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Microarray data are becoming a more essential source of gene expression data for interpretation and analysis. To improve the
detection accuracy of tumors, the researchers try to use the lowest feasible collection of the most gene expression studies, and
relevant gene expression patterns are found. �e purpose of this article is to use a data mining strategy and an optimized feature
selection method focused on a limited dense tree forest classi�er to evaluate and forecast colon cancer data. More speci�cally,
merging the “gain information” and “Grey wolf optimization” was incorporated as a feature selection approach into the random
forest classi�er, to improve the prediction model’s accuracy. Our suggested technique can decrease the load of high-dimensional
data, and it allows quicker computations. In this research, we provided a comparison of the analysis model with feature selection
accuracy over model analysis without feature selection accuracy. �e extensive experimental �ndings have shown that the
suggested method with selecting features is bene�cial, outperforming the good classi�cation performances.

1. Introduction

Most colon cancers have become a considerable public
health issue, and most of these cancers have expanded
speedily worldwide. GLOBOCANDatabase 2018 examined
new 1,849,518 colorectal cancer (CRC) instances and
880,792 CRC-related deaths. �e CRC is 0.33% the main
cause of most cancer-associated deaths in the USA, 2019.
�e latest study by Wong Martin [1] suggests that about 25
percent of CRC instances contain a genetic propensity. At
initial stage, generic cancers classi�cation technique is
build totally on DNA microarray gene expression monitor
[2]. �ey additionally recommended similar microarray
data would possibly give a classi�cation technique for most
cancers. �e microarray technology, which largely

constructs the expression of genes, has widely utilized in
prognosis additionally assessment of colon-related malig-
nancies. Timely identi�cation of cancer is crucial in ac-
curate detection and therapy. Microarray-based data
contain hundreds of gene information, and subsample sizes
are often smaller. �ey had a di£cult time identifying the
most signi�cant genes using microarray data because not
every gene had adequate check-out facts and many of them
are redundant. �e two current strategies, feature trans-
formation and selection of acquiring feature genes for most
cancer classi�cation, were built totally on gene expression
data [3].

Feature transformation is a technique for creating a
unique set of modern datasets from existing ones to achieve
feature reductions, even if the author requires strong
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discriminating power, typically to not retain the biological
data in the initial sequence. )e loss of data is reflected in
data transformation interpretability, and it is not possible
to spot a list of cancer-related target genes unlike methods
for feature transformation and selection that do not gen-
erate a new set of features. Ghazavi and Liao take off
nonredundant and relevant functions and keep their ex-
ceptional classification performance accuracy [4]. Feature
selection now no longer contains replacing original fea-
tures hence lowering the dimensionality information
trouble to create a trust model of the dataset used. Even
though, the techniques with a characteristic selection have
received a similar interest aspect. )e selection techniques
may be separated into 3 major categories: filters, wrappers,
and embedded techniques [5]. )e filter method is a way of
selecting features that is dependent on any future machine
learning techniques and is based on a few statistical feature
performances. )ey were technically quick and completely
dependent on dataset characteristics. One of the most
significant dangers is the overlook function connections.
Wrapping-based methods were primarily focused on
finding algorithms, which iteratively evaluate data against a
set of machine learning rules to get the best subset of
features. For datasets with numerous properties, algo-
rithms are not only slower than filters but also computa-
tionally costly. Because they interact with the classifiers for
the selection of features, embedded methods are minimally
computationally expensive and faster than the other types
of feature selection algorithms. Different forms of random
forests, decision trees, and artificial neural networks are
popular embedded methods. Gain information (GI) and
Grey Wolf optimization were presented as strategies for
choosing variables (GWO). An classifier is then developed
for analyzing colon cancer. GWO is the most efficient
swarm intelligence-based metaheuristic method. GWO is
used in several optimization methods such as clustering
applications, design and tuning controllers, power dispatch
problems, robotics and path planning, scheduling prob-
lems, wireless sensor networks, and medical and bio-
medical applications [6]. While researching the usage of
GWO in various engineering problems, we found that
GWO has an ability to handle huge variable numbers and
to escape local solutions while solving a large-scale prob-
lem. Since GWO has the ability to handle a large amount of
variable with better solution, we intend to apply GWO for
microarray data as it is a more essential source of gene
expression data for interpretation and analysis.

