
See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/359258761

Capable of Classifying the Tuples with Wireless Attacks Detection Using

Machine Learning

Conference Paper · March 2023

DOI: 10.1007/978-3-030-98457-1_1

CITATIONS

2
READS

158

2 authors:

Tariqul Islam

Daffodil International University

20 PUBLICATIONS 16 CITATIONS

SEE PROFILE

Shaikh Muhammad Allayear

Daffodil International University

54 PUBLICATIONS 365 CITATIONS

SEE PROFILE

All content following this page was uploaded by Tariqul Islam on 23 February 2023.

The user has requested enhancement of the downloaded file.

https://www.researchgate.net/publication/359258761_Capable_of_Classifying_the_Tuples_with_Wireless_Attacks_Detection_Using_Machine_Learning?enrichId=rgreq-480030129d7dde944429e1f13479554f-XXX&enrichSource=Y292ZXJQYWdlOzM1OTI1ODc2MTtBUzoxMTQzMTI4MTEyMTk2ODAzNkAxNjc3MTUzNTE0NDk4&el=1_x_2&_esc=publicationCoverPdf
https://www.researchgate.net/publication/359258761_Capable_of_Classifying_the_Tuples_with_Wireless_Attacks_Detection_Using_Machine_Learning?enrichId=rgreq-480030129d7dde944429e1f13479554f-XXX&enrichSource=Y292ZXJQYWdlOzM1OTI1ODc2MTtBUzoxMTQzMTI4MTEyMTk2ODAzNkAxNjc3MTUzNTE0NDk4&el=1_x_3&_esc=publicationCoverPdf
https://www.researchgate.net/?enrichId=rgreq-480030129d7dde944429e1f13479554f-XXX&enrichSource=Y292ZXJQYWdlOzM1OTI1ODc2MTtBUzoxMTQzMTI4MTEyMTk2ODAzNkAxNjc3MTUzNTE0NDk4&el=1_x_1&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Tariqul-Islam-13?enrichId=rgreq-480030129d7dde944429e1f13479554f-XXX&enrichSource=Y292ZXJQYWdlOzM1OTI1ODc2MTtBUzoxMTQzMTI4MTEyMTk2ODAzNkAxNjc3MTUzNTE0NDk4&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Tariqul-Islam-13?enrichId=rgreq-480030129d7dde944429e1f13479554f-XXX&enrichSource=Y292ZXJQYWdlOzM1OTI1ODc2MTtBUzoxMTQzMTI4MTEyMTk2ODAzNkAxNjc3MTUzNTE0NDk4&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Daffodil_International_University?enrichId=rgreq-480030129d7dde944429e1f13479554f-XXX&enrichSource=Y292ZXJQYWdlOzM1OTI1ODc2MTtBUzoxMTQzMTI4MTEyMTk2ODAzNkAxNjc3MTUzNTE0NDk4&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Tariqul-Islam-13?enrichId=rgreq-480030129d7dde944429e1f13479554f-XXX&enrichSource=Y292ZXJQYWdlOzM1OTI1ODc2MTtBUzoxMTQzMTI4MTEyMTk2ODAzNkAxNjc3MTUzNTE0NDk4&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Shaikh-Allayear-2?enrichId=rgreq-480030129d7dde944429e1f13479554f-XXX&enrichSource=Y292ZXJQYWdlOzM1OTI1ODc2MTtBUzoxMTQzMTI4MTEyMTk2ODAzNkAxNjc3MTUzNTE0NDk4&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Shaikh-Allayear-2?enrichId=rgreq-480030129d7dde944429e1f13479554f-XXX&enrichSource=Y292ZXJQYWdlOzM1OTI1ODc2MTtBUzoxMTQzMTI4MTEyMTk2ODAzNkAxNjc3MTUzNTE0NDk4&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Daffodil_International_University?enrichId=rgreq-480030129d7dde944429e1f13479554f-XXX&enrichSource=Y292ZXJQYWdlOzM1OTI1ODc2MTtBUzoxMTQzMTI4MTEyMTk2ODAzNkAxNjc3MTUzNTE0NDk4&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Shaikh-Allayear-2?enrichId=rgreq-480030129d7dde944429e1f13479554f-XXX&enrichSource=Y292ZXJQYWdlOzM1OTI1ODc2MTtBUzoxMTQzMTI4MTEyMTk2ODAzNkAxNjc3MTUzNTE0NDk4&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Tariqul-Islam-13?enrichId=rgreq-480030129d7dde944429e1f13479554f-XXX&enrichSource=Y292ZXJQYWdlOzM1OTI1ODc2MTtBUzoxMTQzMTI4MTEyMTk2ODAzNkAxNjc3MTUzNTE0NDk4&el=1_x_10&_esc=publicationCoverPdf

