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Based on the diverse physiological influence, the impact of glial cells has become much more evident on neurological illnesses,
resulting in the origins of many diseases appearing to be more convoluted than previously happened. Since neurological
disorders are often random and unknown, hence the construction of animal models is difficult to build, representing a small
fraction of people with a gene mutation. As a result, an immediate necessity is grown to work within in vitro techniques for
examining these illnesses. As the scientific community recognizes cell-autonomous contributions to a variety of central nervous
system illnesses, therapeutic techniques involving stem cells for treating neurological diseases are gaining traction. The use of
stem cells derived from a variety of sources is increasingly being used to replace both neuronal and glial tissue. The brain’s
energy demands necessitate the reliance of neurons on glial cells in order for it to function properly. Furthermore, glial cells
have diverse functions in terms of regulating their own metabolic activities, as well as collaborating with neurons via secreted
signaling or guidance molecules, forming a complex network of neuron-glial connections in health and sickness. Emerging
data reveals that metabolic changes in glial cells can cause morphological and functional changes in conjunction with neuronal
dysfunction under disease situations, highlighting the importance of neuron-glia interactions in the pathophysiology of
neurological illnesses. In this context, it is required to improve our understanding of disease mechanisms and create potential
novel therapeutics. According to research, synaptic malfunction is one of the features of various mental diseases, and glial cells
are acting as key ingredients not only in synapse formation, growth, and plasticity but also in neuroinflammation and synaptic
homeostasis which creates critical physiological capacity in the focused sensory system. The goal of this review article is to
elaborate state-of-the-art information on a few glial cell types situated in the central nervous system (CNS) and highlight their
role in the onset and progression of neurological disorders.

1. Introduction

Kettenmann and Verkhratsky used the term “glia” from the
Greek word “stick” to describe the filling of gaps between
neurons in the focal sensory system in 1856. Despite the
relentlessness of neuron-focused exploration for a long

period of time, Kettenmann and Verkhratsky successfully
noted the significance of glial cells in understanding the role
of the central nervous system in his 1858 address: “Up to this
point, courteous fellows, in having thought about the sense
organs, I have discussed the deeply anxious pieces of it.
But, if we need to examine the sensory system in its
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standard-setting in the body, we should initially compre-
hend the substance between the legitimate neural compo-
nents, hold them together, and give the whole its shape
somewhat” [1]. The intricacy of the collaboration among
neurons and glial cells is simply starting to be seen today.
Improved coculture strategies have helped in the exploration
of a few issues more noteworthy profundity. In the CNS,
three glial cells (astrocytes, oligodendrocytes, and microglia)
are generally perceived, each with individual capacities [2].
All four cell types have been linked to the development of
essentially all known CNS pathologic conditions, including
neurodegenerative diseases like Alzheimer’s disease (AD),
Huntington’s disease (HD), Parkinson’s disease (PD), amyo-
trophic lateral sclerosis (ALS), spinal muscular atrophy
(SMA), multiple sclerosis (MS), and various pathologies like
Rett syndrome [3, 4]. Accordingly, powerful model frame-
works for unwinding the exceptional job of every particular
glial cell type in an infection state, just as contemplating
their dynamic interaction, might be incredibly valuable in
recognizing novel therapeutics [5]. The first few years of life
are crucial for neurodevelopment. Synapse formation and
pruning, as well as the consolidation of neural circuitry,
are all part of maturation [6]. The creation and pruning of
synapses have traditionally been researched in conjunction
with the formation and removal of synapses. Synapses were
considered to operate as a messenger among two adjusting
neurons, and pruning synapses might cause synapse patterns
that influenced neuronal communication [7, 8]. Previously,
the role of glial cells was unknown, but recent research has
revealed few information such as the generation of gliotrans-
mitters and cytokines, which allow them to interact with
neurons during brain development. Moreover, neuron-glia
interactions are being studied more and more in terms of
synaptic alterations made by glial cells at various stages of
development, like synaptic patterning as a consequence of
pruning [9]. Glial cells secrete gliotransmitters such as gluta-
mate, gamma-aminobutyric acid (GABA), and cytokines,
which have direct and indirect effects on neurons [10]. These
drugs have been found to affect tripartite synapses. Tonic
gliotransmitter release, which is usually visible as extracellu-
lar glutamate and GABA, is also another key part of neuron-
glia interactions. Tonic inhibition has been discovered to be
particularly useful in the research of neurodegenerative dis-
eases including AD and PD [11]. The chronic stimulation
of nerve cells, on the other hand, has only been studied spo-
radically in neurodevelopmental diseases [12, 13]. For
proper brain function during development and adulthood,
the connections between neurons and glia are essential.
According to recent studies, glia play a crucial role in bidi-
rectional communication with neurons, adaptation to vari-
ous diseases, modulation of neuronal activity, and
phenotypic changes in response to neuronal injury [14,
15]. Neurons are strongly connected with glial cells such as
astrocytes, oligodendrocytes, and microglia throughout the
brain tissue, and their dynamic interactions are critical for
appropriate brain function [5, 16]. Every type of neurologi-
cal disease is thought to include a glial component, which
could be the primary or secondary cause [17]. As a result,
glia’s protective and homeostatic abilities define their central

position in neuropathology. The mechanisms governing glial
cells’ varied reactive states are yet unknown; however, they
can be linked to changes in their metabolic profiles. In the
context of these phenotypic changes in neurological ill-
nesses, the unique metabolic changes combined with mito-
chondrial modifications in activated glial cells are receiving
attention [5, 13, 18]. Changes in glial cells’metabolic profiles
have been found to disrupt neuron-glial and interglial inter-
actions, increasing the ongoing reaction to the initial cause.
In numerous neurological illnesses, abnormal neuron-glial
interactions have been identified in several studies. The ris-
ing body of evidence demonstrates the close relationship
between glia and neuronal cells, as well as their impact on
neurons. Several studies have found that metabolic changes
in glial cells modify neuron-glial connections, hence ampli-
fying the pathophysiology of many neurological illnesses
[19–23]. In preliminary research on neurodegenerative,
ischemic brain injury, and demyelinating illnesses, glial
metabolism was found to have a lower oxidative burden,
lower generation of proinflammatory cytokines, and less
neuronal damage. As a result, future research into the
underlying processes that regulate metabolic changes in
reactive glial cells will lead the way for the creation of new
therapeutic approaches [24–26]. In this review work, we
looked into neuron-glia interactions in the setting of a num-
ber of neurodevelopmental disorders, including autism spec-
trum disorder (ASD), attention deficit hyperactivity disorder
(ADHD), and epilepsy (Figure 1). Besides from that, many
neurotransmitters and their actions have been discussed, as
well as the significance of glial cells in neurological disorders.

2. Neurotransmitters

2.1. Endocannabinoids. Endocannabinoids (ECBs) are
retrograde-acting molecules that are delivered from neurons
in light of depolarization-initiated Ca2+ inundation.
Depolarization-induced suppression of inhibition (DSI)/
excitation flagging gave the evident primary proof to retro-
grade ECB flagging depolarization-induced suppression of
excitation (DSE). Later examination uncovered that the
ECB framework is involved in both excitatory and inhibitory
neural connections as well as present moment and long-
term depression (LTD). From that point forward, the ECB
framework has become the mind’s most investigated retro-
grade flagging framework. Much of the time, ECB-
interceded retrograde flagging starts with the union of 2-
arachidonoylglycerol (2-AG), which is set off by raised intra-
cellular Ca2+ fixation and initiated Gq/11-coupled receptors.
2-AG is in this way delivered into the extracellular space,
where it goes until it comes to the presynaptic terminal,
where it ties to the cannabinoid receptor type 1 (CB1R). Ini-
tiated CB1R hinders synapse discharge as follows: first, by
obstructing voltage-gated Ca2+ channels, which limit pre-
synaptic Ca2+ deluge, and second, by restraining adenylyl
cyclase (AC) and the cAMP/PKA pathway, which is associ-
ated with LTD [27, 28].

2.2. Glutamate. Glutamate is the essential excitatory synapse
in the focal sensory system, which deals with astrocytes in an
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assortment of cerebrum regions. Despite the fact that a few
studies have shown that astrocytes have ionotropic gluta-
mate receptors, it is commonly assumed that glutamatergic
communication in such glial cells occurs mostly through
metabotropic glutamate receptors (mGluR). Based on their
organization homology, G-protein coupling, and ligand
selectivity, mGluRs are categorized into three classes. Group
I contains mGluRs 1 and 5, group II contains mGluRs 2 and
3, and group III contains mGluRs 4, 6, 7, and 8. The mea-
sures of mGlu1, mGlu3, and mGlu5 receptors in astrocytes
fluctuate contingent upon the formative stage and cerebrum
area. According to a large research collection, mGluR5 is the
most important glutamate receptor transmitted in astrocytes
in culture and in situ. Ca2+ waves in astrocytes are triggered
by glutamatergic neuronal afferent fibers in hippocampal
slices, which are blocked by mGluR5 antagonists. mGluR5s
are additionally significant in astrocytic reactions to gluta-
matergic neurotransmission in other brain regions like the
core accumbens and the thalamus. Moreover, astrocyte
Ca2+ reactions are defenseless to mGluR5 opponents when
tangible incitement is acted in vivo. The statement of mGlu5
in astrocytes is high during pregnancy and reduces during
advancement, when mGluR3 is upregulated, recommending

that mGluR5 may just play an unobtrusive capacity in
grown-up stages [29, 30].