For different environments, scholars have proposed
abundant selection algorithms. )ere are several optimi-
zation algorithms inspired from nature or purely mathe-
matical-driven methods. Some of them include monarch
butterfly optimization (MBO), which optimizes the search
strategy by decreasing the local optima, which in turn de-
creases the premature convergence and reduces the number
the local maxima. )is behavior is inspired from the
monarch butterflies [7]. )e slime mould algorithm is an-
other kind of optimization algorithm inspired from the slime
mould mode in nature. )is algorithm mimics its behavior
from the morphological changes of slime mould physarum

polycephalum in completing its lifecycle. )e entire lifecycle
is modeled into a mathematical one, and the authors found it
can be useful for optimization problems [8]. )ere is an
algorithm inspired from the orientation of moths called
moth swarm algorithm (MSA) [9]. MSA is modeled by
capturing the movements of moths in moonlight. )is can
be used to create a learning based on association yielding an
immediate memory, which utilizes levy-based mutation
ethics to increase the cross-population environment and
movement in spiral. Hunger Games Search (HGS) [10]
optimization is based on inheriting the characteristics from
hunger behavior of animals. )e hunger-driven behavior of
wild animals is inherited and modeled to a mathematical
model and applied to solve a range of optimization prob-
lems. )e RUNge Kutta optimizer [11] is different from
bio-inspired algorithms and is meant to solve a variety of
optimization problems in future. RUN utilizes the slope
variation logic that is computed by the Runge–Kutta method
as a searching mechanism. )e drawback in this method is
that this optimization works on large datasets only. )e
colony predation algorithm (CPA) is an efficient optimi-
zation method that focuses on utilizing a mathematical
method inspired from the hunting group of animals such as
prey encircling, prey dispersing, targeting hunters, animal
strategy, and adjusting strategy [12]. Weighted mean of
vectors is the most commonly used optimization algorithm
in the literature prior to the discovery of bio-inspired al-
gorithms. It works on the simple logic of assigning weights to
the elements present in the vectors using a normalized
function and computing the solution for the question set
[13]. However, scheduling problem with no-wait constraints
widely exists in the real-life process of steel production,
computer systems, food processing, chemical industry,
pharmaceutical industry, concrete products, etc. Many ex-
perts and scholars have studied optimization problems with
zero constraints. For instance, to overcome no-wait
scheduling idea with m-machine, a hybrid algorithm is taken
based on the genetic algorithm and simulated annealing. To
minimize the makespan of Flow Shop scheduling idea,
several variants of descending search and Tabu search al-
gorithm were proposed, and a strategy based on a dynamic
Tabu list was also proposed, which enhanced the algorithm’s
ability to jump out of local optimum to a certain extent. A
hybrid optimization algorithm based on variable neigh-
borhood descent and PSO was used to solve Flow Shop
scheduling with two optimization goals. To minimize the
weighted sum of maximum completion time and total
completion time, the literature proposed a TOB (trade-off
balancing) algorithm based on machine idle times. For Job
Shop scheduling optimization in which each job has its
optimization strategy, the literature proposed a hybrid ge-
netic algorithm, in which the genetic operation is treated as a
subproblem and transformed into asymmetric travelling
salesman problem. In the abovementioned commonly used
production scheduling algorithms, no consideration is given
to the great product structure differences, processing pa-
rameter differences, and the need for further deep processing
after assembly of jobs in the real-life manufacturing process
of nonstandard products.
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In fact, to quickly respond to the ever-changing market
and alleviate the pressure of nonstandard products in re-
search and trial production, some enterprises have estab-
lished dedicated production workshops to improve
production efficiency of less-than-truckload, personalized
products and nonstandard products. However, some order-
oriented SMEs organize production according to orders.
During the production process, there are a large number of
nonstandard products that demand scribing, hand lapping,
scraping, and precision templates. Big differences exist in
product structure and component parameters and jobs
demand further deep processing after assembly, so parts
cannot be predicted and prepared in advance, and pro-
duction must be advanced according to BOM (bill of ma-
terial) [14]. )e problem of requiring further deep
processing after jobs assembly is often referred to as inte-
grated scheduling problem (ISP). For ISP, literatures dis-
cussed a hybrid optimization method of bottleneck shifting
and genetic algorithm. )e literature pointed out that
common no-wait scheduling algorithms can only deal with
the case where the number of no-wait child nodes is 1.
However, in ISP, there are abundant cases in which further
deep processing is required after jobs assembly; that is, the
number of no-wait child nodes can be greater than 1 in ISP.
)erefore, ISP with no-wait constraints is more complicated
[15]. Some of the recent heuristic algorithms include
monarch butterfly optimization (MBO), slime mould al-
gorithm (SMA), moth search algorithm (MSA), hunger
games search (HGS), Runge–Kutta method (RUN), and
Harris hawks optimization (HHO). )ere are several opti-
mization algorithms in the literature using various nature-
inspired techniques for optimization but still GWO is not
utilized in the field of microarray detection and so we
proposed in this work. While researching the above pub-
lished works, it is clear that optimization is still a major issue.

