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ABSTRACT Identification of brain tumors at an early stage is crucial in cancer diagnosis, as a timely
diagnosis can increase the chances of survival. Considering the challenges of tumor biopsies, three dimen-
sional (3D) Magnetic Resonance Imaging (MRI) are extensively used in analyzing brain tumors using
deep learning. In this study, three BraTS datasets are employed to classify brain tumor into two classes
where each of the datasets contains four 3D MRI sequences for a single patient. This research is composed
of two approaches. In the first part, we propose a hybrid model named TimeDistributed-CNN-LSTM
(TD- CNN-LSTM) combining 3D Convolutional Neural Network (CNN) and Long Short Term Mem-
ory (LSTM) where each layer is wrapped with a TimeDistributed function. The objective is to consider
all the four MRI sequences of each patient as a single input data because every sequence contains necessary
information of tumor. Therefore, the model is developed with optimal configuration performing ablation
study for layer architecture and hyper-parameters. In the second part, a 3D CNN model is trained respectively
with each of the MRI sequences to compare the performance. Moreover, the datasets are preprocessed
to ensure highest performance. Results demonstrate that the TD-CNN-LSTM network outperforms 3D
CNN achieving the highest test accuracy of 98.90%. Later, to evaluate the performance consistency, the
TD-CNN-LSTM model is evaluated with K-fold cross validation. The approach of putting together all the
MRI sequences at a time with good generalization capability can be used in future medical research which
can aid radiologists in tumor diagnostics effectively.

INDEX TERMS Deep learning, brain tumor classification, 3D MRI, hybrid CNN LSTM, 3D CNN, ablation
study.

I. INTRODUCTION

Brain tumor refers to the abnormal growth of lesions inside
the brain tissue or spinal cords which is one of the leading
causes of cancer mortality worldwide. Gliomas are a type of
tumors originating in the glial cells of the brain. These tumors
can be classified into two main categories benign and malig-
nant, depending on molecular features, where benign denotes
noncancerous cells and malignant denotes cancerous cells.
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According to the World Health Organization (WHO) [1],
malignant brain tumors of grades I and II are considered as
low-grade glioma (LGG) whereas grade III and IV tumors
are considered as high-grade glioma (HGG). Life expectancy
of HGG patients is low, approximately 1 to 2 years, whereas
patients having LGGs survive on average 5 to 10 years.
LGGs are typically considered slow-spreading infiltrative
tumors [2]. Early detection, accurate grading and correct
identification of the type of tumor are imperative as a timely
diagnosis can aid significantly in decreasing the mortality
rate [3].
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The diagnosis of tumors is usually done using two com-
mon methods named open brain biopsies and brain imaging.
In stereotactic biopsies, after drilling a tiny hole into a human
skull, a small slice of tissue is taken out for observation
under a microscope. However, this technique is invasive and
risky [4]. Risks of the biopsy test include excessive bleed-
ing and damage to the brain caused by the biopsy nee-
dle. This may result in severe migraine headaches, stroke,
coma, infection, seizures and might even lead to death [5].
Moreover, biopsies are often inefficient, time-consuming,
and life-threatening due to the exceedingly invasive char-
acteristics of the technique [6]. As a solution, noninvasive
imaging procedures such as single-photon emission com-
puted tomography (SPECT), positron emission tomography
(PET), computed tomography (CT), MRI, infrared spectro-
scopic imaging, or sometimes a combination of all these,
have been utilized for the diagnosis and classification of brain
gliomas [7]. MRI can distinguish soft tissue and identify
small changes in tissue density and physiological changes
correlated to tumors. Furthermore, type, dimension, loca-
tion of tumor and malignancy grade can be determined with
conventional and advanced MRI scans which are now com-
monly employed to differentiate LGGs from HGGs [8]. These
scans also known as MRI sequences, apprehend various pos-
sessions of tumors depending on different time and inten-
sity settings where each sequence is regarded essential in
the detection of different tumor sub-regions [9]. However,
the categorization of gliomas manually by doctors is often
challenging and error-prone, due to the hidden and com-
plex characteristics of low-grade and high-grade features.
The drawbacks of these diagnostic routines are that they
are time-consuming and not always accurate [10]. As the
number of cancer cases is growing over the period, it is
quite impossible for the doctors to diagnose every patient
especially at the primary stage. Moreover, in some rural
areas around the world, timely diagnosis becomes hindered
due to the lack of expert radiologists. In this regard, a non-
invasive computer-aided fully automatic diagnostic system
is necessary to aid clinical experts in diagnosis and treat-
ment planning and reduce the mortality rate by providing
more reliable, faster and more accurate tumor detection [11].
An automatic medical image examination method can lessen
diagnosis time, error, increase the stability of results and thus
can reduce the strain on radiologists. CNN based models
have had major accomplishments in medical image research
and analysis, however there remain challenges in accurately
classifying grades using 3D pictures [12]. Moreover, devel-
oping a fully automated method with the highest accuracy to
categorize brain tumor is still a challenging task, due to the
size, texture, localization and intensity similarity of malignant
regions to surrounding tissues [13].

In this research, we have introduced two deep learning
approaches to classify brain tumor into HGG and LGG
to compare their performance, where in first approach a
hybrid model combining CNN with LSTM and wrapped by
TimeDistributed function is proposed and in second approach
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a 3D CNN model is employed. Three BraTS 3D MRI
datasets are used in this research which includes four 3D
MRI sequences named T1-weighted MRI (T1), T1-weighted
MRI with contrast enhancement (T1ce), T2-weighted MRI
(T2), and Fluid Attenuated Inversion Recovery (FLAIR) for
each patient. To date, a number of methods have been devel-
oped for the detection, segmentation and classification of
gliomas using 3D brain MRI. However, in most studies,
segmentation or classification is carried out using a single
MRI sequence. To the best of our knowledge, no previous
researches have classified HGG and LGG employing four
3D sequences of each patient as a single input. However,
radiologists examine all the sequences to determine most
accurate tumor grading as all of the sequences contain rele-
vant features [14]. Following radiologist’s working principle,
training a deep learning model with all of these sequences
might have impact on improving interpretation performance.
Therefore, the aim of this paper is to propose a deep learning
model with highest accuracy which is able to interpret all the
3D sequences of a patient as a single input data. From this
concern, in the first approach, the model is developed in such
a way that, all the four types of 3D MRI images of a patient
can be passed as single input data.

The proposed model is named TimeDistributed-CNN-
LSTM (TD-CNN-LSTM), where each layer of CNN archi-
tecture is wrapped with a TimeDistributed function. In this
process, LSTM is introduced to learn higher level parameters
while feature extraction is accomplished using CNN. LSTM
can deal with the issue of vanishing gradients efficiently,
unlocking certain memory positions in a spatial context. The
input layer is configured using a TimeDistributed wrapper
to pass the four 3D images of a single patient as one input.
However, interpreting all the MRI sequences together with
optimal performance especially in 3D is quite challenging.
In order to get the optimal model architecture depending
on the highest accuracy, an ablation study is performed by
changing different hyper-parameters and layer architecture.
In the second approach, a 3D CNN model is trained using
each of the four 3D MRI sequence respectively. The pur-
pose of introducing the second approach is mainly to show
the effectiveness of our first approach by analysing all the
MRI sequences of a patient at once. For both of the models,
BraTS 2018 and BraTS 2019 are combined to increase the
number of images and used as train dataset where BraTS
2020 dataset is employed as test dataset. To evaluate the per-
formance of both models, evaluation metrics named accuracy,
precision, recall, F1-score, specificity, mean absolute error
(MAE), root mean squared error (RMSE) and the Area Under
Curve (AUC) have been analyzed. The results obtained with
the TD-CNN-LSTM and 3D CNN models are compared to
determine which technique yields the best performance hav-
ing consistency. Results suggest that our proposed TD-CNN-
LSTM model outperforms 3D CNN in terms of accuracy,
which evidences that instead of analysing single sequences,
employing all the sequences can significantly aid in improv-
ing performance. Moreover, ablation study has been proved to
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be an effective approach in developing a deep learning model
with the highest performance. Therefore, in future medical
research on 3D MRI imaging, performance of the model can
be improved effectively by employing all the imaging of a
patient and carrying out the ablation study.

The rest of the paper is laid out in eight sections. The ILit-
erature review is conducted in section II which also includes
the limitations of previous studies. Section III discusses the
aim and scope of this study. Datasets that are used in this
research are discussed in section IV and visualization of 3D
MRI images is shown in section V. Preprocessing of these 3D
images is conducted in section VI. Both of the approaches
(hybrid CNN LSTM and 3D CNN) proposed in this study
are briefly explained in section VII. The computed results of
the entire study are showcased in section VIII along with a
comparison with the proposed hybrid approach and existing
literature. Lastly, section IX presents the conclusion of this
study.

