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Abstract. Facial recognition is a fundamental method in facial-related science 
such as face detection, authentication, monitoring, and a crucial phase in 
computer vision and pattern recognition. Face recognition technology aids in 
crime prevention by storing the captured image in a database, which can then be 
used in various ways, including identifying a person. With just a few faces in the 
frame, most facial recognition systems function sufficiently when the techniques 
have been tested under artificial illumination, with accurate facial poses and non-
blurry images. in our proposed system, a face recognition system is proposed 
using Average pooling and MobileNetV2. The classifiers are implemented after 
a set of preprocessing steps on the retrieved image data. To compare the model 
is more effective, a performance test on the result is performed. It is observed 
from the study that MobileNetV2 triumphs over Average pooling with an 
accuracy rate of 98.89% and 99.01% on training and test data, respectively.   

Keywords: Face Recognition; CNN; Average pooling; MobileNetV2, Accu-
racy, Performance Comparison. 

1 Introduction 

The human face is a powerful factor influencing our daily social interactions, such as 
projecting an individual's personality. Face recognition is a biometric technology that 
uses mathematics to analyze facial features and then save them as a faceprint to identify 
people. Due to a wide range of applications in law enforcement and other civilian in-
dustries, institutes, and organizations, biometric facial recognition technology has 

2nd Congress on Intelligent Systems (CIS 2021)
New Delhi, Delhi 110021, India

Pre-Print

mailto:1javedmehedicom@gmail.com
mailto:2pronab1712@gmail.com
mailto:4
mailto:5masudur15-8851@diu.edu.bd


2 

sparked a lot of interest in recent years [1-4]. Facial recognition technology has an ad-
vantage over other biometric systems such as fingerprint, palmprint, and iris recogni-
tion since it is non-contact. For human face detection, Machine learning algorithms and 
Neural network models are widely used. Face detection using conventional image fea-
ture extraction algorithms is accurate and fast. Ma et al. [5] introduced an AdaBoost-
based training method to achieve cascade classifiers of different function forms: Haar-
like HOG for more excellent discrimination. Since there are too many imperfect clas-
sifiers, this requires a lot of computing power. A Bayesian framework-based algorithm 
[6] used the Omega form generated by a person's head and shoulder for head localiza-
tion to resolve severe face occlusion. It detects faces with intense occlusion well in 
Automatic Teller Machines, but the scene is thin. In addition to AdaBoost-based meth-
ods, Mathias et al. [7] proposed face recognition utilizing deformable component mod-
els (DPM) and obtained positive results. However, the computational cost of this 
method is usually very large. Another technique based on DPM is proposed for identi-
fying faces of occlusion [8-12]. Although only facial recognition representations are 
used in the tests, they have a low uniqueness and minimize false-negative face recog-
nition and identity error rates [13-17]. 
In the proposed system, face recognition is done using two neural network algorithms 
i.e., Average pooling and MobileNetV2. After a series of preprocessing steps on the 
retrieved image data, the classifiers are implemented. A performance evaluation of the 
outcome is done to compare which model is more efficient.  

2 Research Methodology 

The proposed study is based on two models for human face recognition. The average 
pooling and MobileNetV2 models are implemented in the image data. The whole sug-
gested system diagram is shown in Fig. 1. 
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Fig. 1. System diagram of the process 

2.1 Data Collection 

This study makes use of the LFW (Face Recognition) dataset 
(https://www.kaggle.com/atulanandjha/lfwpeople). Although there are over 13000 pic-
tures in the collection, but only utilized 13000 pictures for our study. Each image is 
appropriately labeled with the person's name. A total of 104 photographs were used to 
build the data set. Figure 2 contains the sample data from the retrieved dataset. 
 

 
Fig. 2. Sample image data. 

