquired 78.31% accuracy. The training time of CNNs was 
also analyzed, and EfficientNetB0 consumed less training 
time than others. Zaki et al. introduced a classification method 
for diseases of tomato leaves using MobileNetV2 and 
acquired 95.94% accuracy with a batch size of 16 [11]. The 
performance of five optimization methods, three learning 
rates, and four training and testing image ratios was analyzed 
where the Adagrad optimization method, the learning rate of 
0.0001, and the training and test image ratio of 4:1 performed 
better than others. Kamal et al. introduced a classification 
method using SVM for leaf diseases of oil palm that acquired 
97.00% and 95.00% accuracy in classifying chimaera and 
anthracnose leaf disease and utilized k-means clustering to 
segment images [12]. Leong et al. introduced an identification 
method using SVM for diseases of plant leaf that obtained 
96.63% accuracy, and in segmenting images, the color 
thresholding approach performed better than the k-means 
clustering technique [13]. The gray-level co-occurrence 
matrix (GLCM) and ResNet50 were utilized to extract 
features from images where ResNet50 performed better than 
GCLM. 

In the above-mentioned research works, CNNs especially 
pre-trained models showed significant recognition efficiency 
over ML algorithms. But, CNNs is rarely utilized for mustard 
plant diseases recognition. Hence, an improved CNN is 
addressed in this research work for the efficient diagnosis of 
mustard plant diseases. 

III. MATERIALS AND METHODS 

A. The Mustard Plant Dataset 

A field dataset of 2388 images of mustard plants leaf, 
stem, and pod was collected initially, which includes nine 
classes, and Fig. 1 shows the example image of nine classes 
with labels. 

Fig. 1. Sample of mustard plant dataset: 1) healthy leaf 2) white rust 3) leaf 
spot 4) blackleg 5) fusarium wilt 6) healthy stem 7) stem rot 8) healthy 
pod 9) pod spot. 

 



All raw images of this dataset were resized to 224×224 
pixels and were inconstantly divided into training, validation, 
and test images by 85%, 15%, and 5%, respectively. 
Moreover, IAT was utilized in this study for simulating 
interference of real-life to eradicate the overfitting issue, and 
IAT enhances the efficiency of CNNs significantly. With 
more generated images via IAT, CNNs can learn several 
patterns, and achieve better recognition performance. Eleven 
IAT was applied to collect images for increasing the diversity 
and quantity of mustard plant images in this study, where six 
was color IAT and five was position IAT, and Fig. 2 
represents examples of eleven used IAT. 

Fig. 2. IAT of mustard plant images: 1) original image, 2) high brightness, 
3) low brightness, 4) high contrast, 5) low contrast, 6) high saturation, 
7) low saturation, 8) 90-degree rotation, 9) 270-degree rotation, 10) 
180-degree rotation, 11) vertical symmetry, 12) horizontal symmetry. 

B. MPNet 

CNNs brought a crucial breakthrough in deep learning-
based computer vision techniques of image recognition, 
which is now widely used in several studies for ensuring the 
sustainability of agriculture. An enhanced CNN, namely, 
MPNet, is designed from scratch for efficient recognition of 
nine classes of mustard plant dataset, which was built using 
DSCL, and IM. DSCL and IM were the key layers of this 
architecture, which were used for enhancing the performance 
of MPNet. Besides DSCL, and IM, max-pooling (MP), batch 
normalization (BN), global average pooling, and softmax 
were also used in MPNet architecture.  

CNNs built with DSCL require fewer parameters than 
normal convolution layers, which also enhances the 

generalization performance of CNNs. DSCL consists of 
depthwise and pointwise convolution, which requires less 
computing resources than normal convolution layers. DSCL 
helps CNNs to reduce overfitting issues without reducing the 
performance of the model. The structural design of MPNet is 
demonstrated in Fig. 3. 

Fig. 3. Structure diagram of the addressed MPNet. 