Il. LITERATURE REVIEW

In recent years, there have been major advances in the field
of Brain Tumor Classification. Deep convolutional neural
networks (DCNN) are often used because of their high accu-
racy but this comes at the cost of a long computational
time for each epoch. Jude et al., [15] employed DCNN by
modifying the training algorithm to classify brain tumors
into four classes. A total of 220 images comprising of T1,
T2 and T2 flair sequences, were used in this work. Their
proposed model DCNN achieved an average accuracy of
96.4% accuracy in classifying the tumors. Of these images,
80 images were in the training set where four classes have
the equal number of train data (20 images). This is a highly
balanced dataset and there is a significant shortage in training
images. In a multi-class classification problem, usually for
such a small number of data, the model cannot be trained
properly and thus may result in increasing false interpretation
rate. However, 2D MRI with size of 256%256 was used in this
study where employing 3D MRI and increasing the number of
images might aid to improve their performance. Mzoughi et
al [16] proposed a 3D CNN network to classify brain gliomas
into LGG and HGG resulting in an accuracy of 96.49% in
the validation dataset. T1-graded 3D MRI sequences from
‘BraTS’ 3D MRI dataset, containing 209 HGG and 75 LGG
MRI scans were utilized in this work. However, except
for accuracy, no other performance evaluation matrics are
explored in this study and employing other MRI sequences
might be an effective approach. DeepSeg model has been
proposed by the author of this study [13], to detect and
segment brain tumors using MRI images. In this research,
the BraTS 2019 dataset was employed containing 259 HGG
and 76 LGG MRI scans with four sequences where only the
Flair MRI sequence was used for segmentation of size 224 x
224. Mohamed et al., [17] created a tumor grading classifier
with a pre trained VGG16 model and a CNN based U-net
architecture. The Cancer Imaging Archive (TCIA) containing
imaging data for LGG MRI with sequences T1 pre-contrast,
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FLAIR, and T1 post-contrast of total 110 patients were
employed for both segmentation and classification tasks.
After segmenting the images, using a VGG16 based CNN
classifier, they were able to classify LGG into grade II and
grade III with an accuracy of 89%, a sensitivity of 87% and
a specificity of 92%. However, in tumor segmentation only
2D FLAIR sequence was used. In classification, they used
2D MRI data instead of using 3D MRI which provides more
details of the brain tumor. Training and validating a CNN
model with different sequences may result in inconsistent
performance as these contain different information and fea-
tures of brain tumors. A similar study regarding this issue
was conducted by Banzato et al [18]. They used a trans-
fer learning model GoogleNet to classify meningiomas and
gliomas across all sequences respectively. A total of 80 cases,
56 meningiomas and 24 gliomas were used in their study.
Each case offers brain MRI image of 512 x 512 dimensions
which was scaled down to 224 x 224 pixels. The authors
trained the model using post-contrast T1 images to develop
their proposed classifier named trCNN. The highest test accu-
racy of 94% was recorded with post contrast T1 sequence
whereas for Pre contrast T1 and T2 sequences, accuracy
of 91% and 90% were achieved respectively. However, this
study employed 2D data and the model was trained with each
of the MRI sequences individually. A comparison in classifi-
cation performance between 2D CNN and 3D CNN models in
brain tumor classification has been done by the authors of this
study [19], They used TCIA dataset comprising of 108 MRI
images and the BraTS 2018 dataset containing 210 HGG
and 75 LGG images where each dataset contains T1, T1-
Gd, T2, and FLAIR sequences. A 3D brain tumor segmenta-
tion model, based on U-net architecture, was proposed. The
authors recorded an accuracy of 97.1% with 3DConvNet (3D
CNN) which was higher compared than the 96.3% accuracy
gained with the 2DCNN model. Thiruvenkadam et al., [20]
developed six CNN classifiers in order to find the optimal
model to classify HGG and LGG lesions in brain MRI
images. All their models were constructed by changing the
combination of hyper-parameters. For training these models
BraTS 2013 dataset was used where 2D slices (240 x 240)
are extracted from 3D brain MRI images. Each model had
been tested with eight different volumes of Whole Brain
Atlas (WBA) dataset and the average results from all eight
volumes were calculated. They achieved the highest accuracy
of 88.91% from the model five layers with stopping criteria
and batch normalization (FLSCBN). Though, 2D CNNs are
widely used in the field of deep learning, they are not flawless
in computer vision tasks with 3D volumetric data. To address
this issue, some researchers experimented with LSTM mod-
els to classify brain tumor in 3D MRI images. Such an
approach was proposed by Iram et al., [21] who introduced
a combination of CNN and LSTM for the classification of
3D MRI images. They used three transfer learning models
named AlexNet, ResNet, and VGGNet for feature extraction
and classified with a LSTM model utilizing the features
respectively. The BraTS 2015 dataset containing four MRI
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sequences having an image dimension of 240 x 240 x 155
was chosen where only the FLAIR sequence was used for
their experimentation. However, researchers balanced the
dataset by keeping 60 images in HGG and 60 images in
LGG class. Their model performed best with the highest
accuracy of 84% using VGG16 as feature extractor. A similar
approach was proposed by Rukmani et al., [12] who used
VGG16 and AlexNet model for feature extraction and LSTM
to classify tumor based on the features. For dataset, BraTS
2015 was used containing 250 HGG and 50 LGG cases of
four MRI sequences. However, only FLAIR sequence was
utilized for the experiment. With their LSTM model, the
highest classification accuracy of 85% was recorded with
features extracted by the VGG16 network, whereas features
extracted by AlexNet resulted in an accuracy of 70%. Other
authors [11] developed a CNN architecture of 22 layers for
classifying brain tumors into three classes using 3064 2D
slices of T1 weighted contrast enhancement MRI images
instead of 3D sequence. Training the model using an image
size of 256 x 256 and employing 10-fold cross validation the
highest accuracy of 96.56% was recorded.

Most of the studies described above contain a few common
limitations of employing only a single sequence, employing
2D slices instead of 3D sequences, and not experimenting
with the proposed model using different configurations. The
performance of their models could be improved with optimal
classification accuracy if these issues could be addressed.

Ill. RESEARCH AIM AND SCOPE

The aim of this research is to mimic radiologist’s analysis
pattern into a deep learning model regarding to tumor iden-
tification using 3D MRI scans. As Atrtificial Intelligence is
developed following the concept of human brain, we hypoth-
esize that, if a deep learning model is developed based on
the analysis scheme of radiologists, an accurate, reliable and
effective performance might be achieved that can outperform
other existing approaches. The main contributions of this
study can be summarized as follows:

1. In this study, three 3D MRI datasets named BraTS
2018, BraTS 2019 and BraT'S 2020 are used to increase
the volume of images and conduct the experiments.

2. In pre-processing step, all the 3D images are normal-
ized to a standard scale of 0-1 using the min-max
normalization technique and resized to 128 x 128 x
32 to increase overall performance and decrease the
computational complexity.

3. Instead of using single MRI sequences, all the
sequences and the Region of Interest (ROI) of a par-
ticular patient are aimed to pass to the CNN model as
one input.

4. A hybrid TD-CNN-LSTM model is proposed where
the layers of CNN are wrapped with a TimeDistributed
function, in order to pass all the 3D images of a single
subject as one input.

5. A 3D CNN model is introduced and trained with single
sequences, in order to compare the performance with
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the TD-CNN-LSTM network in terms of accuracy and
performance consistency.

6. Both of the models are trained, validated with a com-
bined dataset of BraTS 2018 and BraTS 2019 and tested
with BraTS 2020 dataset.

7. An ablation study of ten cases is performed to deter-
mine the best configuration of the proposed TD-CNN-
LSTM model in terms of the highest possible accuracy
and lowest possible time complexity by altering any
components or layers from the architecture.

8. Both of the models are evaluated using different per-
formance metrics: Accuracy, Precision, Recall, Speci-
ficity, F1-score, MAE, RMSE and AUC score.

9. To check the performance consistency of TD-CNN-
LSTM model rigorously, the model is trained multiple
times using K-fold cross validation with different k
values.

Our entire interpretability pipeline is represented in Fig. 1.

IV. DATASET

For the classification task, three BraTS datasets named BraTS
2018 [22], BraTS 2019 [23] and BraTS 2020 [24] are
explored in this research where the datasets are composed
of two classes, HGG and LGG. Each of the dataset contains
four 3D MRI sequences and one corresponding ROI for a
single patient or subject in NIfTI files. Additionally, each 3D
volume contains 150 2D slices/images of MRIs from different
sections of the brain. The single slices are of dimension 240 x
240 and in single channel grayscale format.

In BraTS 2018 dataset, a total of 282 cases are found where
208 cases are of class HGG and 74 cases are of class LGG.
BraTS2019 dataset comprises 331 cases where 257 cases are
found in class HGG and 74 cases are found in class LGG.
The BraTS 2020 dataset was initially divided into training
and a validation set while collecting from the resource. The
validation set comprises 120 cases of both classes HGG and
LGG but the grade is not publicized in the provided comma
separated value (CSV) file [25]. Therefore, only the training
dataset is used for this research. In this regard, a total of
365 useable cases are collected from BraTS 2020 dataset,
where 291 cases are of class HGG and 74 cases are of class
LGG. In all three datasets, there is a significant imbalance
between HGG and LGG classes and a scarcity of LGG class
can be seen. To address this issue, BraTS 2018 and BraTS
2019 datasets are combined to train and evaluate both of
the models. In the combined dataset, a total of 361 subjects
are present where 210 cases are of class HGG gathered
from BraTS 2018 dataset and 151 cases are of class LGG
gathered from both BraTS 2018 and BraTS 2019 datasets
thus minimizing the scarcity of LGG class. Lastly, BraTS
2020 dataset is employed as a test set with the purpose of
evaluating how both of the models perform with an external
test dataset (BraTS 2020).

The three datasets are summarised in Table 1.

Fig. 2 illustrates the forming of training and testing
dataset used in this research as well as axial slice of four
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FIGURE 1. Workflow of the entire interpretability pipeline.