2.3. Acetylcholine. Brown was the first to identify acetylcho-
line (ACh) as a neurotransmitter based on its effects on the
heart [31]. ACh’s many roles in synaptic communication
have been discovered [32]. Cholinergic circuit disruption is
assumed to be at least partly responsible for the cognitive
impairments seen in neurodegenerative illnesses. Choliner-
gic circuit disruption has been connected to both normal
and abnormal cognitive performance [33, 34]. While direct
cholinergic activation of pre- and postsynaptic neuronal
receptors is thought to be the method by which cholinergic
signaling modulates cognitive functions, the involvement of
ACh in astrocytes has been overlooked. Muscarinic and nic-
otinic receptors have been found in astrocytes [35–38]. In
hippocampal slices, cholinergic agonists or synaptically pro-
duced ACh causes astrocyte Ca2+ increases. Such effects are
mediated via muscarinic receptors, according to pharmaco-
logical techniques [39–41].

2.4. Norepinephrine. The neural connection norepinephrine
is essentially conveyed by the locus coeruleus (LC) and has
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Figure 1: Changes that are caused by interactions between neurons and glia during neurodevelopment. Increased levels of the inflammatory
cytokines IL-12, IL-1, and TNF-α are associated with neurodevelopmental disorders. The resulting astrocyte and microglia cell proliferation
leads to their enlargement, which causes more of the molecules to be released into the extracellular space, leading to neuronal death.
Albumin levels increase in patients with epilepsy due to increased permeability of the blood-brain barrier (BBB) and activation of
astrocytes. In epilepsy, released cytokines have been demonstrated to promote effective neurogenesis and the synthesis of neurotrophins
such as BDNF, NGF, and GDNF (NGF, BDNF, and GDNF).
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a vast extent of effects across the frontal cortex. Norepineph-
rine, as various catecholamines, is transmitted through axo-
nal varicosities in neurons in this way acts through “volume
transmission.” Astrocytes have adrenergic receptors a1, a2,
and ß1 [42, 43] and can respond to norepinephrine made
by neurons [44, 45]. In vivo, LC neuron impelling causes
short statures in cortical astrocytic Ca2+, controlled by phen-
tolamine, an ambiguous adrenergic receptor blocker [44].
Plus, advancement authorizes astrocyte networks across
many psyche areas, curbed by adrenoceptor adversaries
[46, 47].

2.5. Dopamine. Although the transport of dopamine in cul-
tured astrocytes has been studied in great depth, the exis-
tence of down-to-earth dopamine receptors in situ has
stayed a question mark until continuous assessments
revealed astrocyte response to dopamine in a variety of brain
locations. Dopamine D2R order of astrocytes has been dem-
onstrated to suppress a crystallin-mediated neuroinflamma-
tion in vivo [48] and lower intracellular Ca2+ levels in
hippocampal [49] and ventral midbrain astrocytes. In con-
trast, exogenous dopamine inception of D1R lifts intracellu-
lar Ca2+ in hippocampal astrocytes [49]. Moreover, we have
displayed the presence of D1Rs in astrocytes of the center
accumbens using electron microscopy. That inception of
these receptors in vivo and situ by synaptically conveyed
dopamine causes intracellular Ca2+ ascends through a GPCR
hailing course, including IP3R2 and intracellular Ca2+

arrangement [50].

2.6. GABAA Receptors. GABAARs are integral membrane
ion channels with five sections that govern the most com-
mon type of fast regulatory neurotransmission in the brain
[51, 52]. They are sensitive to Cl and HCO3 anions. There
should be at least 19 different GABAAR subunits genes,
including 6α (α1-α6), 3β (β1-β3), 3γ (γ1-γ3), 3ρ (ρ1-ρ3),
and also 1 gene for each of the subunits [53]. As a conse-
quence of this diversity, various homomeric or heteromeric
subunit mixtures exist, each with its location in the CNS
and functional and pharmacology features [54]. A few ele-
ments impact the subunit profile that creates GABAARs,
for example, cerebrum area, cell type, formative stage, and
physiological or neurotic conditions [55–57]. As of late, 11
GABAAR subtypes with various subunit arrangements have
likewise been found, most of which are heteromeric recep-
tors shaped by αxβxγx or αxβxδ, while some are homomeric
receptors comprising of subunits [58, 59].

2.7. GABAB Receptors. GABABRs are slow and long-acting
G-protein-coupled receptors (GPCRs) that are occupied
with GABA-intervened restraining transmission. It was first
distinguished pharmacologically as bicuculline-harsh metab-
otropic receptors that were animated by the GABA simple
baclofen [60]. GABABRs are heterodimers made out of
GABAB1 and GABAB2 receptor subunits that act together
to initiate signals [61, 62]. GABAB1 has ligand binding sites,
while GABAB2 has allosteric modulator binding sites [63,
64]. It is needed to get the heterodimer to the cell membrane,
where the receptors can activate [65, 66]. It has an interac-

tion with the Gi/o protein. Voltage-gated Ca2+channels
(VGCC), inwardly rectifying potassium channels (Kir), and
adenylyl cyclase are some of the effector components
involved with GABABR flagging pathways in neurons [67].
However, depending on the cell type and location studied,
the specific coupling of GABABRs to the molecular effector
can vary [68].

2.8. Serotonin. Serotonergic neurotransmission is suspected
to be involved in several mental diseases [69]. Even though
the evidence appears to be conflicting, the role of serotonin
in learning and memory has attracted interest [70]. Further-
more, experimental evidence suggests that stimulating
serotonergic neurotransmission reduces behavioral perfor-
mance, while inhibiting it, improves it. 5-HT 3 antagonists
[71], which were shown to improve rodent and primate per-
formance in a variety of cognitive tests [72], have yielded
promising results. As a result, it is not unexpected that many
substances have been created to treat AD (for example, ICS
205930, Ondansetron, and Zacopride; see [73]). A putative
neurochemical mechanism of action has also been proposed
by many studies. 5-HT 3 receptors appear to regulate corti-
cal ACh release and may work through another 5-HT recep-
tor subtype [71]. The 5-HT 3 antagonists’ apparent
cognition-enhancing benefits are hypothesized to be ampli-
fied by their effects on ACh generation in the brain. Because
the entorhinal cortex has a higher density of 5-HT1A recep-
tors [74], and this receptor subtype is involved in learning
and memory, it has been hypothesized that it could be a tar-
get for cognitive-enhancing drugs. Several research looked
into the involvement of the 5-HT1A receptor subtype in
learning and memory; however, most found no evidence of
improved learning or memory after using 5-HTIA agonists
[75–77]. In actuality, there is no influence or impairment
in learning performance. Only one study [78, 79] discovered
that ipsapirone, a partial agonist of the 5-HTjA receptor,
improved performance in a conditional delayed discriminat-
ing task. It will be fascinating to see if a 5-HT1A antagonist
will improve both memory and learning.

2.9. Excitatory Amino Acids. Glutamate, the most prevalent
endogenous excitatory amino acid in the brain, has attracted
a lot of attention because of its possible role in neurological
and psychiatric disorders [80]. The importance of NMDA
and AMPA receptors in long-term potentiation indicates a
link between excitatory amino acids and learning and mem-
ory activities. The physiological correlate of memory forma-
tion has been considered to be long-term potentiation [81].
Although there is evidence that blocking the NMDA recep-
tor can affect both long-term potentiation and memory,
increased glutamatergic signaling may have detrimental
repercussions for behavior since excessive levels of glutamate
are neurotoxic [78]. As a consequence, excitatory amino acid
receptor agonists’memory-enhancing effects may be limited.
However, a newly developed pharmaceutical (i.e., 1-(1,3-
benzodioxol-5-ylcarbonyl)piperidine), which was expected
to boost AMPA receptor activity, was found to improve cog-
nition in different learning and memory models [79].
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Finally, there seems to be a glutamatergic shortage in
AD [82].

3. BBB Structure

An essential constituent structure in the blood-brain barrier
(BBB) is glial cells. Pericytes and endothelial cells (ECs) col-
laborate to form a continuous, membrane network around
blood vessels that allows for molecular signaling (Figure 2).
The barriers have strong selectivity for necessary nutrients,
which prevents hazardous materials from entering the brain
and keeps brain homeostasis stable. BBB thus serves a vital
role in keeping the unique neuronal function in the systemic
circulation safe from biochemical attack.