In MPNet architecture, the first DSCL contains 64 
convolution kernels (CK) of size 3×3 and a 3×3 MP layer was 
added after it. MP layer selects the maximum value covered 
by the filter from the region of each feature map. The second 
DSCL contains 64 CK of size 3×3, and a 3×3 MP layer was 
added after it. The last DSCL contains 128 CK of size 3×3, 
which was followed by a 3×3 MP and a BN layer.  BN makes 
CNNs more stable and faster, which normalized elements of a 
layer to zero mean and unit variance. Afterward, a IM was 
added which was followed by a 3×3 MP layer. And then two 
IM was added which was followed by a 3×3 MP layer. Again, 
two IM was added which was followed by a 3×3 MP layer. 
For improving the feature extraction ability of CNN's, the 
depth or width of the model is needed to be increased, which 
increases overfitting and consumption of computing 
resources. On the other hand, IM extracts features efficiently 
by utilizing parallel layers of several convolution kernel sizes, 
and outputs of these are concatenated at the end of the model, 
which remarkably improves the adaptability of the network. 
As demonstrated in Fig. 4, IM was designed with collateral 
1×1 convolution layers (CL), 3×3 CL, and two cascaded 3×3 
CL which were alongside a MP layer. Moreover, a 1×1 CL 
was added before or after the collateral CL for decreasing the 
dimensions of the feature map and weights numbers. The 
global average pooling layer is connected to a nine-way 
softmax layer in MPNet, and adaptive moment estimation 

 

 



(Adam) was chosen as an optimization algorithm for MPNet.  
The structure of the used IM is demonstrated in Fig. 4. 

Fig. 4. Inception structure with convolution kernels size. 

C. State of the art CNN models 

In the transfer learning strategy, state-of-the-art CNN 
models are used for building efficient CNNs, which were been 
already trained on a large-scale dataset. In this study, four 
CNNs such as MobileNetV2, DenseNet121, VGG19, and 
ResNet50 were utilized via the transfer learning strategy, and 
the input image size of these four CNNs are the same which 
is 224×224 pixels. Initially, convolutional bases (CB) of these 
pre-trained models were set unfrozen, and fully connected 
(FC) layers were replaced for performing classification on the 
mustard plant dataset. Afterward, CB and FC layers were 
retrained. In fine-tuning of CNNs, basic CNNs were utilized 
as feature extractors, where input images were propagated. 
Afterward, a global average pooling layer was used for 
generating a one-dimensional matrix from extracted feature 
maps. A fully FC layer was used with 128 neurons, and for 
eradicating the overfitting issue a dropout layer of coefficient 
of 0.5 was added. Then a FC layer of 64 neurons and a dropout 
layer of 0.5 were used. Lastly, the final FC layer was 
connected to a nine-way softmax layer for classifying nine 
classes of the mustard plant dataset. The fine-tuning strategy 
is illustrated in Fig. 5. 

Fig. 5. The used fine-tuning strategy. 

IV. EXPERIMENTS 

All experiments introduced in this study were conducted 
using the Google cloud environment, and for implementing 
the MPNet model, Keras 2.4.0 framework was used. During 
the training stage of MPNet and four pre-trained CNNs, 
38211 training and 7161 validation images were used. For 
evaluating the recognition efficiency of five CNNs, several 
experimental studies were conducted using 2388 test images 
of the used dataset. Four pre-trained CNNs such as 
MobileNetV2, DenseNet121, VGG19, and ResNet50 were 
utilized with the same method of optimization as utilized 
during the training phase on the ImageNet dataset. In the 
training phase of CNNs, the early stopping technique (EST) 
was utilized, and categorical cross-entropy was utilized as a 
loss function for eliminating the overfitting problem and 
monitoring generalization error. 

The recognition efficiency of the five modes on the test 
of the mustard plant dataset was validated using four 
analytics metrics include sensitivity (Sen), specificity (Spe), 
accuracy (Acc), and precision (Pre) which were attained from 
the number of true positive (TP), true negative (TN), false 
positive (FP) and false negative (FN) [14]. The mathematical 
formulas of analytics metrics are given in equations (1) to (4). 