TABLE 1. Dataset description.

Dataset name BraTS 2018 BraTS 2019 BraTS 2020
Type of image 3D brain MRI 3D brain MRI 3D brain MRI
Image format NIfTI NIfTI NIfTI

Size of the images 240 x 240 x 150 | 240x240x 150 | 240x240x 150
No. of classes Two Two Two

Name of classes HGG, LGG HGG, LGG HGG, LGG

No. of useable | 282 331 365

subjects

No. of 3D images in | 5 5 5

each subject

Name of the four | FLAIR, T1, | FLAIR, T1, | FLAIR, Tl,
sequences and | Tlce, T2 and | Tlce, T2 and | Tlce, T2 and
corresponding ROI | Seg Seg Seg

of each subject

standard MRI sequences for a single patient of each of the
datasets.

V. VISUALIZATION OF 3D IMAGE

A 2D image consists of pixels in single or multi-channel
whereas 3D MR images comprise of 3D cubes or voxels. For
reading, visualizing and writing 3Dneuroimaging data, NiBa-
bel which is a Python package is commonly-used. Loading
or reading a NIfTI file using the load() function of NiBabel
ensures the encoding of all the information in the file where
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FIGURE 2. Dataset description with four imaging modalities and
formation of training and testing datasets.

each detail is known as ‘attribute’. When visualizing a 3D
image with NiBabel, it initializes a list in which it iterates over
all the 155 slices of the 3D volume and whenever a volume
is read, each slice is appended sequentially in the list. The
number of voxels in a 3D image can be calculated using the
following formula:

Vt =StXHSXWS (1)

60043



IEEE Access

S. Montaha et al.: TD-CNN-LSTM: Hybrid Approach Combining CNN and LSTM to Classify Brain Tumor

where, V is the total number of voxels in an image, S; is the
total number of 2D slices in an image, H; is the height of each
slice and Wy is the width of each slice.

As explained before, the number of slices in each image
is 155, for our study the height and width of each slice is
240 (Fig. 3). The total number of voxels in each image can
therefore be calculated as 155 X 240 X 240 = 8928000 voxels
per image. To get a better understanding of the 3D sequences
and their characteristics, a few images are visualized by
converting them into 2D slices.

Voxel (Volumetric Pixel)

\4
X

FIGURE 3. Visualization of 3D brain MRI.

A. PHYSICS OF MRI IMAGING SEQUENCES

MRI provides intense details of the brain, the spinal cord
and the vascular anatomy, across three dimensions, axial,
sagittal and coronal. Another advantage of MRI is that it
can be used to observe blood flow and vascular malfor-
mations in brain tissues. However, all of the sequences
contain certain and diverse features of brain tumor having
different appearances which are analysed to determine the
presence and grade of cancer. Tlce images are eminent in
visualising blood brain barrier (BBB) interruption, while T2
and FLAIR images are recognized for distinguishing tumor
boundaries and peritumoral edema [26]. The 3D FLAIR
sequence ensures a good signal with fewer voxels, a high-
spatial resolution with high signal to noise ratio (SNR), and
good Cerebrospinal Fluid (CSF) suppression without of CSF
flow artifacts [27]. The cystic constituents and edema are
better portrayed with the T2- weighted than the T1- weighted
MRI sequence. In comparison with Axial T2-weighted and
Axial T2-weighted FLAIR images, Axial FLAIR image with
nulling of the signal from the cerebrospinal fluid shows the
metastatic lesions more visibly. FLAIR MRI sequence can
aid in tumor detection efficiently by providing precise infor-
mation on tumor infiltration [13]. However, T1 visualises a
LGG tumor better. Due to hyper cellularity, the tumor region
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appears as a hypo intense signal in T1- weighted images
and as a hyper intense signal in T2- weighted images [28].
Moreover, T1 is recommended for the segmentation of tumor
from non-affected brain cells. T1ce makes the tumor borders
visible. With the T2 sequence, the edema (fluid) surrounding
the tumor is more visible. FLAIR is suitable to distinguish
the edema area from cerebrospinal fluid [29]. T2 and FLAIR
MRI sequences are suitable for evaluating extracellular fluid
in brain parenchyma [30].

1) FLAIR

In the imaging procedure of the FLAIR sequence, the motion
of water molecules is suppressed [31]. The FLAIR sequence
is produced using very long Time to Echo (TE) and Repetition
Time (TR) times that ensure that abnormalities, for instance
edematous tissues, remain brighter while the normal CSF
appears darker (Fig. 4). Therefore, FLAIR is considered as
a highly effective MRI sequence to distinguish the edema
region from the CSF. In addition, white matter appears dark
grey, the cortex light grey and fat appears light in a FLAIR
MRI sequence.

CSF
(dark)

Tumor
(bright)

FIGURE 4. Axial view of FLAIR sequence.

2) T

T1-weighted MRI sequences are generated with short TE and
TR times which make the CSF darker (Fig. 5). T1 is a widely
used sequence for the analysis of brain tumor patterns, as it
allows an easy annotation of the healthy cells. In addition,
white matter appears light, and the cortex grey and fat are
bright in a T1-weighted MRI sequence.

AT\
// T ‘ =
N B
Tumor . : \y CSF
(dark) ‘L . o, (dark)
9 T4
«©

FIGURE 5. Axial view of T1 sequence.

3) T2
T2-weighted sequences are generated with long TE and TR
times, making the CSF brighter (Fig. 6). In a T2 sequence, the
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CSF
(bright)

Tumor
(bright)

FIGURE 6. Axial view of T2 sequence.

edema region is brighter than in other MRI sequences. Like
FLAIR, white matter appears dark grey, the cortex light grey
and fat appears light in a T2-weighted MRI sequence.

4) TICE

Finally, in Tlce sequences, the brain tumor borders appear
brighter because of the accumulation of contrast agent. This
is caused by the interruption of the blood-brain blockade
in a proliferative brain tumor area (Fig. 7). Analyzing this
sequence, the necrotic core and the active cell regions can
be differentiated precisely. Some studies suggest that T1ce is
more sensitive than with the other sequences [32]. Moreover,
T1ce shows details of regional angiogenesis and the integrity
of the blood-brain barrier in the tumor region.

CSF
(dark)

Tumor
(dark)

FIGURE 7. Axial view of T1ce sequence.

Table 2 summarizes the brain MRI sequences based on
their characteristics and pictorial appearance.

TABLE 2. Comparison among four MRI sequences.

SEQUENCE TR TE TUMOR CSF
FLAIR VERY LONG | VERY LONG BRIGHT DARK
T1 SHORT SHORT DARK DARK
T2 LONG LONG BRIGHT BRIGHT
TICE LONG LONG DARK DARK

3D MRI images can be observed in three dimensions
namely, Sagittal, Axial, and Coronal, which enables medical
specialists to examine the shape of the tumors (Fig. 8).

VI. PREPROCESSING PHASE

Classification of brain tumors using 3D MRI scans is always
challenging and computationally intensive due to the com-
plex architecture of 3D images. Pre-processing operations are
therefore required to enhance the model’s performance [4].
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(c)

FIGURE 8. (a) Sagittal, (b) Axial, and (c) Coronal plans of FLAIR sequence.

In this research, two pre-processing steps intensity normaliza-
tion and rescaling are performed to all of the four sequences
of the dataset.

A. NORMALIZATION AND RESCALING

As intensities differ in MRI images, due to imaging proce-
dures having different TE and TR, these 3D images need to be
normalized. As scanning of patients is likely to be performed
in different environments; intensity normalization plays an
important role in brain tumor classification.

Data normalization ensures that each input parameter of
a model has a similar data distribution transforming the
floating-point feature values from their regular range into
a new arbitrary standard range that is usually O to 1. The
distribution of such pixels resembles a Gaussian curve.
Data normalization is done when the approximate higher
and lower pixel boundaries of an image are identified and
data is approximately homogeneously distributed within that
particular range. Min-max normalization [33], a widely-
used technique, is adopted in our study to normalize the
pixels. Algorithm 1 describes the min-max normalization
process.

G= I @)
max(x) — min(x)
where, x refers to the pixel values (x1,...,xn) and z; is the ith
resultant normalized data.

The procedure for computing the normalization used
in our paper can be explained using the pseudo-code of
Algorithm 1:

Resizing 3D images accelerate the training process since
most existing systems cannot handle the massive volume of
3D image data. After normalization, the dataset is rescaled
to 128 x 128x32 voxels [34] because of the GPU memory
limitations. Here, to ensure computational efficiency, only
the middle 32 slices are utilized instead of all 155 slices
of the brain and the original size of the 3D MRI image
(240 x 240 pixels) was down-scaled to 128 x 128 pixels [35].

60045



IEEE Access

S. Montaha et al.: TD-CNN-LSTM: Hybrid Approach Combining CNN and LSTM to Classify Brain Tumor

Algorithm 1 Pseudo-Code of min-max Normalization
START

DERIVE mx = max(dataset) //highest pixel value
DERIVE mn = min(dataset) //lowest pixel value
L = len(dataset) //length of the dataset
FOR image in range of L:

CALCULATE s = image — mn //subtraction of
lowest pixel value from each image

CALCULATE r = mx — mn //deriving range
of dataset by deducing minimum pixel value from
maximum pixel value
7. DERIVE z = s/ r // z denotes the normalized

value

8. ENDFOR

END

AR S e

o

VIii. PROPOSED APPROACHES

As stated, in this research, two fully automatic deep learning
approaches are carried out for the classification of glioma
brain tumors into HGG and LGG.

