

Fuel Stock Tracking System

Submitted By

Swarna Rani Das

(201-35-548)

Department of Software Engineering

Supervised By

Md. Monirul Islam

Assistant Professor

Department of Software Engineering

A thesis submitted in partial fulfillment of the requirement for the degree of

Bachelor of Science in Software Engineering

Fall 2023

©All right reserved by Daffodil International University

i © Daffodil International University

APPROVAL

ii © Daffodil International University

DECLARATION

iii © Daffodil International University

ACKNOWLEDGEMENT

My work on this project was intense. But without the kind support of many people, it would not be feasible.

Maybe I should say how much I value each of them and I appreciate the help I received from Daffodil

International University and the continuous supervision of Mr. Md. Monirul Islam, Assistant Professor,

Daffodil International University's Department of Software Engineering, who provided me with the

necessary material to grasp the concept and helped me complete my tasks. I would like to thank all of our

DIU members and my parents for their cooperation and kind support in getting me through this project.

 iv © Daffodil International University

ABSTRACT

The "Fuel Stock Tracking System" is a cutting-edge solution designed to revolutionize fuel monitoring

across industries. Leveraging Node.js, Next.js, React.js, and MongoDB, this system enables real-time

tracking and analysis of fuel consumption. It aims to promote responsible usage, optimize fuel efficiency,

and reduce costs by implementing personalized insights and seamless integration with existing fleet

management systems. The paper details the system's technological framework, hardware setup, and

comprehensive testing strategies. Anticipated benefits include enhanced decision-making, reduced

operational costs, and sustainable fuel inventory practices, making it a pivotal innovation for industries

reliant on fuel resources.

v © Daffodil International University

Table of Contents

Chapter 1 Introduction ... 05

1.1 Project Overview .. 05

1.2 Project Purpose ... 05

1.2.1 Proposed System ... 05

1.3 Project Outcome… .. 06

Chapter 2 System Analysis ... 07

2.1 Feasibility Analysis, Technical Feasibility, Operational Feasibility ... 07

2.2 Functional Requirements .. 08

2.3 System Requirements .. 09

2.4 Non-Functional Requirements .. 09

2.5 Performance ... 10

Chapter 3 System Design .. 11

3.2Development Model ... 11

3.1Use Case Diagram.. 12

3.1 Use Case Descriptions .. 13

3.2 Activity Diagram ... 16

3.3 Sequence Diagram ... 17

3.4 ERD Diagram.. 18

3.5 Class Diagram ... 19

Chapter 4 Development tool & Technology .. 20

4.1 Integrated Development Environment (IDE) .. 20

4.2 Programming Language .. 20

4.3 User interface Design .. 22

4.4 Database .. 22

4.5 Deploy and hosting ... 23

Chapter 5 System Testing .. 25

5.1 Testing Features .. 25

5.1.1 Feature to be tested .. 25

5.2 Testing Strategies .. 26

5.2.1 Test Approach ... 27

5.2.2 Pass/Fail Criteria ... 27

5.2.3 Testing Schedule ... 28

vi © Daffodil International University

5.3 Test Cases ... 29

Chapter 6 User Manual .. 31

6.1 Landing Page .. 31

6.2 Landing Page .. 39

Chapter 7 Conclusion ... 41

7.1 Project Link ... 41

7.2 Limitations .. 41

7.3 Future Scope ... 41

Reference ... 42

Appendix A

Plagiarism Test

1 © Daffodil International University

Chapter 1 Introduction

In the dynamic landscape of industries, the efficient management of fuel stocks is crucial for the smooth

operation of various businesses, ranging from transportation and logistics to manufacturing and power

generation. The "Fuel Stock Tracking System" emerges as a sophisticated solution to address the challenges

associated with monitoring, controlling, and optimizing fuel inventory.

1.1 Project Overview

Fuel Stock Tracking System is a proposed project aimed at developing and implementing a comprehensive

fuel tracker system in Bangladesh. This system will address the challenges faced during fuel crises by

providing real-time information on fuel availability, queue status at filling stations, and alternative

transportation options. By empowering individuals to make informed decisions, the Fuel Stock Tracking

System aims to improve fuel management, and real-time updates, reduce wastage, and enhance overall

transportation efficiency, time consumption, and tracking.