Our Contributions include the following:

(1) A data mining strategy and a feature selection
method based on a threshold optimized forest
classifier are proposed to optimize the feature
selection

(2) Ensemble of “gain information” and “Grey wolf
optimization” was incorporated as a feature selection
approach into the random forest classifier, to im-
prove the prediction model’s accuracy

(3) Provided a comparison of model analysis with fea-
ture selection over model analysis without feature
selection

2. Literature Survey

A detailed review on gene selection proves that feature
selection is a significant thing for data mining procedure.
Xian et al. proposed a particle deletion using a strategy
with a computed fitness value through clustering, and the
corresponding particles are generated using the impor-
tance of feature and this ensemble of the two algorithms is
used to compute the crossover of both qualities of par-
ticles. Salem et al. published a study that used gene

expression profiles to classify human cancers [16]. In this
feature selection technique, from the initial microarray,
the information gain (IG) was used to identify genes. In
addition, the genetic algorithm (GA) was used for re-
ducing the features utilizing the IG. For cancer catego-
rization using genetic programming (GP) (or diagnosis),
data mining algorithms are used. Seven cancer gene ex-
pression datasets were utilized to verify the technique. )e
author established accuracy of 85.48 percent for colon
cancer and 88.87 percent for breast cancer (central ner-
vous system cancer), 96.05 percent (leukaemia72),
72.3 percent (lung cancer in Ontario), and 100 percent for
all cancers (lung cancer, Michigan)), 93.7 percent
(DLBCL, Harvard), and 100 percent (lung cancer,
Michigan) (prostate).

Bennett et al. provided an ensemble feature technique
that combines the support vector machine feature selection
reduction (SVM-RFE) technique with Bayes error filter
(BBF) for accuracy improvement as a hybrid genetic algo-
rithm strategy [17]. )e attributes were sorted using SVM-
RFE, and the superfluous sorted attributes were removed
using BBF. After that, the dataset was classified using the
SVM method. )e best classification accuracy for the
Leukaemia73 dataset was 96.1 percent.

On 10 datasets, the authors of Gunavathi et al. inves-
tigated the effects of GA combined with k-nearest-neigh-
bors (KNN) and are analyzed using SVM classifiers [18].
)ree filters were used to decrease the number of char-
acteristics identified by the GA. )e SVM ensembles with
KNN algorithms are utilized to predict the data at the end.
Accuracy of the SVM is nearly identical to that of the KNN
classifier on most datasets; the only exception was the
Leukaemia72 dataset, for which the authors used fivefold
cross-validation.

Canedo et. al. developed a new method of bifurcation of
classifiers. )e researchers utilized a voting mechanism to
classify the samples [19]. )ey used tenfold cross-validation
to apply their methods to ten microarray datasets, and
classification accuracy rates are well improved for several
datasets, and moreover, the authors tried to focus on the
level of possible parameter optimization in gene selection
using the GA. )is is considered the best performing area in
optimization methodology.