In the first approach, an integrated TD-CNN-LSTM net-
work is employed which receives all the four sequences as
a single input. In Fig. 9, an example of the sequences of a
single HGG input, denoted as HGG [0], consisting of four 3D
images is shown where all four 3D MRI images for a single
subject is passed to the TD-CNN-LSTM network at once as
an input. In the second approach, we propose a 3D CNN
architecture to classify brain tumors, deriving deep feature
interpretation from a single MRI sequence, where the model
is trained four times for four MRI sequences respectively.

[ T2 ] [nacel

(PAarR | [ 11 |

‘_
Second Approach-

Single Sequence Input

First Approach
All The Four Sequences
Input At Once

FIGURE 9. Visualization of two proposed approaches.

A. DATASET SPLIT

As described, we have employed three datasets for the
interpretation of the study where BraTS 2018 and BraTS
2019 datasets are merged to train both of the models and
BraTS 2020 dataset is left as the test dataset. In this regard, the
preprocessed combined dataset is split into two sets: training
dataset and the validation dataset with a ratio of 80:20. After
splitting, the training set of subjects holds a total 289 x
4 = 1156 3D images and the validation set of 72 subjects
consisting of a total 71 x 4 =288 3D images and the external
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test dataset contains 365 subjects composed of a total 365 x
4 = 1460 3D images.

For second approach, the data split ratio is kept similar to
the first approach with the difference that there are now four
pairs of training validation and test datasets (one pair for each
3D MRI sequences).

B. FIRST APPROACH (TD-CNN-LSTM MODEL)
Classification using just one MRI sequence could potentially
lead to substandard performance as all of the sequences
contain certain characteristics of brain tumor. Individual
MRI sequences comprise independent details whereas all
MRI sequences combinedly may provide coherent radiomic
and relevant clusters of features [36]. As explained in
section V-A, each sequence contains important features and
if all the sequences are fed into a deep learning network, the
necessary parameters from all these MRI sequences can be
extracted effectively. This technique can hypothetically lead
to a better performance. Therefore, we integrate LSTM into
the CNN architecture wrapped with TimeDistributed function
with the aim of extracting the 3D context of slices in a sequen-
tial manner. As stated, the optimal model configuration is
attained through ablation study by training the model several
times with different configurations. Hence, we initially gen-
erate a base model, perform ablation study on it and obtain
the optimal configuration of our proposed TD-CNN-LSTM
model in terms of highest performance.

1) PROPOSED MODEL

CNNs combined with RNNs have been yielding promis-
ing results on several complex computer vision tasks. This
approach provides effective solutions by detecting the hid-
den outlines in visual data using back propagation [37].
The proposed model is titled Time-Distributed_CNN_LSTM
(TD-CNN-LSTM) as the architecture is deployed by com-
bining CNN and LSTM and wrapped with TimeDistributed
layer [38]. This model consists of four parts: 2D convolution
for feature extraction, pooling layer for feature reduction
over the sequences, an LSTM layer, and a final classification
layer [39]. In this hybrid network, CNN handles the spatial
dependencies while LSTM deals with the temporal depen-
dencies. Contrary to CNN, LSTM is proficient in sequence
processing by adaptively apprehending long-term depen-
dences and nonlinear dynamics of sequential data. LSTMs
are powerful in analyzing a dataset of a sequential nature
but configuring LSTM with CNN is complex. To overcome
this complexity, a TimeDistibuted function is used to config-
ure the input shape and proceed to convolution and pooling
layers.

A TimeDistibuted layer typically adds an additional
dimension to the input shape of the corresponding argument-
layer. This enables the CNN to receive multiple frames as
one input. TimeDistributed layer behaves as a layer wrapper,
wrapping the CNN model itself when employed to an input
tensor. This wrapper allows the addition of a layer to each
sequential slice of input data where inputs can be in 3D.
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In our experiment, this function is used on each convolution,
pooling, and input layer. Here, the input dimension is denoted
as input (batch_size, frame, width, height, channel) where
batch_size is the pre-defined batch size of the model, the
frame is the number of frames to input at once, width is the
width of the image, height is the height of the image and
channel is the number of slices of the image.

In our study, the batch_size is ‘None’ which indicates
that the pre- defined batch size of the model that will be
applied while training the model. As we have four 3D images
for each subject, the number of frames is equal to four.
The last three parameters (height, width, channel) are 128,
128 and 32 respectively. As we have 32 slices for a 3D
image, 32 is denoted as the number of channels for each 3D
data. TimeDistributed convolutions are convolutions directed
through a TimeDistributed wrapper. This permits the applica-
tion of any layer to every temporal slice (or frame) of the input
individually. In this study, the temporal frames for the MRI
data are derived from the 3D volumes [40]. Generally, the
TimeDistributed approach is useful when, solving a computer
vision task which requires a complex model.

LSTM is a variant of RNN introduced to capture
global sequence dependencies of the input data. The
spatio-temporal parameters processed by LSTM help the
model in identifying hidden outlines in challenging frame-
to-frame sequences [37]. In this process, the basic features
extracted by the CNN are passed to the LSTM layer as inputs
to ascertain the temporal dependencies. After that, LSTM
layer receives a sequence of CNN outputs as input accruing
the temporal dependencies of the frames of all four MRI
sequences [41]. An LSTM memory cell comprises of three
components the forget gate, the input gate, and the output
gate. The LSTM operation procedure consists of the follow-
ing steps [42]:

o The output value of the last instant and the input value of

the present instant is passed as input into the forget gate.
The output of the forget gate is calculated using (3):

fi =0 (W - [he—1, x,1 + by) 3)

where, the range of f; is (0, 1), Wy represents the weight
of the forget gate, by represents the bias of the forget
gate, x; represents the input value of the present time,
and finally h,_; denotes the output value of the last
instant.

o The output value of the last instant and the input value
of the present is passed as input into the input gate. The
output value and candidate cell state of the input gate are
calculated using (3) and (4):

ir =0 (Wi [h—1, %]+ by) 4)
C; = tanh (We - [A;—1, x:] + be) (5)
where, the value range of i; is (0,1), W; is the weight of
the input gate, b; is the bias of the input gate, W, is the

weight of the candidate input gate, and b, is the bias of
the candidate input gate.
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o The current cell state is updated using (6):
Ct:ﬁ*ct—l+it*6t (6)

where the values range of C; is (0, 1).

o The output and value of &, and x; are inputted into the
output gate at time t. The output o, of the output gate is
acquired as follows using (7):

0 =0 Wy [hi—1, %]+ bo) @)

where, the value range of o; is (0,1), W, is the weight of
the output gate, and b, is the bias of the output gate.

o The output value of LSTM is acquired by computing
the output of the output gate and the state of the cell,
applying following formula (8):

ht = Oy * tanh (Ct) (8)

Like RNN, LSTM has time steps and “MEMORY " for each
time step. In our study, time steps represent the MRI image
sequence. The diagram in Fig. 10 explains the mechanism of
LSTM cell at time step t.

(ht ) Output

—{ct)

* Next Cell
State

\_ht \

) : . Next Hidden
Hidden N ’ State

state
@ Input

Current Input PR Scaling of
@ Vector @Stgmmd Layer @ Information
@ Previous Cell i - o
Memon anh Layer + emant-wise
4 Addition
Output of .
@ previous @ Bias
LSTM Unit

(c.) New Updated
@ Memory

W, U = weight vectors

Current

\»\h(/ / cell output

FIGURE 10. Operation procedure of LSTM.

The Forget gate (f), Input gate (I) and Output Gate(O)
employ the Sigmoid activation function and candidate layer
uses Tanh as the activation function. The data can be
added, removed or updated to the cell state through sigmoid
gates [43]. The method of recognizing and eliminating data
is determined by the sigmoid function which takes the output
of the last LSTM unit (h;_1) at time t — 1 and the present
input (x;) at time t. The sigmoid function decides which
parts of the previous output should be eliminated by the
forget gate f;. After inputting the weights vector.dot (U) and
previous hidden state.dot (W), these gates concatenate these
and apply the activation function, subsequently producing
vectors f, C, I, O in a range of 0 to 1 for Sigmoid and
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—1to 1 for Tanh for every time step. C;—1 and C; denote the
cell states at a particular time t — 1 and t, respectively, and b
represents the bias. Memory state C of LSTM cell is where the
memory or context of input is stored. This stored information
can be modified in different time steps. The output values (A;)
are determined based on the output cell state (o). A sigmoid
layer determines which portion of the cell state will be used
for the output. Next, the output of the sigmoid gate o;) is
multiplied with the values produced by the tanh layer from
the cell state (Cy).

In our study, the information for all MRI sequences is
stored in memory state C. The final output is based on ana-
lyzing all features of the four MRI sequences (Fig. 11).

HGG[0]

[

features

[ FLAIR | n | | m [ Tice |

features features

Memory
State

FIGURE 11. Operation of LSTM on all four 3D MRI sequences.

2) BASE MODEL

We initialize our experiment from a base CNN model con-
taining two convolutional layers each followed by a maxpool
layer where each layer is wrapped with a TimeDistributed
function. To begin with, the network consists of 5 x 5 sized
convolutional kernels, the number of kernels in each convo-
lutional layers is set to 32, ‘ReLLU’ is chosen as activation
function, ‘softmax’ is utilized as the activation function for
the final layer, ’categorical_crossentropy’ is chosen for loss
function and lastly, optimizer Adam with a learning rate of
0.001 was chosen. The epoch number for training is set to
100 epochs.