1.2 Project Purpose

The core purpose of this system is to address the multifaceted challenges inherent in traditional fuel

management systems. By automating data collection, analysis, and reporting processes, it aims to eliminate

the drawbacks associated with manual monitoring, including human errors, data discrepancies, and delayed

reporting. Furthermore, this system intends to empower stakeholders with real-time insights to make

informed decisions, reduce fuel-related costs, and enhance operational efficiency.

1.2.1 Proposed System

The impetus behind developing the Online Fuel Management Monitoring System

arises from the increasingly complex demands and inefficiencies in fuel management practices.

Conventional systems often lack the agility to adapt to dynamic fuel usage patterns, leading to suboptimal

resource utilization, increased operational costs, and environmental impact. This system emerges as a

response to these challenges, offering an intelligent and adaptable framework to modernize fuel

management practices.

The primary objectives of the Online Fuel Management Monitoring System are:

1. Real-Time Monitoring: Develop a web-based interface that facilitates real-time tracking of

fuel consumption for suppliers, fuel stations, equipment, and machinery.

2 © Daffodil International University

2. Enhance fuel management: Promote responsible fuel consumption by offering personalized

fuel consumption monitoring and tips for efficient usage.

3. Data Analysis: Implement advanced algorithms to analyze historical fuel consumption data,

offering insights into trends and optimization opportunities.

4. Cost Efficiency: Provide tools to identify fuel wastage, leading to cost reduction and improved

resource allocation.

5. User-Friendly Interface: Design a user interface that offers visualizations, customizable

reports, and alerts for intuitive data interpretation and provides real-time information on fuel

availability, queue lengths

6. Integration: Ensure seamless integration with existing fleet management systems for data

sharing and enhanced functionality.

1.3 Project Outcome

The purpose of the Fuel Stock Tracking System Web Application project is to design, develop, and

implement a comprehensive system that addresses the critical needs of organizations involved in managing

fuel resources.

1. Efficient Fuel Management: Provide organizations with a centralized platform to record, monitor,

and analyze fuel transactions and stock levels efficiently.

2. Real-time Visibility: Offer real-time visibility into fuel stock levels, transactions, and historical

data, enabling informed decision-making and proactive management.

3. User-Friendly Interface: Develop an intuitive and user-friendly web application interface that

accommodates users with varying levels of technical expertise.

4. Accurate Data Recording: Implement mechanisms to ensure accurate and reliable data recording,

minimizing errors in fuel transaction entries and stock updates.

"As I conclude my discussion on Introduction, I will now delve into System Analysis."

3 © Daffodil International University

Chapter 2 System Analysis

System analysis of a "Fuel Stock Tracking System" involves a detailed examination of the system's

requirements, components, and functionalities. The goal is to understand the system's scope, define user

needs, and establish a foundation for the system design.

2.1 Feasibility Analysis, Technical Feasibility, Operational Feasibility

An essential first phase in any project's life cycle is feasibility analysis, which establishes the project's

viability and value. Technical and operational are the three primary facets of feasibility that should be taken

into consideration for a "Fuel Stock Tracking System Web Project."

1. Technical Feasibility:

Technology Requirements:

● Examine the infrastructure currently in place to see if it is capable of supporting the suggested fuel

stock tracking system.

● Assess the platforms and technological instruments (such as databases, web servers, and

programming languages) that are necessary for development in terms of their compatibility and

availability.

● Think about if the team has the necessary technical know-how or if other resources are required.

Development Complexity:

● Evaluate how difficult it will be to construct the system while taking into account all necessary

features, points of integration, and probable technological difficulties.

● Evaluate whether integrating the system with currently in-use technologies or systems is feasible.

Scalability and Performance:

● Determine whether the system can process the anticipated number of transactions and data over

time.

● Think about scalability possibilities and make sure the system can expand to handle higher traffic.