 For a class mi, 
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V. RESULTS AND DISCUSSIONS 

This study addresses an improved recognition approach 
for mustard plant diseases using MPNet architecture for 
achieving a good equipoise between the recognition accuracy 
and time. DSCL and IM improved the recognition efficiency 
of MPNet architecture significantly, which performed better 
than pre-trained CNNs, such as MobileNetV2, DenseNet121, 
VGG19, and ResNet50. MPNet acquired 97.56% and 96.09% 
training and validation accuracy, respectively, which wrongly 
classified 69 test images. Training, validation and test 
accuracy of CNNs are presented in Table 1. MobileNetV2 
misclassified 171 test images, which outperforms four pre-
trained CNNs in recognition efficiency. 

TABLE I.  RECOGNITION ACCURACY OF CNN MODELS 

Model Name 
Training 

Accuracy 

Validation 

Accuracy 

Test 

Accuracy 

MPNet 97.56% 96.09% 97.11% 

MobileNetV2 93.58% 90.57% 92.83% 

DenseNet121 91.89% 89.35% 91.37% 

VGG19 91.34% 88.13% 90.24% 

ResNet50 89.13% 87.85% 88.02% 

 

 



MobileNetV2 obtained 92.83% test accuracy, whereas 
ResNet50 acquired 88.02% test accuracy which was the 
lowest test accuracy among pre-trained models. The 
recognition efficiency of pre-trained CNNs was very close to 
each other. DenseNet121, VGG19, and ResNet50 wrongly 
classified 206, 233, and 286 images of the test set, 
respectively. The normalized confusion matrix of MPNet for 
the test set is presented below in Fig. 6, which strongly 
demonstrates the competency of this architecture. 

Fig. 6. Normalized confusion matrix of MPNet architecture: C1) healthy 
leaf, C2) white rust, C3) leaf spot, C4) Blackleg, C5) fusarium wilt, C6) 
healthy Stem, C7) stem rot, C8) healthy pod and C9) pod spot. 

According to class-wise recognition performance, MPNet 
delivered a satisfactory performance, which is presented in 
Table 2. The sensitivity of the Blackleg class was higher than 
others, 98.02%. In the Pod spot class, MPNet acquired 
95.00% sensitivity which was less than other classes. 
However, MPNet obtained 99.76% specificity in the Healthy 
Stem class.  Accuracy of white rust, blackleg, healthy stem, 
and healthy pod class was the same, 99.41%. MPNet acquired 
the lowest accuracy in the Leaf spot class, 99.20%. Moreover, 
the precision of the healthy leaf class was higher than other 
classes, 98.71%. In the leaf spot class, MPNet obtained the 
lowest precision value, 95.53%. The precision value of white 
rust, blackleg, healthy stem, and healthy pod classes is 
96.60%, 96.48%, 98.48%, and 97.14% respectively, where 
MPNet obtained the highest accuracy. 

TABLE II.  CLASS-WISE RECOGNITION PERFORMANCE OF MPNET 

Class name Sen (%) Spe (%) Acc (%) Pre (%) 

Healthy leaf 97.45 99.75 99.37 98.71 

White rust 97.42 99.63 99.41 96.60 

Leaf spot 96.71 99.49 99.20 95.53 

Blackleg 98.02 99.58 99.41 96.48 

Fusarium wilt 96.12 99.72 99.37 97.38 

Healthy Stem 97.31 99.76 99.41 98.48 

Stem rot 97.32 99.54 99.33 95.61 

Healthy pod 97.84 99.62 99.41 97.14 

Pod spot 95.00 99.68 99.29 96.45 

Symptoms of diseases are very analogous in respect of 
geometrical features and CNNs may misjudge during fine-
grained recognition. Based on DSCL and IM, MPNet 
efficiently extracted disease features from images, which 
remarkably increased the accuracy of image classification. In 
healthy leaf and healthy stem classes, MPNet wrongly 
predicted 5 images, which was the lowest false prediction 
number of this study. Images of healthy leaf and healthy stem 
classes were less complex with no disease spots, which 
significantly increased the recognition accuracy of MPNet for 
these two classes. Images of the leaf spot class were very 
complex, containing rounded disease spots with the yellow 
surface, which decreased MPNet accuracy for this class. On 
the other hand, MobileNetV2 falsely predicted 26 images of 
the healthy pod class, which was higher than other classes. 
DenseNet121 misclassified 29 images of the healthy pod and 
14 images of the blackleg class. VGG19 wrongly classified 32 
images of the leaf spot, which was higher than other classes. 
However, VGG19 misclassified 18 images of the stem rot 
class, which was less than other classes. Lastly, ResNet50 
misclassified 39 images of the fusarium wilt and healthy pod 
class, which was the highest misclassification number of this 
study. Supported by the results of several experiments, MPNet 
architecture obtains superior recognition performance in 
classifying images of nine classes. Class-wise false 
classification numbers are presented in Table 3. At the end of 
53 epochs, the loss of MPNet architecture was remarkably 
reduced and yielded the highest accuracy, where no major 
fluctuations were found in the curve of accuracy and loss. The 
accuracy curve acquired for MPNet architecture on the 
training and validation sets is given in Fig. 7. 