Batch size is set to 16 while training the model. The input
shape of the 3D images is 4 x 128 x 128 x 32 where
4 denoted the number of sequences in a 3D data, 128 x
128 denotes the height x width of each 3D slices and 32 refers
to depth (number of 2D slices in a 3D image) of each 3D
image.

3) ABLATION STUDY

The idea of ‘ablation’ is based on animal experiments where
nerves in particular regions of the brain were eradicated in
a selective manner, with the purpose of investigating the
behavioural effects of this destruction and thereby obtaining
a better understanding of the function of these regions. The
term ‘“‘ablation study” is nowadays mostly used in the context
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of neural networks [44] to observe the model’s performance
by studying the effect of altering some components [45].
Therefore, the effects of ablation are investigated on our base
model with ten study cases by changing different parameters,
the number of layers and the filters to evaluate the impact
of these parameters in the proposed architecture [46]. In this
way, with the alteration of different components in every
study case, the optimal component is chosen and proceeds
further to the next study cases based on the highest accuracy.
Moreover, the issue of time complexity is taken into account
while not compromising accuracy. Thus, after completing
all the study cases, the best-performed configuration of our
proposed TD-CNN-LSTM model can be achieved with high-
est accuracy and lowest time complexity. The results are
described in section VIII-B.

4) TD-CNN-LSTM ARCHITECTURE

After performing ablation study of ten cases on the base
model, the optimal model architecture is generated for which
the highest performance is recorded with the lowest possible
computational complexity. In the architecture illustrated in
Fig. 12, the input shape is a five-dimensional data vector
(None, 4, 128, 128, 32), where 4 denotes the five MRI
sequences to be inputted simultaneously and 128, 128, 32 is
the input dimension of every MRI sequence.

The network comprises two blocks containing a total of
15 layers: four convolutional layers and four maxpool layer
four batch normalization layers, a flatten layer, and an LSTM
layer followed by a dense layer. Each of the layers is wrapped
with a TimeDistributed function that allows each layer to
be applied to all temporal slices of the 3D MRI sequences.
Each block consists of a 2 x 2 kernel sized convolutional
layer followed by a 2 x 2 maxpool layer. First, the input
layer is fed to Block-1 containing the first convolution layer
of 64 filters. This extracts the features from the 3D input
image and generates a feature map. Then a maxpool layer is
employed to scale down the size of the resulting feature map
(4, 128, 128, 64 to 4, 64, 64, 64) and a batch normalization
layer normalizes the output of maxpool layer. In Block 2, the
second convolution layer of 64 filters extracts more features
from the Block-1 resultant feature map. The generated feature
map is again scaled down (4, 64, 64, 64 to 4, 32, 32, 64)
and again a batch normalization layer normalizes the feature
maps. Similarly Block-3 and Block-4 produces more feature
maps and scale down the feature maps even more and lessen
computational time. Resultant feature maps after Block-4 are
of dimensions 4, 8, 8, 128. Block-4 is followed by a Flatten
layer that generates a 1D vector from the pooled feature
map of the previous layers. The output feature vector is then
entered into the LSTM layer which has 128 hidden units.
As dropout factor of 0.5 to 0.8 is considered as standard val-
ues, a dropout of factor 0.5 is also included in the LSTM layer
as 0.5 value yields the best possible outcome. The output layer
of this architecture is equipped with a Fully Connected (FC)
layer with sigmoid activation function that takes the resulting
1D tensor and gives an output O or 1 which respectively
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FIGURE 12. TD-CNN-LSTM model architecture.

indicates HGG or LGG. This function takes any real-valued
input (x) and generates outputs with a value between zero
and one. In this process, a 3D image will be considered as
a series of 2D slices that can be represented as X = {xI,
x2, - -+, xn} where n denotes the number of slices. From these
slices, the convolution layer extracts the required features,
and the maxpool layers shrink the individual slices. Finally,
the sequence is condensed to P = {pl, p2, - - -, pm} where p
is the feature vector of 2D slices.

The proposed model is trained with binary cross-entropy
as the loss function, using the following equation [5]:

I
c=—- . bilogh)+ —ylog(1—f} ©)

where, n denotes the number of samples, y; represents the true
label of a particular sample and f; denotes its predicted label.

C. SECOND APPROACH (3D CNN MODEL)

As explained earlier, to evaluate the effectiveness of our
proposed TD-CNN-LSTM model, we have trained a 3D CNN
model having 3D convolution and 3D maxpool layer and
compared the performance. The model is trained four times
on these four training sets of 3D images, leading to different
results for the 3D MRIs: FLAIR, T1, T2 and Tlce.

The 3D CNN provides a comprehensive feature map,
analysing the volumetric spatial information and integrating
nonlinear 3D contextual information [16]. A 3D network
detects 2D structures such as edges and corners in 3D man-
ner [47]. The proposed CNN architecture is constructed of
four layers: convolutional, sub-sampling, batch normaliza-
tion (BN) and FC layers equipped with a sigmoid activation
function for HGG and LGG classification. The input layer of
the proposed 3D model receives a multi-channel brain MRI

which can be denoted as [5]:
I c Rmxwxh (10)

where, m denotes the number of channels and w and h
represent the width and height of the channels respectively.
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Compared to a 2D model, 3D CNN is computationally inten-
sive and requires more memory. Each convolutional layer
of our proposed network is structured with a 3 x 3 kernel
which enables the model to perform faster as smaller size
convolutional kernels yield improved efficiency due to the
lesser number of trainable parameters. The function 3D con-
volutional layer can be stated as [48]:

st Zs)_ 25z Fli_l (x + 0,y +dy,z+ 82)

x Wi (8x,8y,8:) (1)

ufq»(x, y,2) =

here, voxel positions for any given 3D image are denoted as x,
y and z, respectively, the weight of j-th 3D kernel, connecting
the k-th feature maps of the /-1 layer and the j-th feature
maps in the layer /, is represented by W,fj (8¢, 8y, 8;), the
k-th feature maps in the layer /-1 is F ,i_l, and the kernel sizes
corresponding to the x, y and z are §,, &y, and &, respectively
The kernel filter’s convolutional response is ufq.(x, ¥, 2)-

Rectified linear unit (ReLU) which is a commonly used
activation function for deep CNN due to its computational
efficiency and reduced likelihood of vanishing gradients is
employed in each convolutional layer. The function can be
defined as [48]:

Fjl (x,y,2) = max (O, b; + Zk u}k (x,y, z)) (12)

where, bl represents the bias term of the j-th feature map of
[-th layer S, F (x,y,2) is attained by adding the response
maps of the j- th 3D feature map’s individual convolution
filters.

In a 3D max-pooling procedure, the maximum value in the
cubic region is the input to the consequent feature volume.
The equation can be stated as [49]:

-1

hl = Mmaxi=(,...,a,j=0 Sh(x+i)(y+j) (13)

where, h! = activation of layer 1.
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A BN layer is utilized to condense preliminary covariate
shift. The FC layer classifies the data, performing nonlin-
ear operations on the generated parameters to obtain the
output [49].

o= wip (14)

where, h' = activation of layer 1 and W/ = learnable param-
eter

The BN layer is generally intended to expedite the training
progression of the CNN model. It normalizes the output of
each layer.

yi=yx,+B (15)

x| = M HB (16)
,/oé—i—e
1 m

up =~y % (17)
1 m

o=~ i—up)’ (18)

1) 3D CNN ARCHITECTURE

The 3D CNN architecture is comprised of five Blocks and
a depth size of 16. Each block has a 3D convolutional layer
with a kernel size of 2 x 2, followed by a 2 x 2 maxpool layer
and a BN layer. The input layer can take 3D images of size
128,128,32,1 as input. The 3D CNN architecture is illustrated
in Fig. 13.

The input (128, 128, 32, 32) goes through Block-1 where
the first convolutional layer with 32 filters extracts the fea-
tures from the 3D image and generates a feature map. The
feature map is then scaled down with a maxpool layer (126,
126, 62,3210 62, 62, 30, 32) followed by a BNlayer. Block-2,
Block-3 and Block-4 have convolutional layers with 64, 128
and 256 filters respectively. This is followed by a maxpool
layer and a BNlayer, as in Block-1. Each of these blocks
extracts features from the previous feature map and then
scales down the feature map further. The output feature map
from Block-4 is of size 8, 8, 3, 256 which goes to a global
average pooling layer which applies average pooling to all
spatial dimensions. The output from this layer goes through a
dropout layer with a factor of 0.5 and a FC layer of 512 neu-
rons. The output layer consists of a FC layer equipped with a
Sigmoid function that classifies the output into O or 1 which
represents HGG and LGG respectively. The model is trained
with ‘binary cross-entropy’ as the loss function.

VIII. RESULT ANALYSIS

In this section the effectiveness of both binary classifier
models: TD-CNN-LSTM and 3D CNN are evaluated by
employing several evaluation metrics (both model classifica-
tion metrics and model error metrics). As explained, proposed
TD-CNN-LSTM model is achieved by employing extensive
ablation studies. The 3D CNN model is trained and validated
separately on the FLAIR dataset, the T1 dataset, the Tlce
dataset and the T2 dataset in order to justify the effective-
ness of TD-CNN-LSTM. Evaluation metrics are calculated
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for both of the models to evaluate the performance of the
classifiers in predicting classes HGG and LGG successfully.
In this section, the results of ten cases of ablation study,
results of TD-CNN-LSTM and 3D CNN model, and results
of K-fold cross validations are discussed. At the end of the
section, a performance comparison of previous studies with
our research is presented.