Capable of classifying the tuples with wireless attacks

detection using Machine Learning

Tariqul Islam1, Dr. Shaikh Muhammad Allayear2

1, 2Daffodil International University, Dhaka, Bangladesh

 1tariqul15-2250@diu.edu.bd, 2headmct@daffodilvarsity.edu.bd

Abstract. A wireless attack is a malicious action against wireless systems and

wireless networks. In the last decade of years, wireless attacks are increasing day

by day and it is now a very big problem for modern wireless communication

systems. In this paper, the author’s used the Aegean Wi-Fi Intrusion Dataset

(AWID3). There are two versions of this dataset, one is over 200 million tuples

of full data and one is 1.8 million tuples of reduced data. As our dataset has mil-

lions of tuples and over 100 columns, it is easy to become overwhelmed because

of its size. The authors used the reduced version and predicted if an attack was

one of four types using the k-nearest-neighbors classifier. All of the attack types

we used had a distribution that highly favored the non-attack class. Our best re-

sults were for the attack “arp'' type where we attained the best accuracy with re-

call. The author’s primary goal of the paper was to attain the highest accuracy

possible when creating a model that is capable of classifying the 4 attack types

and detecting and classifying wireless attacks using Machine Learning models

on the AWID3 dataset. One of the goals that supported this main objective was

determining a way to avoid the curse of dimensionality.

Keywords: Data Mining, AWID3, Cybersecurity, Machine Learning, Wireless

Security

1 Introduction

Wireless attacks have become a very common security issue. Different kinds of at-

tack methods can happen such as “Rogue access points, Jamming or Interference, Evil

twin, Wardriving, Bluejacking, Packet sniffing, Near field communication, WEP or

WPA attacks, WPS attacks, IV attack, Warchalking”.

A rogue access point is an unauthorized access point that can be added to one's wire-

less network without one's knowledge. Being able to combat this can be done by having

network access controls in place or by walking around one's building. The evil twin is

a technique used by criminals to gain unauthorized access to a network. With this

method, they only need to purchase a wireless access point and then configure it as

exactly as the network it's connected to. Doing so allows them to monitor and gain

control of all the details of the wireless network. Bluejacking is an illegal practice that

enables people to send and receive messages to another device through Bluetooth. This

2

is similar to hacking, where the goal is to send an email or a message to another device.

Bluesnarfing is a far more dangerous type of attack that involves taking advantage of a

vulnerable Bluetooth network to steal sensitive information. This vulnerability can al-

low an attacker to access a mobile device's contacts and images. War chalking is a

method used to determine the location of a wireless access point. An Initialization Vec-

tor attack is a type of wireless network attack that can cause modification to the Initial-

ization Vector of a packet. Analyzing the details of a given packet after an attack is

performed will allow an attacker to extract valuable information from it. Packet sniffing

is a very challenging technique when it comes to wireless networks. In this process, an

individual can capture a packet that is sent across a network and see the details of the

message that it contains. This feature makes it incredibly easy for an individual to read

and hear what's happening in real-time. This technique allows one device to collect data

from another device that is in range. An attacker can also collect details about a con-

versation between two people. An attacker with this kind of information can easily gain

access to a computer without its owner's knowledge. He can also use it to prove his

identity or authenticate himself. In some cases, a legacy wireless access point can be

considered an encryption method that is not suitable for sensitive data. Attacks with the

use of WPS passwords are very dangerous and can lead to unauthorized access to a

particular network. These types of attacks are usually carried out by criminals who are

looking to steal sensitive information. With the help of this tool, an attacker can easily

obtain the passwords of wireless networks and gain access to the data and information

that is on their network.