4. Glia’s Role in a Healthy CNS

In the CNS, three kinds of glial cells (astrocytes, oligoden-
drocytes, and microglia) are traditionally differentiated, each
with specific roles. Due to their diverse functions, polyden-
drocytes or NG2(+) oligodendrocyte precursor cells (OPCs)
could be respected as a fourth glial cell type [80]. Practically
completely known CNS pathologic conditions, including
neurodegenerative problems like AD, PD, ALS, HD, MS,
and SCI, are influenced by each of the four cell types
[83–91]. Therefore, reasonable model frameworks for

explaining the unmistakable jobs of each glial cell type in a
sickness state and looking at their dynamic interchange
could be gigantically significant in the advancement of new
therapies. In the CNS, astrocytes are the most common cell
type. As the nervous system becomes more complicated,
their ratio and amount to neurons increases, demonstrating
their importance in the development and maintenance of
this complex system [92, 93]. The astrocyte population is
exceptionally diverse in shape and gene expression, which
aligns with the numerous roles of this cell type [94–96].
The fundamental job of astrocytes in the CNS is to maintain
and provide homeostasis. Ion, neurotransmitter and neuro-
hormone trafficking, metabolic support for storing and dis-
persing energy substrates like lactate, cellular homeostasis
(neurogenesis), and organ homeostasis for constructing
and maintaining the blood-brain barrier (BBB) are all exam-
ples of this [91]. Additionally, astrocytes integrate and coor-
dinate synaptic and nonsynaptic impulses, as well as impact
neighboring cell activity in a flexible manner [97, 98]. Ini-
tially, astrocytes were thought to overlap, but new data
reveals that they are structured systematically, with individ-
ual cells covering separate territories and interacting with
both the microvasculature and neurons. They create a tripar-
tite synapse with neuronal transmission, and activation is
modulated by pre- and postsynaptic neurons. A single astro-
cyte may touch hundreds of synapses simultaneously due to
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its numerous processes and branches [99]. Furthermore,
astrocytes are linked by gap junctions that connect neurons
to form a complex network that sends messages via Ca2+

waves at a much slower rate than neuronal communica-
tion [100].

4.1. Microglia. Microglia are CNS tissue-explicit macro-
phages with an extended life expectancy that make around
15–20 percent of the synapses. They come from the yolk
sac’s mesodermal hematopoietic undifferentiated cells, in
contrast to the ectodermal produced neurons, astrocytes,
and oligodendrocytes. Microglia antecedents (myeloid fore-
bear cells) arrive at the CNS during early-stage improvement
before the BBB is made [101]. As the name says, microglia
are a lot more modest than astrocytes. They exist in an
amoeboid transitory state when they enter the CNS or are
set off and a ramified “resting” shape with a minuscule soma
and broad praiseworthy cycles when they are not enacted.
They are equally scattered all through the grown-up CNS,
with every cell having its particular area (like astrocytes).
Because of their immobility and lack of activation markers,
“resting” microglia were thought to be dormant until recent
research revealed that their fine ramified processes are con-
stantly monitoring the environment [102]. Microglia
(Figure 3) go about as immunological assessors in the sound
CNS and are fundamentally liable for eliminating waste. To
consistently pass on their amazing well-being to the microg-

lia, neurotransmitters and neurotrophins are delivered by
neurons and astrocytes [92, 93, 103–105]. Microglia, similar
to neurons, have an assortment of synapse receptors that
distinguish neuronal action and direct microglia movement,
provocative reactions, cytokine delivery, neuroprotection,
and neurotoxicity [106, 107]. Microglia are insusceptible
cells with chemokine, cytokine, and supplement factor
receptors that produce modulatory substances like cytokines
and responsive oxygen species (ROS). Antigens are con-
veyed to attacking T lymphocytes through the significant
histocompatibility complex (MHC) class II complex. After
detecting a physical issue or obsessive affront, microglial
cells quickly change into an amoeboid shape and move
towards the site of the sore [108–110]. Microglia cells relo-
cate towards injured or dead neurons because of
glutamate-initiated Ca2+ waves, as per new exploration [111].

4.2. Oligodendrocytes. Myelination of neuronal axons is car-
ried out by oligodendrocytes in the CNS, which is required
for rapid electrical signal transmission. OPCs arise in many
brain areas throughout development and travel great dis-
tances to reach their eventual destination. OPCs go through
complicated proliferation and differentiation processes
throughout this process. Myelination begins immediately
after birth, once the OPCs have finished their migration to
their site of activity. In humans, the majority of myelination
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Figure 3: Differential roles of microglia in the developing brain. By phagocytosing dead or dying cells, microglia can control the amount of
neurons in the growing brain and give neural progenitor cells trophic support for growth and maturation.
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occurs within the first year of life; it continues in some areas
of the CNS until young adulthood [112] and throughout
adulthood [113]. The development of cognitive ability in
specific regions appears to be linked to myelination in those
areas [97, 98, 112]. When immature oligodendrocytes come
into touch with target axons, they undergo a complicated
process of differentiation that entails wrapping their plasma
membranes around the neurons [108, 114]. The cytoplasm is
drained as the membrane layers thicken, and the residual
sheets contain up to 160 compact membrane layers of mye-
lin lipids and proteins [109, 115]. The myelination process
and the development of OPCs into adult oligodendrocytes
are carefully controlled. Due to a lacking of model systems,
the signaling pathways and substances involved are cur-
rently unknown [116, 117]. During their development from
OPCs, oligodendrocytes appear to only myelinate for a brief
period [118]. While electrical driving forces in neurons are
essential for myelination to start, astrocytes assume a part
in the wrapping’s effectiveness and speed. Oligodendrocytes
have a layer that can uphold multiple times the heaviness of
their cell body. An oligodendrocyte can create up to 5000m2

of new layer each day during top myelination, which is a
huge metabolic exertion that requires a ton of oxygen and
adenosine triphosphate (ATP), just as a ton of endoplasmic
reticulum limit [106, 115, 116]. Despite the way that these
phones live for quite a while in a solid neurological frame-
work, with a turnover pace of just a single cell in 300 every
year, they are helpless against injury and stressors such
aggravation and oxygen hardship [107]. The leftover
NG2(+) OPCs scattered all through the grown-up CNS can
supplant lost oligodendrocytes (for additional data on
NG2(+) cells, see the part underneath). Oligodendrocytes
give trophic variables to neurons and control axon width
and particle direct dissemination as well as giving protection
[117]. Hole intersections (like those found between astro-
cytes) interface oligodendrocytes with astrocytes, taking into
consideration the dispersion of particles and little atoms,
metabolic trade, spatial buffering, and electrical coupling
[119]. To get signals, for example, certain MHC subtypes,
supplement factors, cytokines, chemokines, glutamate recep-
tors, and cost-like receptors, oligodendrocytes produce and
express invulnerable administrative synthetic compounds
and receptors [110]. This shows that oligodendrocytes play
a part in irritation and are firmly connected to microglia.

5. Extracellular Vesicles as Neuron-Glia
Communication Mediators

Glia cells assume a basic part in the creation, upkeep, and
capacity of the focal sensory system, all of which requires
critical cell-cell associations among glia and neurons. Direct
cell-cell association or the paracrine activity of delivered
atoms can help intercellular correspondence. A novel con-
tact method based on cell-to-cell exchange of extracellular
vesicles (EVs) has emerged in recent years. Numerous cell
types discharge EVs into the climate, which can move an
assortment of biomolecules between cells over brief dis-
tances or longer distances. EVs are discharged by both glia
and neurons, and new examination shows that EV intercel-

lular correspondence in the CNS has an assortment of prac-
tical implications [91, 116, 119, 120]. Size, payload, layer
piece, and beginning of extracellular vesicles, for example,
shedding microvesicles (MVs), exosomes, and apoptotic
bodies, shift. Apoptotic bodies are delivered during apopto-
sis, while sound cells make various types of vesicles. EVs
can be detected in practically all bodily fluids, and distin-
guishing between them has proven difficult due to several
classification criteria overlapping [121]. In contrast to
MVs, which are generated directly from the plasma mem-
brane and range in size from 50 to 100nm, exosomes are
formed through the endosomal system (up to 1000 nm in
diameter). Exosomes are intraluminal vesicles of multivesi-
cular bodies (MVBs); hence, the ESCRT (endosomal sorting
complex required for transport) process is necessary to sort
them at the endosomal limiting membrane [80, 110] or
aided by ceramide and tetraspanins, two sphingolipids [89,
122]. Exosomes are framed when MVBs combine with the
plasma film and Rab GTPases; for example, this cycle is con-
trolled by Rab27 in epithelial cells and Rab35 in oligoden-
drocytes [102, 108]. Tetraspanins, integrins, heat shock
proteins, biogenesis-related proteins (such as Tsg101 and
Alix), and components specific to different cell types can
all be present in exosomes. However, other intracellular
structures such as the mitochondria and endoplasmic retic-
ulum are not included [92, 123]. The composition and bio-
genesis of MVs are less well understood. Exosome-forming
components may, interestingly, be necessary for MV pro-
duction by the molecular machinery [97, 113].

6. Neuronal Doctrine Challenged: Glial Cell
Shape Brain

Only a million years ago, the quick growth of thinking, and
thus of humanity, remained the major puzzle in our under-
standing of ourselves. The sudden advent of intelligence, and
thus an only around a million years ago, human beings
appeared. The critical question for our self-understanding
has not been solved yet. In the same way, we have no idea
how the human mind is more developed than animals.
And actual variation lies between animal and human being.
Since the turn of the twentieth century, this neuronal doc-
trine has governed current neuroscience [124, 125]; the neu-
ron is a fundamental data processing unit made up of
neurons in the brain that transfer messages unidirectionally
from receiving dendrites to the integrating cell. The axon’s
terminal branches connect the body to the axon’s terminal
branches. The substrate of our intellect is widely thought
to be a neuronal network connected by synaptic connec-
tions. The diameter and length of neuron cells increase
according to the size of the brain (mammal). Surprisingly,
the structure and physiology of neurons in humans and ani-
mals are essentially comparable, as is the quantity of neurons
in humans and animals. The number of synapses in rodents
and human brains is approximately 1100–1300 million per
mm that is more or less stable [126]. Human protoplasmic
astroglial cells, the most common glia form in grey matter,
have the following linear dimensions. They are about 2.75
times more significant, and their density is about 27 times
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higher than in a mouse brain for the same cells. Moreover,
the protoplasmic astrocytes of humans have roughly 40
major processes, with far more sophisticated branching than
mouse astrocytes (they have only 3–4 main functions) [127].
In contrast to all of these quantitative alterations, the CNS of
Homo sapiens and other primates acquired distinct forms of
astroglia, such as interlaminar astrocytes and astrocytes.
Polarized astrocytes [127, 128] are not found in the brains
of different species. Glial cells play a significant role in brain
development. Astroglia are neuronal-glial-vascular units that
compose the CNS’s well-being and provide all lines of
protection.