A. EVALUATION METRICS

Often, while doing binary classification, a single metric
(accuracy score) is used to evaluate the performance of the
classifier. This approach is flawed, however, as the classifier
might yield poor results upon evaluation with other evaluation
metrics. To properly evaluate the effectiveness of a binary
classifier, several evaluation metrics are required. Keeping
this in mind, both the TD-CNN-LSTM and 3D CNN models
are evaluated using different classification metrics: precision
(Pre), Recall, (Rec), Specificity (Spe), Fl-score (F1) and
accuracy (ACC). Two model error metrics: MAE and RMSE
are also calculated. AUC value is calculated by generat-
ing Receiver operating characteristic (ROC) curves for all
models [44].

For the computation of all evaluation metrics, a confusion
matrix for all trained models is generated for all trained
models. This provides the values of true positive (TP), true
negative (TN), false positive (FP), false negative (FN) that
which are required for computing all the evaluation metrics
used in this section.

TP + TN
ACC = (19)
(TP+ TN + FP+ FN)
TP
Recall = ——— (20)
(TP + FN)
Specificity = —- @
pecificity = N+ FP)
g TP
Precision = (22)
(TP + FP)
Fi = 2+ Prec.is.ion * Recall 23)
(Precision + Recall)
n PR— .
MAE — Zi:l lyi — xil (24)
n

1

RMSE = [Z,L (dy — da)’ /NT (25)

B. RESULT OF ABLATION STUDY

Ablation study concludes with various changes of elements
in the base CNN model and the results are recorded. Time
complexity [50], and test accuracy are evaluated for each

experimental configuration. Time complexity in theory can
be defined as [51]:

k
0= {Zj:lnj_l-sw-sh-nj~mw~mh} (26)

here, j indicates the index number of convolutional layers,
and k refers to the total number of convolutional layers,
n;—1 indicates the number of kernel or input channels in the
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FIGURE 13. 3D CNN model architecture.

j — 1™ convolutional layer, and n; refers to the number of

kernels in the j layer, s,, and s, indicates width and height
of the kernels on j™ layer, and m,, and my, indicates the width
and height of the generated feature map correspondingly.

Results of the ablation studies conducted with the testing
dataset (external) are presented in Table 3 and Table 4 where
Table 3 concludes all the results relating to the model’s layer
configurations and activation functions and Table 4 show-
cases the results of tuning hyper-parameters, loss function
and flatten layer.

Case study 1: changing convolution and maxpool layer

Here, the initial configuration of the base model mentioned
above is kept as it is while changing the number of convo-
lution and maxpool layer. Table 3 shows the performance
for different configurations of the altered model architecture.
Best performance is achieved from configuration 3 and 4
(Table 3) with a test accuracy of 95.06%. But regarding time
complexity, configuration 3 containing four pairs of convo-
lutional and maxpool layers shows a lower time complex-
ity (116.32 million) than configurations 4. Taking this into
consideration, configuration 2 was selected for the rest of the
ablation case studies.

Case study 2: changing filter size

In this case study, experimentations with various kernel
sizes of 3 x 3, 2 x 2 and 5 x 5 are carried out to observe
the performance [52]. It is evident that changing filter size
does not affect much on the overall performance (Table 3).
However, the highest test accuracy, 95.91%, is acquired by
employing the kernel size 2 x 2. Thus, configuration no 2 is
chosen for further ablation case studies.

Case study 3: changing the number of filters

Initially, we started with a constant number of kernels [53]
for all the four convolution layers (32, 32, 32 and 32). Later,
number of features is increased to 64 and significant improve-
ment in performance is found. However, we anticipated that
gradually increasing might be a better approach. This is repre-
sented in configuration 3, 4 and 5 (Table 3). It is observed that
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configuration 5 with filter numbers 64, 64, 64 and 128 for the
four convolutional layers achieved the highest performance
with a test accuracy of 97.75%. Therefore, we move forward
with configuration 5.

Case study 4: changing the type of pooling layer

Two pooling layers, maxpool and average pool, are evalu-
ated [50] where both pooling layers gained the same highest
accuracy of 97.75% (Table 3). In this regard, Max pooling
layer is chosen for further ablation studies.

Case study 5: changing the activation function

As various activation functions can have an impact on the
performance of a model, choosing an optimal activation func-
tion is relevant in building an optimal model. Six activation
functions, Linear, PReLU, ReLU, Leaky ReLU, Tanh and
Exponential Linear Units (ELU) [54] are experimented with.
It is found that the linear activation function performs best
with a test accuracy of 98.33% (Table 3). This activation
function was chosen for further ablation studies.

Case study 6: changing batch size

Batch size denotes the number of images utilized on each
epoch to train the model. A larger batch size may result in the
model taking a long time to accomplish convergence while
batch sizes that are overly small can cause poor performance.
Moreover, performance differs for different batch sizes for
medical images due to the complex structure of medical
images [55]. In this case, experimentation with four batch
sizes are conducted and found that both the batch sizes of
16 and 32 achieved test accuracy of 98.33% similar to the
previous case study (Table 4). In this regard, batch size of
16 is chosen for further ablation studies.

Case study 7: changing flatten layer

Multi-dimensional output of previous layers is taken by
Flatten layer and results in a one-dimensional tensor. Exper-
imentation with Global Max pooling and Global Average
pooling are conducted, and results indicate that the previously
used flatten layer yields the highest test accuracy of 98.33%
(Table 4) while maintaining the lowest training time.
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TABLE 3. Ablation study regarding layer configurations and activation functions.

Case study 1: changing convolution and maxpool layer

Configuration | No. of | No. of pooling | Time Test accuracy | Finding
No. convolution layer | layer complexity (%)
(Million)
1 2 2 108.13M 92.50 Lowest accuracy
2 3 3 114.68M 95.06 Modest accuracy
3 4 4 116.32M 95.45 Highest accuracy
4 5 5 116.73M 95.45 Highest accuracy
5 6 6 116.83M 94.18 Modest accuracy
Case study 2: changing filter size
Configuration | Filter size Time complexity | Test accuracy (%) Finding
No. (Million)
1 3x3 41.87TM 95.56 Accuracy improved
2 2x2 18.61M 95.91 Highest accuracy
3 5x5 116.32M 95.45 Previous accuracy
Case study 3: changing the number of filter
Configuratio | No. of kernel Time complexity | Test accuracy (%) Finding
n No. (Million)
1 32->32>32->32 18.61M 9591 Previous accuracy
2 6426426464 73.40M 97.64 Accuracy improved
3 3233264264 20.44M 97.26 Accuracy improved
3 32264264264 39.32M 97.47 Accuracy improved
4 6464264128 | 74.44M 97.75 Highest accuracy

Case study 4: changing type of pooling layer

Configuratio | Type of pooling | Time complexity | Testaccuracy (%) Finding

n No. layer (Million)

1 Max 74.44M 97.75 Highest accuracy

2 Average 74.44M 97.75 Highest accuracy

Case study 5: changing activation function

Configuratio | Activation Time complexity | Test accuracy (%) Finding

n No. function (Million)

1 Linear 74.44M 98.33 Highest Accuracy
PReLU 74.44M 98.17 Accuracy improved

2 Relu 74.44M 97.75 Previous accuracy

3 Leaky ReLu 74.44M 98.06 Accuracy improved

4 Tanh 74.44M 95.18 Accuracy dropped

5 ELU 74.44M 97.25 Accuracy dropped

Case study 8: Changing Loss Functions

Experimentation regarding various loss functions, namely
Binary Cross-entropy, Categorical Cross-entropy, Mean
Squared Error, Mean Absolute Error, Mean Squared Loga-
rithmic Error and Kullback Leibler Divergence are carried out
in order to select the appropriate loss function for the optimal
model. While equipped with Binary Cross-entropy the model
had a 98.68% (Table 4) test accuracy which is the highest
result. Hence this is chosen.

Case study 9: Changing Optimizer

Experimentation with different optimizers namely Adam,
Nadam, SGD, Adamax and RMSprop are carried out in order
to identify the optimal optimizer. In this case the learning
rates are set to 0.001. The best test accuracy of 98.84%
(Table 4) was achieved with the Nadam optimizer. We select
the Nadam optimizer for further ablation study.

Case study 10: Changing Learning rate

Experimentation with different learning rates 0.01, 0.001,
and 0.0001 was conducted. The best test accuracy of 98.90%
(Table 4) was recorded with the learning rate 0.0001 and the
Nadam optimizer.
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Visual representation of the gradual performance boost
with different ablation study cases is shown in Fig. 14 for
better understanding.

After completing the ablation studies on the base model,
the proposed TD-CNN-LSTM model is acquired where a sig-
nificant improvement in classification accuracy is observed.
Configuration of TD-CNN-LSTM model is presented in
Table 5.