4 © Daffodil International University

Security and Compliance:

● Determine the necessary security measures and determine whether putting strong security measures

in place is feasible to safeguard confidential fuel stock information.

● Assure adherence to pertinent rules and guidelines in the petroleum sector.

2. Operational Feasibility

Acceptance by Users:

● Participate in the planning and development process with end users to gauge their possible

acceptance.

● For system adoption, take into account the design of the user interface, convenience of use, and

necessary training.

Management of Change:

● Evaluate how the new system will affect the current workflows and processes.

● Create a change management strategy to facilitate the shift and reduce interference.

Support and Maintenance:

● Determine whether it is feasible to give the system continuous support and maintenance.

● Think about the procedures and resources available for managing updates, problem fixes, and user

support.

2.2 Functional Requirements

All of the project's implementable components are referred to as functional requirements. The functional

requirements guide the system's real actions.

The functional specifications are provided below-

5 © Daffodil International University

• User Authentication and Authorization

• Admin Dashboard

• Inventory Management

• Alerts and Notifications

• See Stock of Supplier

• Purchase and Consumption Logging

2.3 System Requirements

Here are the system requirements for a "Fuel Stock Tracking System Web Project," focusing on functional

and non-functional aspects:

● The system is built using a specific web framework (React, Node.js).

● A particular database system (MongoDB) is used for data storage.

● The system is integrated with external systems using APIs (fuel suppliers, financial systems).

● Compatibility with various web browsers and devices is ensured.

● The system adheres to relevant industry standards and regulations.

● Compliance with data privacy laws and regulations.

2.4 Non-functional Requirements

Non-functional specifications that specify how the system should function. Additionally, it describes a

system's quality characteristics.

The following non-functional requirements are provided-

● Performance

● Quality

● Stability

● Usability

● Response Time

● Reliability

6 © Daffodil International University

2.5 Performance

Performance is a critical aspect of any web-based system, and the "Fuel Stock Tracking System Web

Project" is no exception. Here are key considerations for ensuring optimal performance:

● Response Time: Ensure that the system responds promptly to user interactions.

● Scalability: Design the system to handle increased loads gracefully.

● Resource Utilization: Optimize resource usage to prevent system slowdowns or crashes.

● Concurrency and Transaction Handling: Support multiple concurrent users and transactions

without performance degradation.

● Load Testing: Validate the system's performance under various load conditions.

● Security Performance: Ensure that security measures do not significantly impact performance.

● Database Performance: Optimize database operations for efficient data retrieval and storage.

● Monitoring and Logging: Continuously monitor system performance and identify issues in real

time.

"The insights gained from System Analysis set the stage for my exploration of System Design."

7 © Daffodil International University

Chapter 3 System Design

Designing a Fuel Stock Tracking System involves creating a blueprint for the software, specifying how

different components will interact, and ensuring that the system meets the identified requirements.

3.1 Development Model

I decided to build my project using an iterative enhancement method which gives many advantages of this

approach. With this idea, a parallel development can be envisaged. All risks will be found and fixed during

the iteration. During shorter iterations, testing and troubleshooting will be straightforward. This iteration is

ideal for implementation since even the smallest errors can be detected.

This iteration model integrates with the waterfall paradigm and permits multiple iterations throughout the

development process.

Figure: 3.1 Model of iterative improvement

8 © Daffodil International University

3.1.1 Use Case Diagram

A use case diagram is a visual representation that illustrates how users interact with a system and the

various functionalities of the system. In the context of a Fuel Stock Tracking System, here is a simplified

use case diagram:

Figure: 3.1.1 Use Case Diagram for Fuel Stock Tracking System

9 © Daffodil International University

This module will provide a form. On that form, the

user will put their personal information. Then the

user can enter into the system.

Actor: Supplier

Description

By providing user's personal information such as

email and password, users can enter into the

system. So this login module acts like this.

Actor: Admin, Supplier

Description

After logging into the system, which interface the

user will find the dashboard. Admin will get the

admin dashboard and the supplier will get the

supplier dashboard.