7. Glial Networks of Neurons (Integral Gear of
Brain Activity)

In the brain, information processing is usually drawn from
neural activity, with neurons and their dynamic signaling
pathway responsible for data transit and processing [129].
Despite this, great progress has been made in understanding
the molecular and physiological characteristics of astrocytes,
a kind of glial cell revealed to play a role in neurotransmis-
sion and neuronal function [130, 131]. Moreover, the active
astrocyte participation in synaptic transmission, usually as
neuroactive name particles released by astrocytes, describes
productive signal transduction among both astrocytes and
neurons [132]. There is a broad consensus that astrocytes
show a critical function in the case of maintaining homeo-
stasis of surrounding synapses, including crucial involve-
ment in energy metabolite supply [133, 134] and clearance
of extracellular potassium [135–137]. Furthermore, astro-
cytes that surround synapses control the extracellular space
volume, as well as the amounts and flow of neuroactive che-
micals outside the cell [138]. Aside from their homeostatic
functions, astrocytes dynamically connect with neurons
and synapses. To monitor neuronal and synaptic action,
ion channels, neurotransmitter transporters, and receptors
are engaged. These are activated. Molecular interactions
may result in complex Ca2+ signals being sent to astrocytes.
Astrocytes, for addition, can modify surrounding pre- and
postsynaptic neuronal elements, generating functional but
also morphological changes; gliotransmitters such as gluta-
mate, ATP, and D-serine are consumed or released in the
brain [139]. Synapses are the connections between neurons.
Whether astrocytes are active constituents, however,
remains to be shown in how neural networks work and
whether or not they play a role in dynamic functions in
information processing in the brain (Figure 4) [140–142].

8. Glial Cells’ Importance in
Neurological Disorders

Glial cells had originally thought to offer primarily structural
and trophic aid for neurons, gluing them together (glia
seems to be the Greek word for “sticky,” a phrase for glue)
and providing them with essential nutrients for life. Only
neurons were given the responsibility of conveying and data
processing. As a result of this idea, drama has changed [143].

8.1. Acute Insults to the CNS

8.1.1. Toxins. Astrocytes are predominantly targeted by
heavy metals, which cause substantial brain damage and
cognitive deficits. Because heavy metals (such as manganese,
Pb, Al, and Hg) are predominantly segregated into astro-
cytes by diverse mechanisms, this is the case. Plasmalemmal
carriers are a type of transporter found in plasma cells.
Heavy metals, on average, reduce astroglial transcription of
carriers of glutamate, resulting in a reduction in glutamate
discharge and neuroinflammation [144–147]. Minamata ill-
ness is the name given to methylmercury poisoning, which
was initially identified in the Japanese city of Minamata
[148]. Ocular defects, peripheral deficits, central defect, deaf-
ness, weakness, and convulsion are signs of Minamata dis-
ease. Methylmercury is mainly found in astrocytes where
glutamate and cystine uptake is inhibited [149].

8.1.2. Neurotrauma. The traumatic brain and neurological
disorders are categorized per their origin (penetrating
wounds or concussions; it is referred to medically as cervical
cord neurapraxia when it occurs in the cervical spinal cord),
and severity like it can be more harmful or less. It can influ-
ence life risk, physical disabilities, mild impairment, healing
location, and anatomical location [150]. A severe event to
the central nervous system, by its character, has complicated
pathogenesis connected mostly with direct damage to neural
cells and the whole system, including loss of the brain stem
capillaries and the BBB. Neurotrauma primarily induces an
astrogliosis response, reaching highly reliant on the patho-
genic environment [151–155]. But in the aftermath, a neuro-
trauma astroglial scar border develops, identifying and
segregating all sites of the focused lesion from the brain,
which is sound. Prevention during astrogliosis, resulting in
a distorted astroglial defect, worsens cellular injury and the
neurologic deficiency [156–161].

8.1.3. Stroke. Astrocytes assist neurons in the case of ische-
mic penumbra via several homeostatic mechanisms. Impor-
tantly, the astrocyte regulates the balance of glutamate in the
ischemic area of the brain. They also provide metabolism
resources like lactate to neurons. In the situation of ische-
mia, the neuroprotective effect is increased by lactate [162].
Glutamate inflammation, which invariably occurs after a
heart attack, is nearly entirely the responsibility of astroglial
units. The infarct size is increased when the astroglial gluta-
mate channel GLT-1 is found [163].

8.2. Epilepsy. A gradual depolarization in neurons is known
as paroxysmal depolarization shift, and it is the cellular sub-
strate of epilepsy and coincides with all cells inside an epilep-
tic focus. Ionotropic glutamate receptors were engaged to
release glutamate continuously in the multiple surrounding
neurons in epileptic focus, which are responsible for such a
depolarization. Epilepsy is linked to a large amount of reac-
tive astrogliosis and the formation of a glial scar. Reactive
astrogliosis germinates itself in the initial phases of these dis-
eases, even before the clinical presentation of seizures. In
epileptic tissue, the reactive astrocytes lose their domain
structure. Such trait has been detected in human
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postmortem samples and animal models [164]. Ionotropic
and metabotropic glutamate receptors are overexpressed in
astrocytes from epileptic tissues, while inwardly rectifying
K+ channels and aquaporins are underexpressed. Addition-
ally, epilepsy decreases glutamine synthetase and astroglial
plasma membrane glutamate transporter expression and
function, resulting in abnormal glutamate and GABA
homeostasis [137, 165–169]. Epilepsy has been linked to
changes in astrocytic intracellular and intercellular Ca2+

dynamics [170].

8.3. Alexander Disease. Alexander disease (AxD) is a neuro-
degenerative disease that is rare, chronic, and generally fatal.
It is named after William Stewart Alexander, a neuropathol-
ogist who first identified it. In pathophysiological terms,
AxD is a leukodystrophy with a distinct phenotype and a
primary hereditary astrogliopathology [171]. A significant
gain of function variation in the GFAP gene causes AxD.
This causes astrological pathology which causes significant
harm to the increasing white matter. AxD is characterized
by the development of protein aggregates known as
Rosenthal fibers around astroglial nuclei and endfeet [171].
Megalencephaly, seizures, spasticity, speech issues, and swal-
lowing are just a few examples of the severe mental and
physical difficulties that are present in type I AxD. Type II
AxD has a later onset and slightly different and less severe
clinical manifestations, such as ataxia, visual and motor dif-

ficulties, autonomic dysregulation, sleep disturbances,
hyperreflexia, and problems speaking and swallowing [172].

8.4. Neurodegenerative Disorders. As recently said, neurode-
generative infections, for example, AD, PD, and HD, are
brought about by an assortment of pathologies with an
assortment of hidden causes. Therefore, we have a restricted
handle of the beginning phases of numerous illnesses, mak-
ing it hard to recognize causes from results and hindering a
total cognizance of the essential components [173]. One of
the most important variables in increasing therapy outcomes
is early intervention. New reprogramming and culturing
approaches are fascinating tools for understanding disease
development early on. Even though diverse subtypes of neu-
rons are destroyed, they all develop distinct characteristics as
the disease progresses. Because aging is a significant risk fac-
tor for many diseases, cellular care may have a significant
impact on disease progression. Protein aggregation, protein
trafficking, and energy metabolism disturbance, as well as
oxidative stress and the production of free radicals, are all
common occurrences [165, 174]. Glial cells of the CNS,
which are in charge of metabolic, cellular, and transfer sig-
nals, play a big role in these systems. Receptive gliosis, which
is characterized as glial cell initiation and multiplication
because of injury, happens in every single neurodegenerative
ailment [175]. All glial cell types are implicated in neurode-
generative diseases, and a discussion of them would be
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Figure 4: A representation of the neuron-glia network. The (red) astrocytes interact with the neurons (gray) and influence cellular
excitability (top-left panel) and synaptic responses (bottom-right panel), affecting neural network function. On the right, the black and
red markers show neuron-glia activity.
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beyond the scope of this article [176–178]. It has been dis-
covered that in ALS, engine neurons, then again, control
the beginning of the illness, while astrocytes and microglia
are dominatingly engaged with infection movement, sug-
gesting that altering the reactions of these phone types could
bring about significant advantages for patients [179–181].