Using a gene expression dataset, in a combination of four
classifiers for cancer classification, a GA-based optimization
was utilized for gene selection. As classifiers, naive Bayes
feature selector, SVM hyperplane optimization, CUBIST,
and decision tree forests classifiers were employed [20].
Lymphoma, Lung, CNS, Colon, Leukaemia38, and Leu-
kaemia73 were the six datasets studied, with top prediction
rates of 97.1 percent, 99.03 percent, 81.3 percent, 87.8%, 100
percent, and 97.06 percent, respectively.

Salem and Hanaa highlighted the results of a study that
used gene expression to classify early breast cancer [21].
)eir method uses an IG approach to identify important
genes from both the initial microarray data and then gives it
as an input to a GA-based arithmetic material to enable the
optimization at a better speed. )e specificity of classifica-
tion was 100 percent.
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Bouazza and Sara Haddou presented findings from a
study that used SVM and KNN classifiers to classify cancer
[22]. )is study analyzed the data using various feature
selection techniques (such as Fisher, Relief, SNR, and
T-Statistics) on multiple gene regulation account sets of data
(Prostate, Colon, and Leukaemia) for both KNN and SVM
classifiers on 3 datasets of profiled gene expression. Merging
the SNR feature selection with SVM yielded the best results.
)e best classification accuracy rates were 95 percent for the
colon and breast data and 100 percent for leukaemia-based
data utilizing SNR feature selection with the KNN classifier.

Wang et al. [23] proposed an ensemble feature selection
method based on the sampling method. )e feature vector is
sampled using the threshold value set by a sample selector,
and the sampled features are ranked using the bootstrapping
method. Based on the ranking, the top-ranked features are
aggregated using a data aggregation function. High-di-
mensional microarray data are utilized to test the proposed
ensemble model, and the results show the efficiency of the
proposed algorithm is better compared to benchmark op-
timization algorithms. A detailed review of feature selection
methods for microarray data for cancer disease classification
is detailed by Esra’a Alhenawi [24].

)ere are several classification mechanisms proposed by
various researchers using different approaches. One such
novel approach is carried out by Konstantina et al. [25]. )e
authors utilized the transcriptomics dataset for modeling the
gene expression data. Deep learning-based time series
modeling is used for time series analysis to provide inference
on network regulatory. )e authors achieved an accuracy of
98%. Several experiments were carried out to show the ef-
ficiency of the proposed algorithm in gene expression time
series data.

A concept of altruism is proposed by Rohit Kundu et al.
[26]. Altruism concept is embedded in the WOA to ma-
nipulate the candidate solutions to reach the local optima
over the fitness value of the iterations. )is method of
alteration increased the fitness value of the WOA. )e
efficiency of altruistic WOA is tested on the microarray
dataset for optimized feature selection. )e authors used
eight microarray datasets from cancer data repository to
show the supremacy of the proposed algorithm in these
datasets.

)ere are three phases to the proposed technique.
After the data are provided in the feature learning process,
the IG filter identifies one of the essential features. )e
GWO algorithm then minimizes the volume of features
that have been selected. )e system’s final stage involves
using the SVM classifier to generate cancer classification.
)e following is a summary of the technique shown in
Figure 1.

3. Proposed System

)e ensemble model of gain information and grey wolf
optimization is the proposed system, and we utilized in this
research. Since the ensemble model provides better per-
formance than benchmark optimization algorithms, we used
this ensemble technique for performance improvement. )e

methodology of this analysis is depicted in Figure 2. Firstly,
the data collection plays a very crucial in the process. )e
data from the first stage were then moved to the second
stage, where they were classified. We employed two tech-
niques in the third stage to choose MDI and MDG features
for data training and testing. A comparative architecture
analysis was carried out.

3.1. Data Samples. During the collection process of the
concerned data, data on colon cancer gene expression were
collected fromAlon et al. [27].)ere are 63 samples (testing)
and approximately 2000 genes (attributes) among colon
cancer patients in the databases. )ere are 42 cancer cell
samples among them, as well as 22 normal biopsies.)e data
from colon tumor samples are shown in Table 1.