Figure 1: Different attack methods

3

2 Related work

In the paper [1] implementation of AMBA-AXI protocol by using VHDL for SoC

(System on a Chip) integration with different components and IPs. But the main chal-

lenge in the paper is to verify chip communication properties. They propose a protocol

checker such as rule-based AMBA AXI and this contains almost 44 different rules for

the check. Bisht et al. [2] develop the first systematic approach for detecting parameter

tampering opportunities in web applications and implement this approach in a tool that

is called NOTAMPER. This paper presents an approach that combines JavaScript code

analysis and black-box vulnerability analysis. It tackles many of the issues traditional

methods face in generating and validating inputs. Although it eliminates many of the

issues faced by traditional methods, it still requires some effort and compromises. So-

leimani et al. [3] research work proposes a black-box method to detect web application

vulnerabilities including XSS, CSRF, and information leakage. Takamatsu et al. [4]

propose a technique that automatically detects session management vulnerabilities in

web applications by simulating real attacks. This method requires the test operator to

enter a few details about the web application before testing it. However, it can detect

the existence of special characters on the web page. This method can only detect the

existence of the special string. Kumar et al. [5] research work propose a detection mech-

anism of session fixation vulnerability. This paper has limitations like the automated

solution architecture of session fixation vulnerability detection has not been defined

using any prototype. The model elements are session Id, prepare post request using the

valid credential, capture Authenticated session, match authenticated and unauthenti-

cated session. Nadar et al. [6] propose a model that can detect attacks such as cross-

site request forgery attacks, broken authentication. Model elements are CSRF: “Request

Checker, Packet Tracer, Request Differentiator, Attack Handler, Module, Notify Client,

Attack Database Repository”. Important result parameters are “True positive, True neg-

ative, False positive, False negative, accuracy, Recall, Precision”. Dahse and Holz’s [7]

research paper, they are the first to propose an automated approach to statically analyze

second-order data flows through databases, file names, and session variables using

string analysis. They propose to detect multi-step and second-order exploitation risks

in web applications. They study the issue of second-order sanitization. We discovered

159 previously unknown security issues in the code of our clients. Some of these issues

were caused by exploitation techniques such as XSS and remote code execution attacks.

Three false negatives were reported in Scarf due to the parser not handling SQL string

functions. This vulnerability was discovered in the following list of attacks. Aliero et

al. [8] proposed solution is the only solution that performs stored procedure attacks

SQL and bypass login authentication even if the returned records are limited restriction

is applied. The following steps are needed to trigger SQL injection vulnerability and

store procedure vulnerability in web pages. These steps will introduce the necessary

vectors and techniques to trigger SQL injection attacks. Ze et el. [9] proposed an effi-

cient Web application vulnerability detection mechanism based on optimized crawler

and feature recognition. This research introduces black-box testing ideas and fuzzy test-

ing technology into Web vulnerability detection and realizes a Web vulnerability de-

tection system based on page code analysis and page code analysis modules. Jovanovic

4

et al [10] proposed flow-sensitive, interprocedural, and context-sensitive data flow

analysis. The complexity of the PHP analysis process was due to its untyped nature.

Additional steps such as alias analysis and literary analysis lead to more precise and

comprehensive results. The proposed system, called Pixy, was developed to address

these issues. Marashdih and Zaaba at el. [11] shows detection of XSS vulnerability,

removing the detected vulnerability. But didn’t consider an experiment on DOM-based

XSS. Medeiros and Neves at el. [12] propose the insights from the behaviors of SATs,

they analyze applications written. But the research work is done with only one vulner-

ability which is SQLi. Lukanta et al. [13] propose to detect session management vul-

nerabilities, we developed a vulnerability scanning tool extending an existing open-

source tool, namely Nikto. But the random token detection mechanism should be re-

vised due to errors in random token detection. Yuan et al. [14] investigate vulnerabili-

ties and analyze the common vulnerabilities in web applications. Anbiya et al [15] in

the paper will present an approach using static analysis with lexical analysis techniques

for reducing an expert's knowledge. Lexical analysis is a static analysis technique that

transforms source code to other representations, usual tokens for future use. But this

research only works with SQL injection, cross-site scripting, and directory traversal.