8.5. The Interaction of Neurons and Glia in Alzheimer’s
Disease. The majority of neurodegenerative diseases are clas-
sified as “proteinopathies,” or toxic protein clumps
[182–184]. Protein aggregation most commonly happens
in synapses, resulting in synaptic dysfunction [185]. Aside
from proteinopathies and neuron degeneration, new
research suggests that glial cells are active actors in neurode-
generative illnesses. Microglia and astrocytes are part of the
network that helps the brain connect by deleting superfluous
synapses [186]. Glial-based synapse elimination is reduced
with age and disease. Increased complement cascade activa-
tion generates extra chemical disposition in the synapse,
which disrupts the clearance process, especially in neurode-
generative conditions. Several animal models of dementia
and human investigations have shown that elevated levels
of C3 and C1q (components of the complement cascade)
contribute to synapse loss. In AD, glutamate excitotoxicity
leads to synaptic weakening due to glutaminergic signaling
abnormalities [4, 187, 188]. In amyloidopathy AD models
with activated microglia-mediated synaptic engulfment,
C1q knockout aged mice lacking C1q-protected synaptophy-
sin loss in the hippocampus were studied [189]. The buildup
of A peptide at synaptic locations in the AD brain occurs
long before the extracellular plaque aggregation that causes
synaptic structural abnormalities [185, 190]. Astrocytes can

change their shape and function in response to a diseased
situation, which is known as astrogliosis [191]. According
to De Strooper and Karran, astrogliosis is characterized by
hypertrophy, multiplication, and overexpression of the glial
fibrillary acidic protein (GFAP) [192]. Under pathological
situations, astrocytes fail to perform their natural functions,
such as maintaining K+ and glutamate balance, resulting in
neuron depolarization (i.e., elevated Ca2+) [191]. Glutamate
uptake by astrocytes is required for neuronal cell protection;
abnormal glutamate uptake causes neuronal cell injury
[193]. Several investigations have suggested that amyloid pro-
tein buildup triggers astrogliosis; nevertheless, activated astro-
cytes produce an A42-immunopositive substance that changes
in concentration across the cerebral cortex in AD brains
depending on the severity of the disease. Although the precise
method by which A42material collects inside active astrocytes
is unknown, it is thought to be owing to either phagocytosis or
endocytosis [194–199] (Figures 5 and 6).

Reactive astrogliosis can produce inflammatory molecular
mediators that cause persistent inflammation, which is related
to the development of AD [200]. Inflammatory cytokines
released by microglia and astrocytes stimulate the release of
secretase-1, a critical enzyme in the synthesis of amyloid pro-
tein; they also affect phagocytic activity, which is responsible
for amyloid protein breakdown and clearance. Aside from
the modification in the synthesis of neurotrophic mediators,
another function of cytokines is the suppression of LTP, a cru-
cial chemical for memory in the hippocampus; both processes
will result in cognitive symptoms of AD [201]. The buildup of
A causes upregulation of NF-κB, which drives astrocytes to
produce C3. Dendritic shape and network dysfunction are
altered when C3 binds to the c3aR receptor (Figure 6) [192].
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8.6. Multiple Sclerosis, Inflammation, and Injury. Multiple
sclerosis (MS) is a CNS inflammatory disease with an
unknown etiology that may include metabolic, genetic, and
immunological factors [202]. This is one of the most preva-
lent CNS inflammatory disorders, and it is thought to be
caused by an autoimmune reaction directed targeting myelin
[203]. An abatement in oligodendrocyte number is found in
a relationship with the collection of provocative cells and
responsive glial cells. In creature models of MS, microglial
initiation is seen before infection starts, and it is expected
to assume a part in tweaking the provocative reaction
[204]. Astrocytes have a significant influence on the provoc-
ative cycles in the CNS by enacting microglia, drawing leu-
kocytes from the outskirts, altering BBB porousness, and
emitting chemokines. Astrocytes assume a part in MS
improvement and other CNS fiery cycles. Oligodendrocytes
are powerless against irritation-initiated injury brought
about by supportive incendiary synthetic compounds and
nitric oxide (NO) foster anomalies and pass on during these
cycles. NG2(+) OPCs might make up for the deficiency of
oligodendrocytes and remyelinate axons in the beginning
phases of MS, as indicated by mice models [205]. Be that
as it may, NG2(+) cells are very powerless against aggrava-
tion instigated harm, and their numbers decay extensively
as MS advances [206].

9. Neuro-Glial Coagulonome in Diseases of
Peripheral Nervous System

In the PNS, Schwann cells discharge an enormous number of
proteins that are all in all known as the secretome. Neurotrophic
factors and extracellular matrix proteins are among the proteins
produced in response to various brain impulses [207].

9.1. Peripheral Nerve Injury. Many studies show that coagu-
lation factors, particularly the thrombin pathway, have a role
in Schwann cell-mediated reanimation and axonal activity.
The thrombin inhibitor protease nexin 1 (PN1) is secreted
in the media of Schwann cells, which was discovered in the
early 1990s [208]. In the peripheral nerve crush model,
thrombin and prothrombin levels are elevated. Following
the injury, this improvement is associated with PN1. The
Schwann cells were shown to be the producer of this PN1
[209]. The participation of coagulation is indicated by a sub-
stantial elevation of factor V levels in Schwann cells follow-
ing damage [210].

The activation of protease-activated receptor 1 (PAR1)
could have beneficial or harmful consequences on nerve
regeneration transmission. As previously stated, increasing
the thrombin levels in node of Ranvier (NOR) results in a
conduction block [211]. In reaction to a sciatic nerve crush
injury, thrombin levels increase [212, 213]. High amounts
of this substance have been related to a negative impact on
nerve function. Small quantities of thrombin produce APC
(activated protein C), which can stimulate PAR1 when
linked in its receptor, EPCR (endothelial protein C receptor)
[214]. This stimulation has a therapeutic effect on the brain
[215, 216]. PAR1 stimulation boosts cultured Schwann cells’
neuroprotective and neurotrophic abilities [217]. Surpris-
ingly, the EPCR pathway activates PAR1, which reduces
thrombin in vascular permeability while boosting the pro-
tective characteristics of BBB endothelial cells. Activation
of sphingosine-phosphate mediates these effects [218]. The
action of sphingosine-phosphate channel stimulator fingoli-
mod on Schwann cells also supports positive PAR1 channel
activation. Fingolimod, a drug used to treat MS, encourages
the synthesis of proteins that stimulate neurite growth in

Nonreactive
astrocyte

Reactive astrogliosis release
inflammatory mediators

Phagocytosis of beta
amyloid trigger astroliosis

Finally, increased neuronal
degeneration as a result of astrogliosis

Sustained inflammatory process
elevate levels of beta amyloid

Alzheimer
disease

Proinflammatory
cytokine release

Reactive
astrocyte

Figure 6: Representation of astrogliosis causing for neurodegeneration.
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Schwann cells, resulting in a “regenerative phenotype” [219].
Thrombin levels rose in the first hour after damage and then
returned to normal state later a week. After four days of
injury, the levels of EPCR were high, notably distal for
injury. EPCR has also been identified in the NOR’s Schwann
microvilli. The PAR1 activity for the therapeutic impact is
supported by the discovery of greater EPCR levels distal to
the damaged location, where Schwann cells develop quickly
[212]. It has also been investigated how active thrombin is
produced at wounded nerve locations. TF (tissue factor)
and Xa are two crucial participants in the thrombin produc-
tion system in the blood coagulation pathway. Factor X is
split by TF/factor VIIa complex to produce the factor Xa,
which stimulates prothrombin to active thrombin. Data
indicating that medication of apixaban which is a specific
factor of Xa inhibitor progress the function of motor follow-
ing damage adds to the clinical concern [220].

9.2. Guillain-Barre Syndrome. Inflammatory neuropathies
are a set of disorders in which axons, myelin, or both are
damaged. Because an inflammatory response influences the
NG-coagulonome and can alter Schwann-axon function, it
is critical to assess its position in diseases like these. The
acute inflammatory neuropathies are referred to as GBS,
but inflammation of polyneuropathy is common [221].
GBS patient needs mechanical ventilation in 25% of cases,
and also, patient cannot be able to walk in 20% of cases after
six months, and death occurs in 3-7 percent of cases. The
typical mouse model for GBS is the autoimmune animal
model, which shows nerve conduction velocity reduction
and NOR structure degeneration. These functional and
structural changes are associated with increases in thrombin
phases in the sciatic nerve and a decrease in nodal PAR1
stages. The animal flow velocity and NOR structure are bal-
anced when given thrombin inhibitors [222].

9.3. Chronic Inflammatory Demyelinating
Polyradiculoneuropathy. CIDP (chronic inflammatory
demyelinating polyradiculoneuropathy) is a peripheral ner-
vous system (PNS) demyelinating illness that affects gradual
loss of motor and sensory abilities [223]. With the exception
that it is chronic and has relapsed, CIDP has a clinical course
similar to GBS. The onset is gradual, and it disproportion-
ately affects people of a given age range [224, 225]. The resis-
tant framework assaults and obliterates the myelin sheath of
the PNS, causing demyelination and axonal degeneration in
fragments [226]. Histological outcomes from the CIDP show
a meager myelin sheath with more limited internodes, com-
monly referred to as onion bulbs. The slow nerve conduction
rate, which indicates conduction block, indicates demyelin-
ation [226]. Autoimmunity to neurofascin-155 (NF155)
and contactin-1 (CNTN1) has recently been discovered in
a large number of patients [227, 228]. NF155 is a glial
paranode-expressed adhesion molecule that binds to
CNTN1, a key axonal adhesion molecule [229]. CIDP symp-
toms appear gradually but steadily, with neurological
impairments peaking after 8 weeks of disease initiation
[223]. There are a number of signs and symptoms, such as
tingling and numbness in the extremities, symmetrical slug-

gishness and paresthesia in the arms and legs, fatigue, ataxia,
and limb incoordination [226]. Therapy with oral glucocor-
ticoids usually results in a positive outcome. Plasmapheresis
and intravenous immunoglobulin (IVIG) are also successful
treatments [194, 223, 230–236].