C. PERFORMANCE COMPARISON WITH 3D CNN MODEL
Comparison of two approaches regarding various accuracy
and error matrics is conducted in this section. In this regard,
the training configuration of 3D CNN model is kept similar
to TD-CNN-LSTM model where, Nadam optimizer is used
with a learning rate of 0.0001, batch size of 16 and number
of epochs 150. Classification results acquired from the TD-
CNN-LSTM and 3D CNN models, which are trained on their
respective datasets and tested on the respective external test-
ing dataset are shown in Table 6. The results of our proposed
model are bold on the tables.
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TABLE 4. Ablation study regarding model hyper-parameters, loss function and flatten layer.

Case study 6: changing batch size
Configuration Batch size Time complexity | Test accuracy (%) Finding
No. (Million)
1 16 74.44M 98.33 Highest accuracy
2 32 74.44M 98.33 Highest accuracy
3 64 74.44M 98.27 Near highest accuracy
Case study 7: changing flatten layer
Configuration Flatten layer type Time complexity | Test accuracy (%) Finding
No. (Million)
1 Flatten 74.44M 98.33 Highest accuracy
2 Global Max pooling 74.44M 98.17 Accuracy dropped
3 Global Average pooling 74.44M 98.08 Accuracy dropped
Case study 8: Changing Loss Functions
Configuration Loss Function Time complexity | Test accuracy (%) Finding
No. (Million)
1 Binary Crossentropy 74.44M 98.72 Highest accuracy
2 Categorical Crossentropy 74.44M 98.33 Previous accuracy
3 Mean Squared Error 74.44M 98.17 Accuracy dropped
4 Mean absolute error 74.44M 98.45 Accuracy improved
5 Mean squared logarithmic | 74.44M 96.72 Accuracy dropped
error

6 Kullback Leibler Divergence | 74.44M 96.48 Accuracy dropped
Case study 9: Changing Optimizer
Configuration No. | Optimizer Time complexity | Test accuracy (%) Finding

(Million)
1 Adam 74.44M 98.72 Previous accuracy
2 Nadam 74.44M 98.84 Highest accuracy
3 SGD 74.44M 92.68 Accuracy dropped
4 Adamax 74.44M 95.75 Accuracy dropped
5 RMSprop 74.44M 90.82 Accuracy dropped
Case study 10: Changing Learning rate
Configuration Learning rate Time complexity | Test accuracy (%) Finding
No. (Million)
1 0.01 74.44M 98.17 Accuracy dropped
3 0.001 74.44M 98.81 Previous accuracy
5 0.0001 74.44M 98.90 Accuracy improved

TABLE 5. In depth details of TD-CNN-LSTM model configurations.

TABLE 6. Training accuracy (T_Acc), Validation loss (Val_loss), validation
accuracy (Val_Acc), test loss (Te_Loss) and test accuracy (Te_Acc) for all

trained models.

MODEL TD-CNN-LSTM
DATASET COMBINED (FLAIR, T1, TICE,
T2) MODEL | DATASET | T Acc | V. LosS | V. Acc | TE Loss | TE Acc

3D FLAIR 98.41 0.07 94.55 0.07 94.86

OPTIMIZER NADAM CNN

LEARNING RATE 0.0001 3D Tl 98.66 0.06 9756 0.06 96.31

LAYER ACTIVATION FUNCTION LINEAR CNN

LOSS FUNCTION BINARY CROSSENTROPY 3D TICE 98.41 0.07 94.52 0.07 94.60

BATCH SIZE 16 CNN

TPOCH (HIGHEST ACCURACY) 7 e iV 9284 | 050 | 89.73 0.05 89.85

TIME PER EPOCH AROUND 2 SECONDS TD- ALL 9992 | 003 | 98.66 0.03 98.90

CLASSIFICATION LAYER SIGMOID CNN-

ACTIVATION FUNCTION LSTM

DEPTH 11

In Table 7 training accuracy is referred to as T_Acc, vali-
dation accuracy as V_Acc, validation loss as V_loss and test
accuracy as T_Acc and test loss as t_loss. It can be observed
that the TD-CNN-LSTM model trained on the combined
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dataset had the highest test accuracy of 98.90% and test
loss of 0.03%. Furthermore, it has the highest training and
validation accuracy scores of 99.92% and 98.66% respec-
tively, among all configured models. It also yields the low-
est validation loss of 0.03. 3D CNN trained on T1 dataset

60053



IEEE Access

S. Montaha et al.: TD-CNN-LSTM: Hybrid Approach Combining CNN and LSTM to Classify Brain Tumor

100.00%

9% | 98.84% = 98.90%
98.33% 98.33% 98.33% o/2% g 6
98.00% 97.75%  97.75%
o 0
0
96.00% 95450 |\ 20:91%
. 94.00%
S 92.50%
S 92.00%
o
]
2 90.00%
[
88.00%
3 - . .
obe’ Aef‘" 4 & & &\00 o & -;\00 o o QQ'\'
& NG ) z’), & %\ Q(\(l 8 N \)0(’ & 09
4 & o & & & & X\ o o @
) R \,?5 N QC - P <<\,b \0"’ v &
<L N W 3+ & Q & &
> KY & 2 R o § R
X & & A\ & < S <
> & . P P g
4 > p & NS
¢ & ¥ &
N & N o
9 S K
X & P
& &

FIGURE 14. Result analysis of ablation study.

TABLE 7. Specificity (Spe), Precision (Pre), Recall (Rec), F1 score (F1) and
AUC values for all trained models.

MODEL | DATASET SPE PRE REC F1 AUC
3D FLAIR 9597 | 94.45 | 92.62 | 92.77 | 94.73
CNN
3D T1 98.23 | 96.54 | 96.22 | 98.72 | 96.45
CNN
3D TICE 95.75 | 95.65 | 93.71 | 94.16 | 94.68
CNN
3D T2 89.86 | 90.02 | 88.58 | 88.25 | 89.80
CNN
TD- ALL 99.15 | 98.95 | 98.78 | 98.83 | 99.04
CNN-
LSTM

demonstrated satisfactory accuracy among other sequences.
It achieved a training accuracy of 98.66% and a validation
accuracy of 97.56% with a test accuracy of 96.31%. The
T2 dataset trained on 3D CNN model resulted in the lowest
performance with test accuracies below 89.9% and the lowest
validation accuracies below 90%.

In Table 7 Specificity is referred as Spe, Precision as Pre,
Recall as Rec, F1 score as F1 and Area under the curve
value as AUC. Among all six configured models, TD-CNN-
LSTM trained on the combined dataset had the most correct
predictions with an AUC of 99.04%, Specificity of 99.15%,
Precision of 98.95%, Recall of 98.78% and F1 score of
98.83%. The 3D CNN model showed moderate performance
with the Tldataset, with AUC score of 98.25% and Speci-
ficity of 98.23%. It is evident that the combined dataset in
combination with the TD-CNN-LSTM model yielded the
most promising results over 3D CNN approach.
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FIGURE 15. MAE of all five configuration (3D CNN model trained
on 4 datasets and TD-CNN-LSTM model trained on a combined
datasets).

Fig. 15 portraits the MAE [46] for our proposed model
and 3D CNN model. ForMAE, the smaller the error value the
better the performance of the classifier. It can be observed
(Fig. 15) that the TD-CNN-LSTM model trained on the com-
bined dataset had the smallest MAE (1.92). Datasets FLAIR,
T1 and Tlce showed moderate performance in this regard
having MAE values below 6.

The RMSE of all the datasets is shown in Fig. 16. Like
MAE, the lower the value the better the classifier performs.
It can be observed from Fig. 16 that the TD-CNN-LSTM
model with the combined dataset had the lowest RMSE
value (13.86). 3D CNN model performed moderately with the
FLAIR, T1 and T1ce datasets.
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FIGURE 16. RMSE of all five configurations (3D CNN model trained on
4 datasets and TD-CNN-LSTM model trained on a combined dataset).

D. OPTIMAL MODEL EVALUATION

In order to further evaluate the effectiveness of TD-CNN-
LSTM model on the external dataset, a confusion matrix and
ROC curve is generated. Moreover, experimentations with
various K-folds configurations are conducted to observe the
robustness of proposed model.

A confusion matrix for the results of TD-CNN-LSTM
model tested on the external dataset is presented in Fig. 17.
The row values represent actual labels of the test dataset
and the column values represent predicted labels of the test
dataset. In this case there is a binary classification with classes
HGG and LGG. Diagonal values from top left to bottom
right are TP and TN values. It can be seen that all HGG
cases were predicted correctly and that there was just one
misclassification for LGG. The TD-CNN-LSTM classifier
trained on the combined dataset does not seem to be biased
towards any one class which validates the robustness of the

model.
- 25
20
15
10
71
5
| 0

Lgg

1 290
HGG

FIGURE 17. Confusion matrix of combined dataset trained on
TD-CNN-LSTM model.

ROC probability curve is plotted, and the AUC value is
derived (Fig. 18). The AUC is used as a summary of the ROC
curve, representing the performance of a model in distinguish
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FIGURE 18. ROC curve of combined dataset trained on TD-CNN-LSTM.

classes. An AUC value of 1 indicates that the model is able
to detect all the TP and TN values flawlessly. Fig. 18 shows
that the ROC curve touches almost at the pick of y-axis with
a false positive rate close to 0 and a true positive rate closer
to 1. The AUC value is 99.04%.

In order to justify the consistency of the performance of
the model even further, we test the model using a total of
twelve K-fold cross validation configurations with various K
values ranging between 3 to 30. Findings of each K-fold cross
validation are presented in Fig. 19.