3.2. Classification Performance Evaluation in the Absence of
FeatureSelection. With all of the attributes in this technique,
an RF classification with tenfold cross-connection was
utilized to evaluate the model’s results.

3.3. Evaluation of Feature Selection with Classification.
MDG andMDAwere utilized as a feature selection approach
to predict the more relevant to the meaningful feature. We
then used selected features to build a robust model and
followed the same process as defined in the previous phase.

3.4. PerformanceMeasures. We compare the effectiveness of
the system without feature selection with the model with
feature selection in this procedure. To evaluate the classi-
fication’s consistency, we used recalls, accuracy, correctness,
and F1-score measures.)e neural network, which is used to
analyze the quality of classifiers, produces predictable
results.

Tables 1 and 2 show the confusion matrix’s inter-
pretation and the algorithm for calculating performance
indicators, evenly. Recalls, also known as sensitivity, are
the proportion to properly predict positive instances of
every discovery in the label class. )e precision metric
reveals which of the positive results are correct. )is
shows that the ratio of accurately predicted classes to total
classes is the accuracy of a classifier. )e F1-score is
calculated using a weighted average of accuracy and recall.
When there is an unbalanced class percentage, the F1-

Search
Algorithm 

Filter methodTraining data

Classification

Preselected features

The best

Feature subsets

Figure 1: Information gain process.
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score is frequently the most important than the precision
since it accounts for either false positives or false
negatives:

VI(xj) �
1

ntree


ntree

t�1

·
i∈OOBI yi � f Xi( (  − i∈OOBI yi � f X

j
i  

|OOB|
.

(1)

where VI (xj) denotes the value significance of xj. If
ignoring (or permuting) a variable decreases the random
forest’s accuracy, it is regarded as more significant. As a

result, variables that have a considerable mean drop in
precision are the most important for accuracy.

4. Feature Selection Algorithm Description

4.1. Gene Selection Using Entropy and Information Gain (Ig).
Entropy is considered a fundamental term in the infor-
mation theory that is used to calculate the homogeneity of
features. For instance, homogeneous samples have an
entropy of zero, while evenly split samples have one value
for entropy. A high feature dimensionality data and a
minimum size make data categorization exceedingly
challenging. A minimal percentage of millions of gene
characteristics analyzed are more relevant for given disease
data. As a result, only the most important features should
be kept. A thorough analysis of the gene profiles would aid
in the selection of the gene, which is the most significant for
problem identification.

E(Z)� -D+ log2(D+)-D-log2(D-) for a sample with nega-
tive and positive attributes.

)e entropy model can be summarized as the following
equation [28]:

Entropy(Z) � 
v

i�1
− Dilog2Di( . (2)

where D i is the probability of categorical variables a priori,
and Z and k are indexes in the classification systems that
indicate a certain category.

Microarray data

Selection of a feature for performance
evaluation

The selection
feature utilize IG

The selection feature
utilizes GWO

Selection of a feature for
performance evaluation

Classification

Classification

K-fold validation
K-fold validation

Comparing a model with features selection vs a model without feature selection.

Figure 2: Framework of the proposed model.

Table 1: Confusion matrix.

Predicted
Actual

Positive Negative
Predicted positive True positives (TPs) False negatives (FNs)
Predicted negative False positive (FPs) True negatives (TNs)

Table 2: Performance measure representation.

Performance metrics Formula
Recall TP/TP + FN

Precision TP/TP + FP

F1-score 2∗Recall∗ Precision/Recall + Precision
Accuracy (%) TP + TN/TP + FP + FN + TN
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Consider the case of 2 classification issues in particular
(V is known for classes). We consider gene with n potential
values (j1, j2... jn). )e following is the entropy:

Entropy
k

j
  � 

n

j�1
p(j) 

v

k�1
p

k

j
 log2 p

k

j
  , (3)

where p(k|j) is called probability distribution in variation K
assuming variable J remains static and is computed across
full variables with subclasses. In calculating IG, entropy is
their most important factor [29]. )e entropy across all
variables in the sample of data is determined by the dis-
tribution of the features in the data sample. )e information
is then divided into feature sections. )e entropy of each
group to be measured independently, and the overall en-
tropy can be computed by combining the entropy data of all
groups.)e entropy of particular groupings of sample data is
then subtracted from their total entropy of the dataset
distribution [30]:

IG(J) � Entropy(S) − Entropy
k

j
 . (4)

When gene J and category K are unrelated, IG(J)�

Entropy(S) Entropy (k|j)� zero, while when they are related,
Entropy(S) > Entropy (k|j), resulting in IG(J)> 0. A greater
association between J and K is directly proportional to a
larger discrepancy between K and J. For classification, a
feature selection within a higher IG value is more relevant.
As an outcome, genes with higher IG values are chosen first
from the original set of high-dimension genes to serve as the
sample for feature gene selection [31].

)ose steps of the IG algorithm have illustrated the form
of the IG flowchart in Figure 2. )e suitable output is a
subgroup Y of the real variable W, with a group of attributes
W in the input data set. )e attributes that will be used for
classifiers are first analyzed. Second, for each class, the
entropy of all subsamples is calculated using (1). )e
probability of every value of one attribute is then computed,
but the conditional entropy for each attribute is calculated
using (2). For all attributes, the IG is calculated using (3).)e
resulting IG values are sorted ascendingly, with all values
over a particular threshold value being selected.

4.2. <e Mathematical Model of GWO. Mirjalili and Lewis
established the GWO method to discover proper, restricted,
and uncontrolled objective functions [32]. Grey wolves’
social hierarchy serves as inspiration for the GWO algo-
rithm. Artificial wolves in a virtual environment imitate
tracking, encircling, and attacking actions, among others.
)e GWO social hierarchy divides wolves into four groups:
alpha (α), beta (β), delta (δ), and omega (ω). )e best option
is to think of wolves. )e second- and third-placed options
are known as β wolves and δ wolves, respectively. Wolves
guide α, β, δ wolves’ hunting activity, which reflects opti-
mization procedures. )e remaining population is regarded
as ω, and their movements are conditioned by those three
dominant wolves. Figure 3 depicts the power hierarchy of a
wolf pack. )e wolf commands all of the subordinates,

according to the dominance hierarchy. Similarly, β and δ
wolves have an influence on the wolves in their social roles.

Grey wolves begin their hunting behavior by enveloping
their target. )e following equations are used to represent
the encircling behavior in mathematics:

D
→

� C.
⇀

Xp

��→
(t) − X

→
(t)



,

X
→

(t + 1) � Xp

��→
(t) − A

→
.D
⇀

.

(5)

where t represents iterations, A⃗ and C⃗ are coefficient
vectors, X⃗p in X is the location vectors of a grey wolf, and Y
is the position vector of the prey. )e coefficients vector is
donated in the following way:

A
→

� 2 a
→

. r
⇀

− a
→

,

C
→

� 2.r2
→

.
(6)

)e variable of the constant vectors X
→

decreases linear
from 2 to 0 as a (t)� 2− (t− 1) (2/maxIter), where maxIter is
the maximum number of iterations.

Hunting behavior follows their circling in the prey. )e
movements of grey wolves are regulated by donates wolves
(α, β, δ):

Dα
�→

� C1
�→

Xα
�→

− X
→

, (7)

Dβ
�→

� C2
�→

Xβ
�→

− X
→

, (8)

Dδ
�→

� C3
�→

.Xδ
�→

− X
→

, (9)

X1
�→

� Xα
�→

− A1
�→

.Dα
�→

, (10)

X2
�→

� Xβ
�→

− A2
�→

.Dβ
�→

, (11)

X3
�→

� Xδ
�→

− A3
�→

.Dδ
�→

, (12)

X
→

(t + 1) �
X
→

1 + X
→

2 + X
→

3

3
, (13)

where β, ξ represents the number of iterations, D and C⃗
are coefficients vectors, X is the space vectors of a grey wolf,
and Y is the position vector of the prey. X

→
(t + 1) is the

resultant vector. )e coefficient vector is donated in the
following way.