2.2 Preprocessing and augmentation of Data : 

CNN performs better with a large volume of data. We've allowed zooming, sharing, 
and scaling in the ImageDataGenerator function [18-21]. The photographs were first 
converted to 256 X 256 pixels. The ImageDataGenerator tool was used to expand the 
size of our current dataset. Numpy Arrays contain all the image data [22-26]. In our 
study used 80% of our data along with size random state 42 for training purposes and 
utilized the categorical function to binarize the labels when we have more than two 
outputs. The ImageDataGenerator feature from Keras to supplement images for better 
training. The following criteria are used to create our images: 
 

2.3 Proposed Classifier: 

1) Average Pooling: 

To initiate, images are converted to 256 X 256 pixels and passed to the pro-

posed model's first convolutional layer. There are a total of 128 hidden layers. 

After running the average pooling method, converted all of the images to 128 

X 128 pixels. The feature is then extracted by the second convolutional layer, 
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which employs average pooling once more [27-31]. The images are resized to 

32 X 32 pixels in the final layer. I mages at this stage are converted into 

NumPy arrays to make measurements easier. Applying a connected layer is 

the final stage. We used the Relu activation feature in both convolution layers, 

and in the output layer, and used the Softmax activation function [32-36]. For 

finding the best results, Adam's stochastic gradient descent is used. The fol-

lowing is the suggested algorithm 1: 

 
 
 

 

2) MobileNetV2: 

MobileNetV2 employs 28 Deep convolutional neural network layers. It is built 

on an inverted residual structure, with residual connections between bottle-

neck layers [37-42]. For MobileNet Streamlined architecture, lightweight deep 

convolutional neural networks are built using depth-wise separable convolu-

tions. MobileNet is a cost-effective model for mobile and embedded vision 

applications [43-48]. The original completely convolution layer with 32 filters 

is followed by 19 residual bottleneck layers in the MobileNetV2 design. Mo-

bileNets are low-latency, low-power models that have been parameterized to 

satisfy the resource constraints of various use cases. 

2.4 Evaluating performance using performance matrix: 

After the training and testing process, we evaluated the performance using precision, 
recall, f1-score, and accuracy. Equations 1,2,3 and 4 are the formulas that used: Accuracy = TP+TNTP + TN + FP + FN                            (1) 

 

Algorithm 1: Proposed Average Pooling 

Step 1: Load Dataset 
Step 2: Function Conv2D (matrix = 256 x 256){ 
Step 3:              Activate RELU} 
Step 4: Function AveragePooling2D (data, pool size) 
Step 5: Function Conv2D (matrix = 128 x 128, padding){ 
Step 6:              Activate RELU} 
Step 7: Function AveragePooling2D (data, pool size) 
Step 8: Function Conv2D (matrix = 64 x 64){ 
Step 9:               Activate RELU)} 
Step 10:Function AveragePooling2D (data, pool size) 
Step 11: Function Conv2D (matrix = 32 x 32){ 
Step 12:               Activate RELU)} 
Step 13:Function AveragePooling2D (data, pool size) 
Step 14: Reshape image, set list -> Flatten 
Step 15: Activate Softmax 
Step 16: Output Data Classification 
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Sensitivity or recall = TPTP+ FN                         (2) 

 Precision = TPTP+ FP                                           (3) 

 F1 − score = 2 × 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ×𝑟𝑒𝑐𝑎𝑙𝑙𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑟𝑒𝑐𝑎𝑙𝑙                  (4) 

 

3 Results and Discussion 

3.1 Performance of Average Pooling 

The model will recognize a specific person's face based on their name. The dataset 
contains 13000 photos, including images from 1680 individuals. Training and research 
testing have been divided into 80/20 fractions. The model can detect images with 
93.13% accuracy for training results, and validation accuracy reaches 93.65% at the top 
stage at 10 Epoch. The data loss during validation is a minimum of 6.89%. Table I 
shows the results of our training and validation sets. 

 
Table I. Average Pooling Classification Result of training and validation dataset. 