Actor: Admin, Supplier

Description

Admin or station owner can check the stock of the

supplier and according to the stock, admin can

place orders to the supplier.

Actor: Admin

Description

3.1.2 Use Case Descriptions

A use case description is a detailed and textual representation of how a specific interaction or scenario

unfolds between a user (or an external system) and a system, typically described within the context of a use

case. Let's provide a brief description for each of the use cases mentioned in the Fuel Stock Tracking System

use case diagram:

Registration

Login

Dashboard

Order to Supplier

10 © Daffodil International University

The Station owner can manage the inventory

throughout the system. It means they can update

new stock, delete stock, and everything.

Actor: Admin

Description

Admin and station owner both can manage orders.

When a supplier gets an order from the admin side,

the supplier can confirm or cancel the order. After

placing an order admin can also edit the order or

cancel it but before the supplier confirms the order.

Actor: Admin, Supplier

Description

Admin can input sales information into the system.

By this time, the stock will update automatically.

Actor: Admin

Description

When suppliers register on the website the admin

can approve the registration request. After

accepting the supplier, the supplier can enter into

the system. Also, the admin can remove the

supplier anytime.

Actor: Admin

Description

This system can handle multiple stations'

inventory. So the admin can add or remove stations.

Description

Manage Inventory

Manage Orders

Input Sales

Manage Supplier

Manage Station

11 © Daffodil International University

Suppliers can update their available stock for

selling into the system. Before placing an order, the

admin will check the stock and then place the order.

Admin: Supplier

Description

Update Stock

Actor: Admin

12 © Daffodil International University

3.2 Activity Diagram

An activity diagram is a type of UML (Unified Modeling Language) diagram that illustrates the dynamic

aspects of a system by modeling the flow of activities, actions, and transitions between them. It is

particularly useful for depicting the workflow within a system or a specific use case.

Figure 3.2.1: Activity Diagram for The Entire Fuel Stock Tracking System

13 © Daffodil International University

3.3 Sequence Diagram

A sequence diagram is another type of UML (Unified Modeling Language) diagram that illustrates the

interactions between different objects or components in a system over time.

Sequence Diagram (Admin)

Figure 3.3.1: Sequence Diagram for Admin

Sequence Diagram (Supplier)

Figure 3.3.2: Sequence Diagram for Supplier

14 © Daffodil International University

3.4 ERD Diagram

An Entity-Relationship (ER) diagram is a visual representation of the entities (objects or concepts) within

a system and the relationships between them. It's commonly used in database design to illustrate the

structure of a database and the connections between different entities.

Figure 3.4.1: ER Diagram for The Entire Fuel Stock Tracking System

15 © Daffodil International University

3.5 Class Diagram

A class diagram is a type of UML (Unified Modeling Language) diagram that represents the static

structure of a system by showing the classes, their attributes, methods, and relationships. Here is a

simplified class diagram for a Fuel Stock Tracking System:

Figure 3.5.1: Class Diagram for The Entire Fuel Stock Tracking System

"Now that I've covered the fundamentals of System Analysis and design. The next chapter holds the

answers to which technology I used to build up the system"

16 © Daffodil International University

Chapter 4 Development Tool & Technology

The choice of development tools and technologies for building a Fuel Stock Tracking System can depend

on various factors, including the development team's expertise, the project's requirements, scalability needs,

and integration capabilities.

4.1 Integrated Development Environment (IDE)

When developing a web application for a fuel stock tracking system, there are several options for choosing

an Integrated Development Environment (IDE) based on preferred programming languages and

frameworks. But I choose “Visual Studio Code”.

Visual Studio Code:

● Languages/Frameworks: Suitable for a wide range of languages including JavaScript, TypeScript,

HTML, CSS, and various frameworks (Node.js, React, Angular, etc.).

● Features: Lightweight, extensible, and supports a variety of plugins for different languages and

frameworks. It has built-in Git support and a robust ecosystem.