)e above equations were utilized to arithmetically
model the wolf pack’s hunting behavior in this regard. In the
simulated environment, (7)–(13). Table 3 concludes with the

α

β

δ 

ω

Figure 3: Hierarchical orders of grey wolves in nature.
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GWO’s pseudocode. )e fitness value is calculated by diving
the survival rate by the highest survival rate.

4.3. Classification Algorithm Description. In this study, the
prediction of colon cancer was tested using random forest, a
well-known classification method for prediction models.
CART is a mixed classifier made up of unpruned decision
trees, whereas RF is a collection of unpruned data sets
(classification and regression trees). )e CART method is
described in great depth in this book [33]. When conducting
classification research, the RF forecast is the intermediate
majority of each tree category votes [34]. )e architecture of
an RF model for predicting colon class is shown in Figure 2.

5. Algorithm Description for Random Forest

Here, initial datasets are D(X, Y) and RF creates a simple
decision tree: where n is training observations, K is classes,
and (xi, yi) collection of cases whose class membership is
determined (X, Y). (xi, yi) can be used to represent the
combined classifier (X, Y). Find the best classifier that
minimizes error in comparison with the original dataset
[35].

6. Description of K-Fold Cross-Validation

Cross-validation is a recreation sample technique in the test
machine learning methods on a bounded set of data samples.
)e unique argument in the technique is k, which denotes
the number of sample groups that should be conquered into
a set of datasets. As a result, that approach is called as k-fold
cross-validation. )is technique is known as tenfold cross-
validation when the values of k are set to 10 [36].

)e steps for training K-fold cross-validation are as
follows:

(i) Divided full dataset into k equivalent sections, each
one of which is referred to as a fold. )e names of
the folds should be f1, f2 ...fk.

(ii) For i� 1 to k, preserve the fi bend in the validated
model and the subsequent k-1-fold in the classifi-
cation model.

(iii) Create a model given a dataset, and test its accuracy
using the validation data.

(iv) )emodel’s value is defined by the accuracy average
of all k-fold cross-validation occurrences.

6.1. System Requirements. Anaconda Enterprise 4.
CPU: 2× 64 bit 2.8GHz 8.00GT/s CPUs.
RAM: 32GB (or 16GB of 1600MHz DDR3 RAM).
Storage: 300GB.
)ese experimental data from the three phases are

summarized in this section: classification assessment with-
out feature selection, classifiers evaluations with feature
selection, and comparison analyzed evaluations. )e com-
plete dataset is divided into two groups for experimental
testing: normal and abnormal, using each of the 3000 genes.
Table 4 shows the correlation coefficient, as well as the
performance evaluation between the two groups in terms of
recalls, clarity, F1-score, and accurate scores. Our random
forest classification model can correctly classify 53 of 63
objects, as shown in Tables 5, yielding weighted recalls,
accurate, and F1-scores of 82.78 percent, 82.77 percent, and
82.775 percent, respectively.

Table 4: Confusion matrix without feature selection.

Actual
Predicted class

Abnormal Normal
Abnormal 35 5
Normal 5 12

Table 5: Performance analysis of the model without feature
selection.

Classes Recall Precision F1-
score

Accuracy
(%)

Abnormal 00.85724 00.89 00.90

84.870Normal 00.81 00.7277 00.7618
Weighted measure
(%) 82.58 82.85 82.67

Table 6: Confusion matrix with feature selection.

Actual
Predict classes

Abnormal Normal
Abnormal 38 2
Normal 3 22

Table 7: Performance of feature selection with the analysis of the
models.

Recall Precisions F1-scores Accuracy
(%)

Abnormal 00.95123 00.976 00.9628

96.166Normal 00.95240 00.90908 00.9702
Weighted measure
(%) 96.15 96.15 96.13

Table 3: )e GWO’s pseudocode.