9.4. Neuropathy Caused by Anti-Myelin-Associated
Glycoprotein. IgM monoclonal gammopathy against MAG
in fringe nerves causes myelin-associated glycoprotein
(MAG) neuropathy [237]. MAG is a sort I transmembrane
glycoprotein present in the periaxonal SC and oligodendrog-
lial layers of myelin sheaths, where it keeps in touch and
axonal capacity [238]. At the point when MAG is lost, the
integrity of the myelin sheath and axonal capacity are
impaired. MAG has a carb epitope with other glycoconju-
gates that go about as significant antigenic destinations for
IgM paraproteins [237]. Chickens are administered with
serum that contains IgM antagonistic to MAG paraproteins,
which results in segmental demyelination and conduction
obstruction [239]. Increasing mild to severe distal muscular
weakness and growing sensory ataxia and frequent tremors
are all symptoms of the condition. The clinical course is usu-
ally uneventful, with only minor functional decline over
time. Supportive therapy, such as exercise and balance train-
ing, is employed because anti-MAG neuropathy symptoms
are typically mild and initially do not interfere with the
patient’s daily activities. Medication should be used to
address sensorimotor weakness. Only in extreme cases are
steroids, intravenous immunoglobulin, and plasmapheresis
used. Rituximab, a monoclonal antibody that targets the
CD20 antigen on the cell surface, is efficacious [240].

9.5. Nerve Pathology. Demyelination caused by macrophages
is the first lesion, followed by Schwann cell growth and
remyelination. Furthermore, there is a varying degree of
axonal degeneration, which can become severe with time
but is rarely the main feature. The motor axons’ ventral
roots and terminal portions are the first to be impacted.
Many nerve trunks have demyelination that runs the length
of them. Dispersed lesions with various degrees of demyelin-
ation and remyelination, as well as axonal degeneration,
result from the pattern of evolution and distribution of
lesions across the peripheral nervous system [241].

9.6. Vasculitic Neuropathy. PNS vasculitis can occur as a
component of a larger systemic vasculitis or as a separate ill-
ness (nonsystemic vasculitic neuropathy) [242–245].
Primary systemic vasculitis [246] includes Takayasu syn-
drome, thromboangiitis obliterans, Kawasaki disease,
Churg-Strauss syndrome, Wegener granulomatosis, cryoglo-
bulinemic vasculitis, Behçet’s disease, giant cell arteritis, clas-
sical panarteritis nodosa, microscopic polyangiitis, and
Henoch-Schönlein. Vasculitis of the peripheral nervous sys-
tem can take the form of a single mononeuropathy, overlap-
ping mononeuropathies, or symmetric polyneuropathies
that are far apart. Peripheral neuropathy is an important
clinical feature of vasculitis, and it is often the first symptom
[247–251]. The expression “mononeuritis multiplex” has
been authored to depict the most common and trademark
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kind of vasculitic neuropathy. It alludes to the imbalanced
successive contribution of explicit nerves or trunks from dis-
tal to proximal [252, 253]. Neuropathy is habitually unex-
pected, with torment in the influenced nerve’s field,
showing that both engine and tactile modalities are involved.
Fleeting and Takayasu arteritis are the two sorts of monster
cell arteritis, albeit just transient arteritis causes fringe neu-
ropathy. Patients might foster a few mononeuropathies,
radiculopathies, plexopathies, or a wide tangible fringe neu-
ropathy [254].

10. In Central Nervous System Diseases, the
Neuro-Glia Coagulonome

A growing body of literature indicates that thrombin and its
related route play a significant function in CNS physiology.
Some thrombin’s features are moderated by glia cells inside
the CNS, just because they are in the PNS. The thrombin
pathway has an effect on a variety of cellular processes,
which can be beneficial or detrimental depending on dosage,
receptor activation technique, and downstream indicating.
Extrinsic sources of thrombin include inflammation events
and blood-brain barrier disruption, while intrinsic sources
include glial cells. The impact of thrombin on brain activity
is profound, regardless of source. As previously stated, the
PAR1 pathway is involved in myelin modulation and is
required for nerve function [255, 256]. In PAR1 mutant
mice, the direct placement of myelin proteins throughout
the spinal cord was shown to be dysregulated. An in vitro
study found that an oligodendroglia cell lacking PAR1 had
higher levels of proteolipid protein and simple myelin pro-
tein, confirming the impact on myelin regulation [255].
The stimulation of PAR1 by thrombin causes a rise in cytosol
calcium and mitogen-triggered protein kinases in cultivated
microglia [257]. The generation of tumor necrosis factor
and nitric oxide is responsible for this [258]. Thrombin acti-
vates PAR1 in astrocytes, causing structural and physiologi-
cal alterations resulting in extended retract and astrogliosis
[259]. As previously stated, the NG-coagulonome affects
neuronal electrical activities and nerve function in physiol-
ogy, implying that it may play a role in CNS disorders. Min-
imal thrombin values were discovered to have protective
effects inside the CNS in the last decades, giving rise to
thrombin preconditioning. Before ischemia, a trim level of
thrombin administered directly to a rat caudate nucleus
decreased ischemia injury and brain edema [260]. The dual
impact of thrombin presents where the good and detrimental
impacts meet at what concentration [261].

10.1. Epilepsy. The widespread incidence of brain damage
and seizures has prompted scientists to wonder about the
mechanism that links the two. Injecting thrombin directly
into the brains of rats triggered motor seizures, according
to a major study [262]. This was the first of many investiga-
tions exploring the complex relationship between thrombin,
trauma, and epileptic activity. In the context of brain
traumas and overly high levels of protein, the dangers of
thrombin in the CNS have been investigated. The PAR1
pathway is implicated in epileptic activity in mice with either

too much or too little PN1, indicating that the PAR1 path-
way is involved [263]. Thrombin impacts neuronal plasticity
in a dose-dependent manner, similar to how it affects the
PNS. Low amounts activate the aPC, but high levels cause
a gradual, LTP that is NMDA-dependent [264]. PAR1 is
involved in both impacts. PAR1 and aPC promote LTP in
hippocampal slices in the presence of a brief tetanic stimula-
tion via a mechanism involving sphingosine-phosphate
receptor 1 [265]. Thrombin changes the electrophysiological
of mouse hippocampus brain slices via activating PAR1. It
induces a decrease in the epileptic threshold in CA3 neurons
as well as an increase in the responsiveness of CA1 neurons
to afferent stimuli (which is inhibited by NMDA receptor
antagonist) [266]. On the one hand, these two well-known
thrombin adverse effects are associated with memory and
learning impairments and, on the other, hyperexcitability
and increased seizure susceptibility. Thrombin generates
more spontaneous activity potentials in CA3 neurons, which
is associated with higher PAR1 expression in CA3 neurons,
according to whole-cell patch monitoring of pyramidal neu-
rons in the hippocampus [267]. Seizures are triggered by a
positive feedback loop of depolarization in a PAR1-
dependent manner, a rupture of the blood-brain barrier,
and the entry of more thrombin, according to this discovery
[268]. Epileptic seizures, status epilepticus, and brain dam-
age can all be caused by paraoxon and other organophos-
phates. The brains of paraoxon-treated mice contain high
levels of thrombin, PAR1, and pERK, as well as enhanced
electrical impulses in the CA1 and CA3 neurons of the hip-
pocampal. A PAR1 antagonist is used to minimize excessive
electrical activity [269–275]. These findings suggest that
thrombin is implicated in an epileptic activity that is not
triggered by trauma, raising new issues concerning the ori-
gins of thrombin in the CNS [276]. Epilepsy models with
observed neuron-glia interactions are as follows [13]:

Genetic: AP- (activator protein-) 1 KO, SCN1A KO, and
DBA/2 KO; Lafora disease: Malin KO, Epm2a, and Epm2b

Pharmacological: pentylenetetrazol (PTZ), pilocarpine
(PA), and kainic acid (KA)

Environmental: electrical stimulation and brain injury
∗To study epilepsy, pharmacological models are com-

monly and widely used.