4.2 Programming Language

Choosing JavaScript for my fuel stock tracking system web application comes with several advantages,

making it a popular and versatile choice for web development. Here are some reasons why I might consider

JavaScript:

• Full-Stack Development: JavaScript allows us to use the same language for both frontend and

backend development. With Node.js, we can execute JavaScript on the server side, providing a

unified and consistent development experience.

• Large Developer Community: JavaScript has one of the largest and most active developer

communities. This means there is a wealth of resources, libraries, and frameworks available,

making it easier to find solutions to common problems and stay updated on best practices.

• Rich Ecosystem of Frameworks and Libraries: JavaScript has a vast ecosystem of frameworks

and libraries that facilitate rapid development. Frameworks like React.js, Angular, and Vue.js are

widely used for building dynamic and interactive user interfaces, while Node.js is popular for

server-side development.

17 © Daffodil International University

Frontend Technology: ReactJS

ReactJS is a popular JavaScript library for building user interfaces. It is a component-based library that lets

us build complex UIs from small, reusable pieces called components. This makes it a great choice for

building dynamic and interactive web applications.

Here are some of the benefits of using ReactJS for front-end development:

● Component-based architecture: Makes code more modular and reusable, leading to easier

maintenance and development.

● Virtual DOM: Provides a performant way to update the UI without re-rendering the entire page.

● Large community and ecosystem: Many libraries and tools are available to help us build React

applications.

● Declarative: We tell React what we want to see on the screen, and it takes care of updating the

DOM.

Backend Framework: NodeJS

Absolutely! Node.js is a fantastic choice for building the backend of my ReactJS application. Here's why:

Node.js and ReactJS: A Perfect Match

● Shared Language: Both Node.js and ReactJS use JavaScript, leading to a more cohesive

development experience and easier code reuse. We can leverage our JavaScript knowledge across

the entire stack.

● Performance: Node.js's asynchronous nature and event-driven architecture make it highly

performant, especially for real-time applications. This pairs well with ReactJS's virtual DOM,

leading to a smooth and responsive user experience.

● Scalability: Both technologies are known for their scalability. Node.js can handle high traffic

volumes efficiently, while ReactJS can handle complex UIs without performance bottlenecks.

● Large Community and Ecosystem: Both Node.js and ReactJS have massive communities and

ecosystems. We'll find numerous libraries, tools, and frameworks to support our development

process.

18 © Daffodil International University

4.3 User Interface Design

A well-designed user interface (UI) is crucial for any fuel stock tracking system. It should be intuitive, and

efficient, and provide clear insights into fuel levels and usage. Here are some UI design ideas to consider:

Dashboard:

● Fuel levels visualization: Prominently display current fuel levels in tanks with gauges, charts, or

clear numerical values. Use color-coding for easy identification of critical levels.

● Consumption trends: Show graphs and charts depicting fuel usage over time. Identify periods of

peak consumption and potential areas for optimization.

● Delivery and refill information: Log delivery dates, quantities, and supplier details for each tank.

Track fuel received and consumed to ensure accurate inventory management.

● Alerts and notifications: Set up automated alerts for low fuel levels, discrepancies, or unusual

consumption patterns.

● Real-time data monitoring: Display live updates on fuel levels and sensor readings. Allow users

to remotely monitor tanks and identify potential issues.

Additional Features:

● Reporting and analytics: Generate reports on fuel consumption, deliveries, and costs. Export data

for further analysis and decision-making.

● User roles and permissions: Implement access controls based on user roles and responsibilities.

Ensure data security and prevent unauthorized actions.

● Mobile app integration: Develop a mobile app for convenient access to fuel stock data and

functionalities on the go.

Design Principles:

● Simplicity and clarity: Prioritize intuitive design elements and avoid unnecessary complexity. Use

clear labels, icons, and consistent layouts.

● Data visualization: Leverage charts, graphs, and color-coding to effectively communicate fuel

levels and trends. Make data easily interpretable for users of all technical backgrounds.

19 © Daffodil International University

● Responsiveness and accessibility: Ensure the UI adapts seamlessly to different screen sizes and

devices. Make it accessible for users with disabilities.