(1). initialize GWO population of solution vectors
(2). define coefficient vectors A,

�→
C
→

and a
→

(3). evaluate fitness value f(xi), i� 1,. . .., nWolf
(4). determine Xα

�→
, Xβ

�→
, and Xδ

�→

(5). while iter<maxIter
(6). for i� 1:nWolf
(7). movement of grey wolves, according to Equation 18
(8). end for
(9) update coefficients A,

�→
C
→

and a
→

(10). calculate fitness values f(xi), i� 1,. . ..,n
(11). update Xα

�→
, Xβ

�→
, and Xδ

�→

(12). iter ←iter + i
(13). end while
(14). return Xα

�→
, f( Xα

�→
)
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Using all genes, this model is 84.870 percent accurate. To
eliminate the more relevant and redundant genes from every
dataset, we used mean decreased with accuracy and means
decreased Gini as feature selection methods. In Tables 6
and 7, the finally confusion matrix and efficiency measures
depend upon the top 33 genes, respectively.

)e models depending upon the top 35 identified genes
could accurately recognize 57 samples out of 61 samples with
a 95.161 percent accuracy. In addition, the models received

94.10 percent for weighted recalls, accuracy, and F1-scores,
and 94.10 percent for weighted recalls, accuracy, and F1-
scores. Table 7 shows a comparison of the model with and
without feature selection [37–47].

When the models with feature selection were utilized, all
of the measured parameters outperform their equivalents

Table 8: Comparison of analysis of the models.

Model
Evaluation metric

Precision (%) Recall (%) F1-score (%) Accuracy (%)
Models without feature selection 84.87 84.68 84.68 84.871
Models with feature selection 96.15 96.15 96.13 96.166

84.87 84.68 84.68 84.871

96.15 96.15 96.13 96.166

78
80
82
84
86
88
90
92
94
96
98

Precision Recall F1-score Accuracy (%)

Without feature selection
With feature selection

Figure 4: Comparison of analysis of the models.

Table 9: Comparison of the performance with different methods.

Publications Methods Number of attributes Accuracy (%) Time complexity Time (ms)
Simone A et al. [13] FDT 22 79.13 O(n log n) 0.54
Nguyen et al. [14] MAPH+PNN 5 85.19 O(n∗ n) 0.21
Lingyun Gao et al. [15] FCBFS + SVM 14 90.45 O(n log n) 0.43
Salem H et al. [16] GP+ IG+GA 60 84.68 O(n+ k) 0.34
Our proposed method IG+GWO 33 95.16 O(log n) 0.12

79.13%

85.19%

90.45%

84.68%

72.00
74.00
76.00
78.00
80.00
82.00
84.00
86.00
88.00
90.00
92.00

FDT PNN+ MAPH SVM+ FCBFS GP+ IG+GA

Accuracy

Accuracy

(%)

Figure 5: Graphical comparison of the model for various evalu-
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Figure 6: Process execution evolutionary timeline for the proposed
system.
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when the model without feature selection was employed, as
shown in Table 8. Figure 4 depicts the model’s overall
findings based on performance metrics in a graphical rep-
resentation. Table 9 shows that the time complexity of our
proposed system is the best.

Figure 5 shows a comparison of our suggested models
and previous techniques. Table 9 illustrates that our tech-
nique outperforms all other procedures with less informa-
tion about the expression of genes. Figure 6 describes the
process execution evolutionary timeline for the proposed
system.

7. Conclusion

A “gain information”- and “Grey wolf optimization”-based
ensemble model was incorporated as an optimal feature
selection approach into the random forest classifier to im-
prove the prediction model’s accuracy. Our suggested
technique can decrease the load of high-dimensional data,
and it allows quicker computations. Additionally, we pro-
vided the comparison of classification model analytics for
feature selection over prediction analysis without feature
selection. )e extensive experimental findings have shown
that the suggested method with selecting features is bene-
ficial, outperforming the good classification performances.
In fact, feature selection is an accurate method, and its time
complexity increases exponentially with the problem scale.
In order to alleviate the running time of large-scale instance,
multilevel window technology can be adopted. )at is, the
preprocessing scheme could be subdivided for multiple
levels of windows to reduce the number of jobs in a window.
By making full use of the time period in which the tasks of
the previous window are being processed, the tasks of the
next window are solved by using constraint programming
solver. )erefore, this work can serve as the research basis
for feature selection problem. [47].
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