Epoch Training 

Loss 

Training 

Accuracy 

Validation 

Loss 

Validation 

Accuracy 
1 47.34% 81.93% 19.74% 86.87% 
2 15.13% 85.25% 15.57% 87.18% 
3 10.25% 88.02% 11.73% 87.87% 
4 10.02% 88.89% 9.28% 88.49% 
5 9.47% 88.37% 9.54% 88.58% 
6 9.29% 89.74% 8.90% 89.43% 
7 9..21% 89.37% 8.58% 90.00% 
8 7.78% 90.37% 7.36% 91.57% 
9 7.25% 92.54% 7.28% 92.48.% 
10 6.94% 93.13% 6.89% 93.65% 

 
The model attained 91.78 percent training accuracy and 92.17 percent validation accu-
racy on the overall classification. After the evaluation of the dataset has been done, the 
performance evaluation is shown. In Table II, the performance measurements are 
stated. 

Table II. Performance evaluation on average pooling. 
Class Precision Recall F1 - Score Accuracy 

Training Set 89.54 90.57 90.10% 91.78 

Testing Set 90.89 91.35 90.85% 92.17 

The classification of the model based on each class is done. The performance of the 
classification of the classes is described in Table III. 

 
Table III: Performance evaluation of classes on average pooling. 
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Class Precision Recall F1 - Score Accuracy 

Shamrat 92.74 90.59 91.78 93.53 

Shongkho 92.05 91.56 90.11 92.89 

Masum 93.35 90.29 91.84 89.47 

Jubair 91.73 90.39 90.09 90.23 

 

3.2 Performance of MobileNetV2: 

The model can detect images with 98.92%  accuracy in the training data, and validation 
accuracy reached 99.54%  at 10 Epoch. A minimum of 3.59% of data is lost during 
validation. The outcomes of our training and validation sets are seen in Table IV. 
 

Tabel IV: Accuray of MobileNetV2 on dataset 

Epoch Training 

Loss 

Training 

Accuracy 

Validation 

Loss 

Validation 

Accuracy 
1 6.47 96.46 5.84 97.05 
2 5.83 96.84 5.25 97.67 
3 5.73 96.92 5.94 97.85 
4 5.49 97.02 5.67 97.58 
5 3.87 98.59 5.37 97.04 
6 4.49 97.99 4.39 98.49 
7 3.78 98.73 3.93 98.64 
8 3.57 98.79 3.68 98.95 
9 3.98 98.62 3.73 99.10 
10 3.76 98.92 3.59 99.54 

 
The overall performance calculation of the MobileNetv2 model on the dataset is illus-
trated in table V and the performance based on class is shown in Table VI.  

TABLE II: Performance of MobileNetV2. 
 

Class Precision Recall F1 - Score Accuracy 

Training Set 98.75 98.73% 98.28% 98.89 

Testing Set 99.20 98.69% 98.74% 99.01 

 

TABLE VI: Perfomance of each class in MobileNetV2 
Class Precision Recall F1 - Score Accuracy 

Shamrat 98.47 97.75 98.26 98.48 

Shongkho 98.55 97.76 98.46 98.86 

Masum 98.18 97.56 98.45 97.99 

Jubair 98.54 97.82 97.28 98.43 



7 

3.3 Comparison of Models’ classifications 

Figure 3 shows the accuracy comparison graph of both the train and test set of the Mo-
bileNetV2 model and the CNN average Pooling model. From the graph, it can be ob-
served that the MobileNetV2 has a way more accuracy rate compared to the other 
model. In figure 4, the final output of the implemented MobileNetV2 model is given. 
 
 

 
Fig. 3. Accuracy comparison of the models 

 

 
 

Fig. 4. Face Recognition using MobileNetV2

4 Conclusion 

Face recognition is a method of recognizing or verifying a person's identity by using 
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their face. Face recognition has been utilized for various uses, including an auto-
management attendance control system and surveillance of restricted access areas. 
From the study, it is understood that the MobileNetV2 has a high accuracy rate 
compared to CNN average pooling. The model has an accuracy rate of 98.89% on 
training data and 99.01% on validation data. Furthermore, in the case of face 
recognition based on class, the model shows the highest accuracy, up to 98.86%. In the 
future, determine to implement more CNN models for face recognition to come up with 
the most accurate system.  
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