● User-friendliness: Conduct usability testing to ensure the UI is intuitive and efficient for users to

navigate and interact with.

4.4 Database

Database: MongoDB

Since I’m building my application with ReactJS on the front end and Node.js on the back end, MongoDB

emerges as a fantastic choice for a database. Here's why:

MongoDB's Strengths for the Application:

● Document-oriented: Stores data in flexible JSON-like documents, perfectly aligned with the

object-oriented nature of JavaScript used in ReactJS and Node.js.

● Scalability: Handles massive data volumes and high traffic efficiently, ideal for future growth.

● Performance: Offers fast querying and data manipulation thanks to its flexible schema and

indexing capabilities.

● Rich query language: Supports complex queries using operators and aggregation frameworks,

enabling powerful data analysis.

● Cloud-ready: Deploys easily on cloud platforms like MongoDB Atlas, simplifying deployment

and management.

4.5 Deploy and hosting

Deploying and hosting our fuel stock tracking system website with JavaScript involves several steps:

1. Choose a hosting platform:

● Cloud hosting: Scalable and flexible, ideal for high-traffic websites with varying demands. Popular

options include Heroku, AWS, and Google Cloud Platform.

20 © Daffodil International University

2. Prepare website for deployment:

● Build your front-end with ReactJS: Ensure the code is clean, optimized, and production-ready.

Consider using tools like Webpack for bundling and minifying our code.

● Set up your Node.js backend: Ensure the server code is stable and secure. Use frameworks like

Express.js for building APIs and handling data interactions.

● Connect to your database: Configure our database connection in Node.js code. Choose a secure and

reliable hosting provider for the MongoDB database.

3. Deploy your website:

● VPS or Cloud hosting: Follow the specific instructions provided by the hosting provider.

4. Secure your website:

● Implement secure authentication and authorization: Use mechanisms like logins, user roles, and

API keys to restrict access to sensitive data.

● Use HTTPS and encryption: Protect data transmission between websites and users' browsers.

● Regularly update software and dependencies: Keep website code, server software, and libraries up

to date to patch vulnerabilities.

5. Monitor and maintain website:

● Track website traffic and performance: Use tools like Google Analytics to monitor user behavior

and identify potential issues.

● Backup your data regularly: Protect against data loss due to server failures or cyberattacks.

“As I conclude my discussion on Development Tools and Technology, the next chapter promises a deep

dive into the realm of testing”

21 © Daffodil International University

Chapter 5 System Testing

System testing is a phase in the software testing life cycle where the entire integrated software system is

tested to ensure that it meets specified requirements. The goal of system testing is to evaluate the system's

compliance with functional and non-functional requirements, identify defects, and ensure that it performs

as expected in its intended environment.

5.1 Testing Features

Testing plays a crucial role in ensuring the functionality, performance, and user experience of the fuel stock

tracking system.

5.1.1 Feature to be tested

Choosing the features to test for the fuel stock tracking system will depend on the specific system's

functionality and priorities. However, here are some key features that should be considered for testing:

Features Priority Description

Login and authentication 1 Verify user login, role-based

access control, and session

management

Navigation and dashboard: 1 Test ease of navigation, clarity of

information, and intuitiveness of

controls.

Visualization and charts 3 Ensure fuel level trends,

consumption patterns, and alerts

are displayed clearly and

accurately.

Responsiveness 2 Test the website's functionality

and layout on different devices

and screen sizes.

22 © Daffodil International University

Data entry 1 Test adding, editing, and deleting

fuel level data for different tanks.

Sensor data integration 3 Ensure live sensor readings

update accurately on the

dashboard.

Calculations 1 Verify calculations for fuel

consumption, remaining stock,

and refill quantities.

Notifications and alerts 1 Test the delivery of low fuel level

and consumption anomaly alerts

to users.

Contact 1 Admin can manage contact from

the user contact section

Security measures 1 Test login security, data

encryption, and access controls

to prevent unauthorized access.

Logout 1 After logging out, the session

needs to be terminated.