I N 98[77
. ogl7s | ‘
9864 s ‘
N 98.6
i i 98j54 i
I |
'

3fold S5fold 7fold 10fold 13 fold 15fold 17 fold 20 fold 23 fold 25 fold 27 fold 30 fold

98.9

Test accuracy
©
&
&

W Test accuracy

FIGURE 19. Performance evaluation using K-fold cross validations with
various K values ranging from 3 to 30.

It is evident that, for all the K-folds the model is able to
yield good performance (>98%). The performance did not
drop significantly for any fold, which further adds to the
robustness and consistency of our model. It also indicates
the superiority of the proposed approach (combining all four
MRI sequences and using hybrid CNN and LSTM model) in
3D MRI classification problems where the model is able to
generate such constant performance.

The best performing classifier TD-CNN-LSTM trained on
the external combined dataset produced promising results
across all evaluation measures. The TimeDistributed 2D
convolutional layers in TD-CNN-LSTM model are capable
of analyzing the combined 3D dataset. As discussed earlier,
this combined dataset feeds a set of 3D images to the clas-
sifier simultaneously, taking less than 3 seconds per epoch
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TABLE 8. Comparison of accuracy with some existing literatures.

Paper

Dataset for classification

Used sequence

Prediction
Classes

Dimension

Classifier

Classification
Accuracy

D. Jude et al.,2019
[15]

Abnormal MR brain tumor images
from M/s. Devaki Scan Centre
Total of 220 Brain MRI images

T1, T2 and T2
FLAIR

Metastasis,
Meningioma,
Glioma and
Astrocytoma

2D

Modified Deep
CNN

96.4%

Hiba et al., 2020
[16]

Multimodal Brain Tumor
Segmentation Challenge 2018 (BraTs,
2018)

Total of 284 Brain MRI images: 209
HGG and 75 LGG

T1-Gado

LGG HGG
classification

3D

Deep CNN

96.49%

Linmin et al., 2020
[26]

CPM-RadPath 2019 validation and
testing datasets.

LGG and HGG

3D

3D CNN

58.6%

Mohamed et al.,
2020 [14]

The Cancer Imaging Archive (TCIA)
110 LGG images

T1 pre-contrast,
FLAIR, and T1
post-contrast MRI
sequences

Tumor grading

2D

Modified VGG-
16

89%

Tommaso et al.,
[18]

Portoni Rossi Veterinary Hospital,
Zola Predosa, Italy and Dick White
Referrals, Six Mile Bottom, UK

56 meningioma images and 24 glioma
images

Pre and post-
contrast T1 and T2
sequences

meningiomas
and gliomas

2D

GoogleNet

94%

Ying et al., 2020
[19]

The Cancer Imaging Archive (TCIA)
low grade glioma (LGG) data

108 LGG images

Multimodal Brain Tumor Image
Segmentation (BraTS) Benchmark
2018

210 HGG images and 75 LGG images

TI1, T1-Gd, T2,
and FLAIR

HGG and LGG

3D

3DConvNet

97.1%

Thiruvenkadam et
al., 2019 [20]

Multimodal Brain Tumor
Segmentation Challenge 2013 (BraTSs,
2013) and WBA data set contains
eight volumes (V01-V08) of T2
images.

Randomly selected 2D slices of 4500
images from 3D volumed images

T2

Normal and
tumorous

2D

FLSCBN
(CNN model
with hyper
parameter
adjustment)

88.91%

Iram et al., 2018
[21]

Multimodal Brain Tumor
Segmentation Challenge 2015 (BraTSs,
2015)

Selected Total of 60 Brain MRI
images: 30 HGG and 30 LGG

FLAIR

HGG and LGG

2D

LSTM

84%

Rukmani et al.,
2020 [12]

Multimodal Brain Tumor
Segmentation Challenge 2018 (BraTs,

FLAIR

High Grade and
Low Grade

2D

AlexNet-LSTM

85%

2018)
Total of 300 Brain MRI images: 250
HGG and 50 LGG

Proposed
approach

Multimodal Brain Tumor
Segmentation Challenge 2020
(BraTs, 2020)

Total of 308 Brain MRI images: 234
HGG and 74 LGG

FLAIR, T1, Tlce,
T2

HGG and
LGG

3D

TD-CNN-
LSTM

98.90%

in training. The model is able to achieve highest test accuracy
in under 80 epochs whereas a traditional 3D CNN model takes
much longer to be trained (150 epochs) to achieve moderate
accuracy. Since the four sequences in 3D MRI images contain
features of different aspects of brain tumors, combining all
these sequences into a single input makes the tumor region
more defined which makes it easier to identify tumors. The
entire approach of combining all the MRI sequences while
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training gives the model more definition of the tumor region
that consequently boosts the classification performance while
maintaining a low training time. Furthermore, the fact that
the model is able to give a 98.90% correct prediction on
an unseen external test dataset adds to the effectiveness of
this approach on real world datasets. Moreover, the fact
that TD-CNN-LSTM along with the combined dataset had
similar performance across multiple K-fold configurations
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is an indication of the robustness of the proposed
approach.

E. COMPARISON WITH SOME EXISTING LITERATURE

In this section, the proposed TD-CNN-LSTM model is com-
pared with some recent studies in brain tumour classifica-
tion (section 3). Table 8 shows a comparison between these
previous studies and our proposed approach based on accu-
racy. As stated before, the proposed TD-CNN-LSTM model,
trained on the combined data set has the best results in our
study, achieving an accuracy of 98.90%. More than half of the
studies shown in Table 8 used similar 3D Brain MRI datasets
and two studies used classifiers that are somewhat similar to
our TD-CNN-LSTM model. Most results in Table 8 are in the
range of 85%- 97%, which is lower than ours. Hiba ez al. [16]
used BraTS 2018 dataset achieving an accuracy of 96.49%
with Deep CNNs. However, only T1-Gado MRI sequence
was utilized. Unlike the previous work, Thiruvenkada et al.’s
study [20] used 2D slices of the T2 sequence and managed
to achieve an accuracy of 88.91%. Jude et al. [15] proposed
a Modified Deep CNN classifier which can classify 2D MRI
slices and demonstrated an accuracy of 96.4%. Mohammad
at el. [17] used 2D slices from T1 pre-contrast, FLAIR, and
T1 post-contrast sequences and using modified VGG 16,
obtained an accuracy of 89%. A similar study was done
by Tommaso et al. [18] where with GoogleNet model and
2Dslices of pre and post-contrast T1 and T2 sequences, they
were able to achieve an accuracy of 94%. A fairly recent study
conducted by Ying Zhuge [19] used a 3D CNN model and
gained anaccuracy of 97.1% using T1, T1-Gd, T2, and FLAIR
sequences. Linmin et al. [26] proposed a 3D CNN model that
can train on 3D MRI images and they achieved an accuracy of
58.6% which is the lowest of all the studies shown in Table 8.
Iram et al. [21] and Rukmani et al. [12] studies are more
comparable to this paper. These studies used BraTS 2015 and
BraTS 2018 respectively and used LSTM model which is a bit
similar to our study. However, they used 2D slices for HGG
and LGG classification. BraTS with LSTM, Iram et al. [21]
achieved 84% accuracy whereas Rukmani et al. [12] achieved
85% accuracy score using the AlexNet-LSTM model.

Our proposed TD-CNN-LSTM model outperforms all
these studies with a test accuracy of 98.90%. The idea of using
four 3D images of a particular subject as a single input to a
deep learning model contributed to the effectiveness of our
mode. With this process more details of the brain tumour can
be learned by the model than the other approaches described
in literature. Training on this combined dataset makes the
training process less time consuming and highly detailed 3D
images make it easier for the classifier to distinguish between
HGG and LGG tumors. Moreover, in this research, vigor-
ous K-fold cross validation experimentations are performed
which concludes in consistent performance of the model in
all 12 K-fold configurations. A large external test dataset
(265 samples) ensures that the model is tested properly for
every ablation study cases in building the model that adds
to sound evaluation of the robustness of proposed approach.
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Furthermore, the optimal accuracy achieved from an external
test dataset gives a glimpse of the model’s absolute interpreta-
tion of 3D MRIs in real world application. With this proposed
approach TD-CNN-LSTM trained on the combined dataset
can outperform all other studies while also requiring fewer
epochs for training. This demonstrates the potential of the
proposed approach in classifying brain tumors from 3D MRI
scans.

IX. CONCLUSION

The aim of this study is to mimic medical expert’s diagno-
sis process of analysing all the MRI sequences of a single
patient to determine cancer, into a deep learning approach
with the highest accuracy and lowest computational com-
plexity. A completely automated hybrid CNN model named
TD-CNN-LSTM combining CNN with LSTM for classifying
brain tumors into HGG and LGG using 3D volumetric MRI
is proposed in this paper, the input layer is wrapped with
TimeDistributed function so that all the four MRI sequences
of a patient can be passed as single input data. In addition, a
3D CNN approach is employed to train with MRI sequences
independently to compare the performance of our proposed
model. Results show that the TD-CNN-LSTM network with
optimal configuration outperforms 3D CNN model achieving
the highest accuracy of 98.90% with optimizer Nadam and
learning rate of 0.0001. Moreover, the results of K-fold cross
validation method validate the robustness and consistency of
our model’s performance over different training scenarios.
Our method of analysing all the MRI sequences together and
developing a CNN model employing ablation study in order
to achieve the highest accuracy while keeping the lowest time
complexity, can be a useful approach in future research and
real world tumor diagnosis system.
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