TABLE III.  FALSE CLASS-WISE CLASSIFICATION NUMBERS OF CNNS 

Class name 
MP 

Net 

Mobile 

NetV2 

Dense 

Net121 

VGG 

19 

ResNet 

50 

Healthy leaf 5 18 26 28 36 

White rust 8 24 23 23 38 

Leaf spot 11 15 27 32 22 

Blackleg 9 20 14 26 23 

Fusarium wilt 6 21 18 22 39 

Healthy Stem 5 17 28 31 26 

Stem rot 10 18 24 18 35 

Healthy pod 8 26 29 27 39 

Pod spot 7 12 17 26 28 

 

Fig. 7. Learning accuracy curves of MPNet architecture. 

 

 



During the training process of CNNs, epoch number was 
not set previously as EST was used for finding the optimal 
number of epochs. Four CNNs including MobileNetV2, 
DenseNet121, VGG19, and ResNet50 delivered their highest 
recognition performance after 49, 56, 58, and 53 epochs. The 
loss curve obtained for MPNet architecture on the training and 
validation sets is given in Fig. 8. 

Fig. 8. Learning loss curves of MPNet architecture. 

The proposed MPNet architecture's performance was 
compared in this study with the existing literature which were 
addressed for diagnosing diseases of other crops, presented in 
Table 4. The comparison study presented in Table 4 validates 
that the introduced architecture demonstrates superior 
performance compared to existing studies. 

TABLE IV.  COMPARISON OF MPNET ARCHITECTURE WITH METHODS 

OF EXISTING LITERATURE 

Study Method Classes Accuracy 

Yan et al. [3] CNN 4 83.57% 

Mohammad et al. [4] AlexNet, SVM 4 95.00% 

Vimal et al. [6] AlexNet, SVM 4 91.37% 

Muhammad et al. [7] XGBoost 3 86.58% 

Debasish et al. [8] SVM 7 87.60% 

Fenu et al. [10] InceptionV3 4 90.68% 

Zaki et al. [11] MobileNetV2 4 95.94% 

Kamal et al. [12] SVM 2 90.00% 

Leong et al. [13] ResNet50, SVM 4 96.63% 

Our study MPNet 9 97.11% 
 

VI. CONCLUSION 

To this day, the cultivation of several types of crops 
remains highly crucial,  which also plays an appreciable role 
in the economy of most countries and also in our everyday 
life. This paper presented an improved CNN architecture 
using DSCL and IM for mustard plant diseases, and MPNet 
obtained 97.11% accuracy in recognizing images of nine 
classes. The mustard plant dataset containing 47760 images 
was generated in this study by utilizing 11 IAT for ensuring 
adequate generalization performance of CNNs. In MPNet 
architecture, IM enhanced accuracy by strengthening the 
multidimensional feature extraction ability of MPNet, and 
global average pooling was utilized instead of the FC layer for 
decreasing the parameters number of the model. The 
recognition performance of four pre-trained CNNs was also 

evaluated on the same dataset, where MobileNetV2 
outperformed other CNNs that attained 92.83% accuracy. 
Specifically, the efficiency of recognition of the addressed 
architecture in each class firmly confirmed the robustness of 
MPNet. The experimental results on the mustard plant dataset 
indicated that MPNet architecture is effective and feasible. As 
future works, expanding the dataset, collecting new samples, 
and adding other classes of the mustard plant is an aim of this 
research work. 
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