5.2 Testing Strategies

5.2.1 Test Approach

Two types of testing have been utilized to guarantee the system's quality. It primarily focuses on White Box

and Black Box testing.

● Functional testing, another name is black box testing. It is a testing approach that concentrates

solely on the output, ignoring internal procedures. Some outputs are produced for a given input.

These results are then compared to the anticipated result. The function is accepted if they match.

23 © Daffodil International University

● Structural testing, another name is White Box Testing. This testing technique takes into account

the system's internal mechanism.

5.2.2 Pass/Fail Criteria

Data Management and Accuracy:

● Pass:

○ All data entries (add, edit, delete) are successfully processed and reflected in the system.

○ Live sensor readings update accurately on the dashboard within a specified timeframe (e.g.,

5 seconds).

○ Calculations for fuel consumption, remaining stock, and refill quantities are accurate within

a defined tolerance (e.g., 1% error).

● Fail:

○ Data entries fail to save or are not reflected correctly.

○ Live sensor readings have lag or display inconsistent values.

○ Calculations have significant discrepancies exceeding the tolerance limit.

User Interface and Experience (UI/UX):

● Pass:

○ Login and authentication function correctly, with clear error messages for invalid attempts.

○ Navigation is intuitive and user-friendly across different sections of the dashboard.

○ Information on the dashboard is clear, concise, and easy to understand.

○ Visualizations and charts display data accurately and effectively.

● Fail:

○ The login process is buggy or error messages are unclear.

○ Navigation is confusing or difficult to follow.

○ Information on the dashboard is overwhelming, cluttered, or ambiguous.

○ Visualizations and charts are misleading or difficult to interpret.

○ The website layout breaks or functions poorly on certain devices or screen sizes.

24 © Daffodil International University

Time Test Phase

System Functionality and Security:

● Pass:

○ API interactions are successful and data is retrieved, updated, and authorized correctly.

○ Error handling mechanisms provide informative messages and prevent crashes.

○ Security measures effectively prevent unauthorized access and data breaches.

○ Backup and restore functionalities work seamlessly and ensure data recovery.

● Fail:

○ API interactions fail or return inaccurate data.

○ Error handling messages are missing or unhelpful.

○ Security vulnerabilities allow unauthorized access or data leaks.

○ Backup and restore processes fail or result in data loss.

Additional Features:

● Pass:

○ Notifications and alerts are delivered promptly and accurately for low fuel levels and

consumption anomalies.

○ Mobile app integration functions seamlessly with the website and offers a similar user

experience.

○ Integrations with other systems work as expected and exchange data accurately.

● Fail:

○ Notifications and alerts are delayed, inaccurate, or not delivered at all.

○ Mobile app integration is buggy or has significant functionality limitations.

○ Integrations with other systems fail or cause data inconsistencies.

5.2.3 Testing Schedule

25 © Daffodil International University

Testing Plan Create 1 week

Unit testing During development time

Component Test During development time

Testing user interface 1 week

Performance testing Accessibility Testing 1 week

Accessibility Testing 1 week

5.3 Test Cases

Test Case

ID

Test Case

Descriptio

n

Test Steps Test Data Expecte

d

Results

Actual

Results

Pass/Fail

1 Check user

Registration

with valid

Data

Go to Site

Enter Name

Enter Email

User-Name =

Name

User-Email =

Email

Users

should

Register

for the

applicati

on

As

expected,

Pass

 Enter

Password

User-

Password =

Password

 Enter

Contact

User-Contact

Click

Submit

26 © Daffodil International University

2 Check user

Login with

valid Data

Go to Site

Enter Email

Enter

Password

User-Email

Email

User-

Password

Password

=

=

User

should

log into

the

applicati

on

As

expected,

Pass

Click

Submit

3 Add

Level

Fuel Go to Site

Click on

Add Stock

Select Fuel

Type

Select

Pump

Fuel-Type

Fuel

Pump-Name

Pump

Fuel-Stock

Stock

=

=

=

Enter a

valid fuel

level for

a specific

tank and

verify it's

added

correctly

As

expected,

Pass

Enter Stock

Submit

27 © Daffodil International University

4 Edit Fuel

Stock

Go to Site

Click on

Edit Stock

Rewrite

Stock

Submit

Fuel-Stock =

Stock

Edit an

existing

fuel level

entry and

verify if

the

changes

are

reflected

correctly

As

expected,

Pass

"In wrapping up my discussion on testing methodologies, I pave the way for the next chapter dedicated to

user guidance."