10.2. Traumatic Neuronal Damage (TBI). The term “trau-
matic brain injury” (TBI) covers a wide range of conditions
in which the brain has been subjected to external force.
Although it can cause headaches and short- and long-term
cognitive impairment, mild traumatic brain injury (mTBI),
which is defined as a Glasgow Coma Scale of 13 to 15 follow-
ing a head injury, is relatively harmless. TBI damages the
blood-brain barrier either microscopically or macroscopi-
cally; it may allow plasma proteins like thrombin to touch
brain tissue, as well as the synthesis and release of endoge-
nous brain proteases. TBI animal models come in a range
of shapes and sizes, each indicating a different sort of injury
mechanism. Among these are fluid percussion injuries, free
weight drop devices, and piercing mechanisms. After spinal
cord damage, better motor outcomes, less astrogliosis, and
lower levels of proinflammatory cytokines like interleukin-
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1 and interleukin-6 are all observed in PAR1 deletion rats. In
vitro, thrombin stimulates the production of inflammatory
cytokines by astrocytes, while astrocytes exposed to
interleukin-6 upregulate PAR1 and thrombin, creating a
feedback loop [277, 278]. Thrombin was thought to play a
function in the development of hyperalgesia in rats after spi-
nal cord injury. Fibrin levels rise one day after nerve root
compression as an indirect indicator of thrombin activity.
To prevent hyperalgesia, the mice were administered hiru-
din, a thrombin inhibitor, or PAR1 antagonists. Further-
more, even when there was no prior trauma, intrathecal
thrombin injection generated hyperalgesia, which could be
avoided by inhibiting spinal PAR1 before thrombin injection
[279]. These two spinal cord investigations show the impor-
tance of the thrombin-PAR1 pathway in a variety of inflam-
matory processes and their clinical consequences following
CNS damage, albeit they do not explain thrombin’s origin.
Amnesia following a mild traumatic brain injury (mTBI) is
a common event that has been explored in an animal model
induced by free weight loss, which is equivalent to the defi-
nition of mild TBI. According to behavioral and memory
tests, brain thrombin levels rise after mTBI, and the animals
become amnestic. Amnesia is caused in the same way by
intraventricular injections of thrombin or a PAR1 agonist.
PAR1 antagonists prevent this amnestic effect, indicating
that the PAR1 pathway is implicated in the formation of
amnesia after mTBI [279].

The stabilization of thrombin activity levels in the hippo-
campus marks the end of trauma-induced amnesia, accord-
ing to a second study employing the same animal model. In
the context of brain trauma, this shows a link between cog-
nitive abnormalities and brain thrombin levels [280]. It is
tempting to believe that the presence of thrombin in the
CNS after an injury is due to plasma leakage caused by a
blood-brain barrier rupture. Researchers looked at the kinet-
ics of thrombin activity after damage to figure out where it
comes from. In the mTBI model, two thrombin peaks were
measured. The elevation was measured immediately after
the insult and then adjusted an hour later. A breach of the
blood-brain barrier is most likely to blame for this increase.
The second peak occurred 72 hours later, followed by an
increase in PAR1 and, more intriguingly, an increase in the
thrombin inhibitor PN1. This late rise is very certainly due
to inflammation mediated by astrocytes [281–284]. Injecting
thrombin into the brain ventricle enhances seizure suscepti-
bility 72 hours after the insult, according to the same study,
when compared to animals who did not receive thrombin
but did not suffer mTBI. After mTBI, an increase in PAR1
was assumed to be the reason for sensitivity [276].

10.3. Ischemic Injury. Thrombosis, embolism, or systemic
hypoperfusion can all induce ischemic stroke. When global
ischemia was induced in rats [285], prothrombin mRNA
levels increased, while PN1 and PAR1 levels remained
unchanged. This calls into question the role of thrombin in
ischemic injury. When a brief carotid artery blockage causes
in vivo ischemia, it increases prothrombin and factor X
mRNA levels in the ischemic core as well as thrombin activ-
ity across the ischemic hemisphere, including the peri-

infract areas [286]. Synaptic responses in hippocampal slices
exposed to thrombin concentrations equivalent to those
found in the ischemic hemisphere are changed [286]. A con-
siderable increase in brain thrombin level over time was seen
(up to 24 hours after ischemia) in an irreversible ischemic
animal model, followed by a decline in PAR1 activity in
the ischemic core [287]. A factor Xa inhibitor (apixaban)
taken systemically reduces brain thrombin levels and dimin-
ishes infract size shortly after ischemia induction [288].
PAR1 knockout mice have less brain edema and neuronal
damage, as well as fewer behavioral problems than wild-
type mice [289]. In mouse mind cuts, in vitro ischemia
brought about by intense oxygen and glucose hardship
increments hippocampal thrombin presence and action
while diminishing prothrombin mRNA. During oxygen
and glucose hardship, in vitro accounts from CA1 neurons
in the hippocampus demonstrated the development of ische-
mia LTP, which communicates the useful harm brought
about by thrombin increment. Ischemic LTP is intervened
by thrombin through PAR1 and is repressed when either
thrombin or PAR1 is restrained. The NG-coagulonome
may be a therapeutic target for ischemic stroke, according
to these studies [290].

10.4. Neoplasms. In the United States, primary brain neo-
plasms occur at a rate of 29.9 per 100,000 people [291]. Glio-
blastoma (GBM) is a type of glial tumor that accounts for
15% of all primary CNS cancers. It is cancer that is quite
aggressive, with a 10- to 12-month median overall survival
rate [292, 293]. Current therapies for tumors in conveniently
accessible locations include complete excision [294]. Adju-
vant treatment with radiation and the alkylating medication
temozolomide [295] is essential due to the tumor’s infiltra-
tive nature. Despite this combined strategy, these drugs sel-
dom extend median survival time by more than a few
months and are severely damaging to patients. GBM pro-
cesses necessitate more precise treatments. Thrombin has
been associated with the formation of GBM [296–298],
and PAR1 expression in glioma cells has been identified. In
culture, glioma cells synthesize and secrete active thrombin,
which promotes proliferation and is inhibited by dabigatran,
a thrombin-specific inhibitor [299]. In PAR1 knockout mice,
GBM edema volume and glioma development indicators
(vascular endothelial growth factor and hypoxia-inducible
factor 1) are reduced [297]. The PAR1 gene (F2R) is also
in the top 2% of overexpressed genes in GBM patients,
according to differential analysis of its expression in human
GBM patients [300]. In human GBM patients [301],
increased PAR1 levels exhibit a positive correlation with
TF expression and a negative correlation with tumor sup-
pressor factors, implying that this pathway is involved in
GBM pathogenesis. In a rat GBM model, thrombin activity
is increased in vivo and is linked to brain edema volume.
The rise in PAR1 is only seen in the tumor and does not
affect the surrounding tissues [302]. SIXAC, a PAR1 proteo-
lytic activation inhibitor that is selective and irreversible,
inhibits glioma cell proliferation, invasive, and colony for-
mation in vitro. SIXAC was demonstrated to minimize cere-
bral edema and extend survival in a rat GBM model when
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administered directly to the tumor bed [300]. For this incur-
able condition, the NG-coagulonome has been proposed as a
therapeutic target.

11. ASD and ADHD

There is presently no effective treatment for ASD as it is a
neurological illness that affects 1% of the population. In
ASD, there is a large gender gap, with boys having a rate that
is 4.3 times higher than girls [303]. For the vast majority of
persons who are impacted by ASD, the cause is unclear.
Social and communication difficulties, repetitive behaviors,
and excessive interests are all characteristics of ASD
(Table 1). Autism is linked to both inherited and environ-
mental factors, according to a previous study. One of the
environmental elements connected to maternal immunolog-
ical activation is linked to ASD. Maternal viral infection,
exposure to toxins, and obesity have all been linked to
inflammatory and immunological system failure, which
may increase the likelihood of behavioral issues in offspring
[304–306]. Mothers of children with ASD, for example, have
an increased chance of allergies and autoimmune illnesses
than mothers of children who are developing typically
[307]. IFN-α, IL-α4, and IL-α5 levels were shown to be
greater in the midgestation serum of women expecting a
child with ASD. Neuron-glia interactions are also executed
in ADHD models (Table 2).

12. Metabolic Interaction between Neuron and
Glia: The Significance of Glia-
Secreted Metabolites

Glial cells provide the majority of the energy that neurons
require. For brain function, the bioenergetic connection
between neurons and glial cells is essential. The metabolic
coupling of neurons and glia is a multistep process involving
a variety of enzymes that convert biomolecules, transporters
that transfer substances between the two cells, and cell sur-
face receptors. To carry out their jobs and preserve mito-
chondrial integrity and membrane potential, neurons
require a lot of ATP. Endothelial cells, neurons, and glia
make up the neurovascular unit, which controls the delivery
of nutrients and energy supplies to neurons. Endothelial
cells have receptors for a wide range of metabolic substrates,
including glucose transporters 1 (GLUT1), monocarboxylate
transporters for ketone bodies (MCT1 and 2), and fatty acid
transporters (CD36,) [318, 319]. Endothelial cells have
transporters that operate as a gatekeeper for nutrients enter-
ing the brain in a concentration-dependent manner. Inter-
cellular contact between astrocytes and endothelial cells is
essential for nutrient delivery to the brain. It was recently
discovered that NO produced by endothelial cells boosts
astrocyte glycolytic activity [320]. Endothelial cells that
come into close contact with astrocyte end foot and there-
fore become active components of the neurovascular unit
prevent neurons from oxidative destruction, create glio-
transmitters, and give energy substrates for neurons. The
astrocytic-neuron lactate shuttle (ANLS), which focuses on
astrocytic responses to neuronal metabolic supports, illus-