28 © Daffodil International University

Chapter 6 User Manual

Creating a comprehensive user manual is essential to help users understand how to use a system efficiently

and effectively. Below is a general outline for creating a user manual for a Fuel Stock Tracking System.

6.1 Landing Page

Registration & Login

First of all, we have to register from this page, with name email, and new password, and then log in

29 © Daffodil International University

30 © Daffodil International University

Side Navigation Menu

This is the sidebar menu of the system which contains the primary content of this system.

31 © Daffodil International University

Admin Dashboard

This is the admin Dashboard, from where the admin can handle the whole system.

Sale data Update

Admin can update the selling data from there.

32 © Daffodil International University

Check Sell History

Admin can check Sell History from there.

Supplier’s List & Their Stock

Admin can see the list of the suppliers and the fuel stock.

33 © Daffodil International University

Placing Order to The Supplier

Admin can place orders from there.

Fuel Stock of The Stations

Admin can check his own stock from there.

34 © Daffodil International University

Add Stock

Admin can add new stock, edit stock, or delete stock from there.

35 © Daffodil International University

Notifications

Admin and Supplier can check notifications from there

Manage User

Admin can add or remove members from there.

36 © Daffodil International University

Profile Setting Page

Users can update their profile from there.

6.2 Landing Page (Only Supplier)

Dashboard of Supplier

This is the dashboard of the supplier.

37 © Daffodil International University

Check Order and Manage

Suppliers can check the placed order from the station owner and confirm or cancel the order from there.

Add or Remove Stock

Suppliers can add or remove stock from there.

38 © Daffodil International University

Chapter 7 Conclusion

In conclusion, the development and implementation of the Fuel Stock Tracking System web application

have been a significant endeavor aimed at addressing the critical need for efficient fuel management. This

project has successfully culminated in the creation of a robust and user-friendly system that facilitates

seamless recording, monitoring, and analysis of fuel transactions.

7.1 Project Link

GitHub Link: https://github.com/swarnaDas01/fuel-tracking.git

7.2 Limitations

▪ Messaging option is not available on the system.

▪ The system is still in the earlier phase. That's why there will be more features that will be implemented.

▪ Registration and email verification is not available

7.3 Future Scope

The future of my fuel stock tracking system website with JavaScript holds exciting possibilities to expand

its functionality and cater to evolving needs. Here are some potential areas to explore:

● Machine Learning: Integrate machine learning algorithms to predict future fuel consumption based

on historical data and external factors like weather or traffic patterns.

● Automated Insights: Generate and deliver custom reports with actionable insights on fuel usage,

cost optimization, and delivery schedules.

● Interactive Dashboards: Implement interactive dashboards with drag-and-drop features,

customizable visualizations, and drill-down capabilities for deeper data exploration.

● Third-Party API Integration: Connect with fuel delivery services, fleet management systems, or

accounting software for automated tasks and data exchange.

● Alert and Notification System: Enhance the notification system with customizable alerts for various

scenarios, including critical fuel levels, sensor malfunctions, or unauthorized access attempts.

● Environmental Impact Tracking: Calculate and report the carbon footprint associated with fuel

consumption for eco-conscious tracking and optimization.

39 © Daffodil International University

Reference:

Project Idea: Filling Station Management System by ClikBD

https://www.clickbd.com/bangladesh/1655718-filling-station-management-system.html

▪ Development: Microsoft Visual Studio.

▪ Diagram: drawio.io - https://app.diagrams.net

https://www.clickbd.com/bangladesh/1655718-filling-station-management-system.html
https://app.diagrams.net/