trates the role of neuron-glial connections in preserving
brain homeostasis [321]. In addition to astrocytes, recent
studies have revealed the importance of oligodendrocytes
in the metabolic maintenance of neurons, particularly the
axonal regions of neurons. Both astrocytes and oligodendro-
cytes exhibit neuronal activity, which is detected by the
extracellular glutamate that neurons release. Through
GLUT1, glutamate binding to the appropriate receptors on
both cell types facilitates glucose absorption. Inside the cells,
glucose is transformed into either lactate by glycolysis or
pyruvate for oxidative phosphorylation by the mitochondria.
Glycogen, which is intracellular glucose that has been stored,
can also be used by astrocytes to generate energy. Lactate is
produced by oligodendrocytes and astrocytes and can either
be actively transported to neurons by MCT transporters or
converted to pyruvate for fatty acid or ATP generation. In
order to prevent neuronal excitotoxicity, astrocytes also play
a crucial role in glutamate synaptic clearance. Inside astro-
cytes, glutamine synthase transforms glutamate into gluta-
mine, which is subsequently transferred to neurons to
produce glutamate. Glutamate, glutamine, and tricarboxylic
acid (TCA) cycle metabolism are closely related in neurons,
astrocytes, and oligodendrocytes [321, 322]. Krebs cycle and
citric acid cycle are other names for the TCA cycle. It is the
most crucial metabolic pathway for the body’s energy
source. TCA is the most significant central metabolic route,
connecting nearly all of the individual metabolic pathways.
Since neurons can generate ATP from a variety of substrates
depending on different circumstances, such as fasting or
hyperactivity, glial cell metabolites are essential for main-
taining neuronal energy requirements. Among the energy
substrates, lactate is currently acknowledged as the predom-
inant source of ATP synthesis during hyperactivity [323].
Since MCT2 reduction in the rat hippocampus led to mem-
ory impairment, lactate—which is mostly generated by
astrocytes and oligodendrocytes—is known to have a func-
tion in memory formation. Injections of glucose did not
improve the memory deficits, showing the relevance of
glial-derived lactate in memory processing [324]. During
hyperactivity, astrocytes use a variety of strategies to regulate
neuronal metabolism, in addition to supplying lactate. Reac-
tive oxygen species, which are generated during times of
information processing, cause the phospholipids that make
up cell membranes’ fatty acid content to peroxide. Peroxi-
dized fatty acids generated during vigorous neuronal activity
may contribute to neurodegeneration because neurons’
mitochondrial capability to utilise fatty acids for ATP pro-
duction is constrained and they are unable to make lipid
droplets. Recent research has demonstrated that astrocytes
absorb peroxided fatty acids via lipoprotein particles and
produce ATP by oxidizing fatty acids to protect neurons
during times of hyperactivity. Increased reactive oxygen spe-
cies (ROS) formation is countered by higher detoxifying
gene expression. Additionally, enhanced inhibitory inter-
neuron activity, which regulates excitotoxicity, is upregu-
lated in response to glutamate released from overactive
neurons by astrocytic ATP [325]. During neuronal excita-
tion, astrocytes regulate cholesterol and fatty acid produc-
tion to maintain synapse integrity and transmission. In
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hippocampal astrocytes, sterol regulatory element binding
proteins (SREBPs) are highly expressed, govern cholesterol
production in astrocytes. SREBP cleavage-activating protein
(SCAP) deletion in astrocytes reduced cholesterol and phos-
pholipid secretion. In SCAP mutant mice, immature synap-
ses increased while presynaptic proteins decreased,
inadequate short- and long-term hippocampal synaptic plas-
ticity as a result [326]. These results demonstrate that astro-
cytic control of neuronal activity is mostly mediated by
cholesterol and fatty acid metabolism [24].

13. Concluding Remarks and Future Directions

The release of trophic factors and immunomodulatory sub-
stances by cellular replacement therapy is a defining
moment in neuroscience, with a promising future in replac-
ing lost cells and fostering a neuronal survival environment.
Progress has been achieved in producing human iPSC lines
from a variety of CNS illnesses since the discovery of iPSCs.
In a recent study, iPSC-derived NPCs from a PD patient
were transplanted into a monkey model, bringing iPSC
research to the preclinical stage. Krencik and coworkers
revealed a groundbreaking approach for generating astro-
cytes from iPSCs that showed functional features of gluta-
mate absorption, synaptogenesis, and calcium wave
propagation, as well as astrocyte lineage markers. This
approach can now be used to generate glial cells from sick
iPSC lines, laying the groundwork for future glial therapies.
Other neurological disorders, such as depression, stroke,
ischemia, spinal cord injury, autism, schizophrenia, and
others, are being studied for glial involvement. Glial cells
are a potentially attractive therapeutic target for cell replace-
ment therapies due to ongoing efforts to recognize glial con-
tributions to illnesses and efforts to replace them. Much
about the communication between neurons and glia is still
uncertain. For example, a wide controversy rages about
how many of the many chemicals released by glia in

response to physiological stimuli come from the release of
adenosine triphosphate (ATP); other chemical messengers
include glutamate and glutamine. Glial Ca2+ responses are
generated by a diverse set of chemical messengers via a vari-
ety of pathways and hence could be linked to neuron-glial
and glial-glial communication. Because Ca2+ is ubiquitous
as a second messenger, it is even more difficult to distinguish
direct from indirect effects. We know far too little about the
vast range of glia variety. It is hard to discover the processes
of interaction and communication between neurons and
glial cells at this early period of research because of the
numerous distinctions that are expected to exist between
these cells. A prominent example of this phenomenon is the
similarities and contrasts between cell culture and in situ
neuron-glial communication. Information currently is not
sufficient to reflect the full complexity of the events. Future
studies on glial variety and cell-cell communication processes
will lead to an improved understanding of the roles played by
nonneuronal cells in neural processing. The neural connec-
tions glial cells make with neurons in several neurodevelop-
mental diseases were highlighted in our review. Autism,
ADHD, and epilepsy are each characterized by some mecha-
nisms that are present in ASD, ADHD, and epilepsy, such as
neuroinflammation, imbalance of excitation and inhibition,
and neurotransmitters. Complementary approaches using
patients and animal models indicate that there is an increase
in cytokines in the brain in neurodevelopmental disorders.
Neurotransmitter alteration can potentially result in a neuro-
transmitter imbalance. An imbalance in neurotransmitter
concentrations could be caused by changes in receptor and
transporter expression levels, changes in released gliotransmit-
ters, or a malfunction in uptake.

Abbreviations

CNS: Central nervous system
AD: Alzheimer’s disease

Table 1: Neuron-glia interactions are executed in ASD models.

Serial
no.

ASD Model of ASD References

1. Genetic
PTEN mutant, MeCP2 mutant, TSC1 HT, BTBR, Scn1a HT, Shank2 KO, Shank3 KO,
NLGN3R451C KI, TSC1 HT, NLXN1 KO, BTBR, MeCP2 mutant, and Scn1a HT

[308, 309].

2. Pharmacological VPA (valproic acid) [310]

3. Environmental
MIA (maternal immune activation), methyl mercury, and polyinosinic: polycytidylic

acid (poly I: C)
[307,

311–314].

Table 2: Neuron-glia interactions are executed in ADHD models.

Serial
no.

ADHD Model of ADHD References

1. Genetic
nAChR (nicotinic acetylcholine receptor) β2-KO, DAT (dopamine transporter) mutant, NK1R-KO,

SNAP25 mutant, Cdk5 KO, Git1 KO, and DAT (dopamine transporter) mutant
[315]

2. Pharmacological Ethanol, methyl azoxy methanol [316, 317].

3. Environmental
Neonatal X-rays, hypoxia, heavy metal exposure (cadmium, lead), and oncogenic environmental
exposure (polychlorinated biphenyl (PCB)) are all factors that might cause cancer in children

[315]
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HD: Huntington’s disease
PD: Parkinson’s disease
MS: Multiple sclerosis
ALS: Amyotrophic lateral sclerosis
SMA: Spinal muscular atrophy
BBB: Blood-brain barrier
NGF: Nerve growth factor
ECSs: Endocannabinoids
DSE: Depolarization-induced suppression of excitation
LTD: Long-term depression
CB1R: Cannabinoid receptor type 1
AC: Adenylyl cyclase
mGluR: Metabotropic glutamate receptors
ACh: Acetylcholine
LC: Locus coeruleus
GPCRs: G-protein-coupled receptors
AMPA: α-Amino-3-hydroxy-5-methyl-4-isoxazolepro-

pionic acid
NMDA: N-Methyl-D-aspartate
OPCs: Oligodendrocyte antecedent cells
SCI: Spinal cord injury
ATP: Adenosine triphosphate
AxD: Alexander disease
GFAP: Glial fibrillary acidic protein
PNS: Peripheral nervous system
PN1: Protease nexin 1
NOR: Node of Ranvier
EPCR: Endothelial protein C receptor
CIDP: Chronic inflammatory demyelinating

polyradiculoneuropathy
MAG: Myelin-associated glycoprotein
TBI: Traumatic brain injury
NLGN: Neuroligin
NLXN: Neurexin
TSC: Tuberous sclerosis
MeCP2: Methyl CpG binding protein 2
Scn1: Sodium channel protein type 1
PTEN: Phosphatase and tensin homolog
NK1: Neurokinin
SNAP: Synaptosome-associated protein
ASD: Autism spectrum disorder
ADHD: Attention-deficit/hyperactivity disorder
GJ: Gap junctions
HC: Hemichannels
AJ: Adherens junctions
TJ: Tight junctions
BDNF: Brain-derived neurotrophic factor
GDNF: Glial cell-derived neurotrophic factor
BDNF 1: Brain-derived neurotrophic factor 1
GDNF 1: Glial cell-derived neurotrophic factor 1
IL1: Interleukin-1
IL12: Interleukin-12
TNFα: Tumor necrosis factor α
MCP-1: Monocyte chemotactic protein-1
GABA: Gamma-aminobutyric acid.
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