Jeevitha and Bhuvaneswari et al. [16] paper-primarily focus on detecting the malicious

node. But some limitations in this paper such as prevention techniques for the malicious

nodes are not included in this paper. Pan and Mao. et al. [17] propose the notion of

DOM-sourced XSS which emphasizes the hierarchical document source and distin-

guishes it from DOM-based XSS. Mokbal et al. [18] propose extensive real-world data

composed of 138,569 unique records to detect XSS attacks that have been constructed

comprehensively and uniquely. Kao et al. [19] review different types of SQLi attacks,

provide their descriptions, and analyze possible investigative techniques. Moustafa et

al. [20] proposed a methodology to automatically capture web data, network traffic data

for extracting relevant features. Alswailem et al. [21] feature a combination that comes

from the Random Forest technique, as it has high accuracy, is relatively robust and has

a good performance. Wang et al. [22] summarize the framework of access control vul-

nerability detection. Deepa et al. [23] proposed a system called “XiParam”; this proto-

type is not tested in real-world web applications due to its dependence on the database

driver files. Figueiredo et al. [25] developed a learning-based tool that can detect input

validation vulnerability using static data flow analysis. But the study did not compare

their outcome with another dictation tool. Ibarra-Fiallos et al. [26] design a durable,

reliable, and effective protection filter for reducing common web injection attacks. The

evolution of web applications, as well as the need to protect them against injection at-

tacks, requires the development of a filter that can safeguard the various parameters of

web applications. Choi et al. [27] used static and dynamic analysis approaches, where

Static analysis is used to boost up XSS vulnerability detection speed and automatically

extracts from a web page and filters out duplicates which saves time.

5

3 Research Methodology

Here the author’s used three different programming languages to assist us: Python,

R-Studio, and Microsoft SQL. For Python, the author’s used the latest version available

at the time of writing Python 3.9.0. In this language, we used the Scikit-Learn, Pandas,

and NumPy libraries to help us with our preprocessing steps. Then, in R we used the

DMwR library for its SMOTE and K-nearest-neighbors functionality. Finally, we used

Server Management Studio to perform queries for Microsoft SQL. We imported the

reduced version of our dataset into it to use the SQL server after adding the headers to

it. Then reduced AWID3 dataset [28] with only the columns posted on the class web

page in Microsoft SQL Server. Lastly, install a streamlet and other dependencies on the

system. Ensure both the dataset and the python file are in the same directory. The details

about how we were able to achieve this task are authentication discussed in greater

detail in our preprocessing and data cleaning section. In the reduced version of the

AWID3 dataset, there is a class variable with the values “normal, arp, cafe_latte, amok,

deauthentication, authentication_request, beacon, evil_twin, fragmentation, and

probe_response”. The type normal represents the packets that are not an attack. The

other types listed represent an attack. For the author’s analysis, chose to use the k-near-

est-neighbors classifier algorithm to predict if a packet was of the type: “arp, deauthen-

tication, amok, or authentication_request”.

An IP address spoofing attack is another type of attack that uses the address resolu-

tion protocol to trick a host into sending traffic to an attacker [29]. A deauthentication

attacker uses unprotected deactivation packets. The attacker monitors network traffic

to find out which MAC addresses are associated with certain customers. Then, a deau-

thentication message is sent to the access point on behalf of those particular MAC ad-

dresses to force a client of the network. Our third attack type is an authentication request

attack. This is a flooding attack in which the attacker tries to exhaust the access point’s

resources by overflowing their client association table. The last type of attack is an

amok attack. Though information on this particular form of cyberattack is limited, we

determined that it is another flooding attack on a server, similar to the authentication

request. This attack causes the client association table to overflow due to the number of

clients that can be maintained there. An entry is inserted into the client association table

after an Authentication Request message.

3.1 Processing method

Build a classifier capable of properly classifying tuples with four specific attack

types: Amok, Deauthentication, Authentication Request, ARP. The authors had three

major tasks during this work: preprocessing & data cleaning, feature selection, and

classification.

6

3.2 Preprocessing & Data Cleaning

As previously mentioned, we used Python 3.9.0 to perform the majority of our pre-

processing and data cleaning on our dataset. “The dataset focuses on WPA2 Enterprise,

802.11w, and Wi-Fi 5. It contains multi-layer and modern attacks, including Krack and

Kr00k. It is available in pcap format” [30]. AWID3 (Aegean Wi-fi Intrusion) Dataset

produced from real Wireless Network logging. This full dataset is shown in figure 2

and the reduced training set is shown in figure 3 that produced from 1 hour of logging.

The majority of data is of the "normal" class in either dataset. To do this, we first down-

loaded the reduced dataset from the dataset’s host. Then, by using the read_csv method

from the panda’s library, we were able to read in a subset of columns that we wanted

to work with for our analysis. These 19 desired columns were the following: 2, 5, 45,

62, 64, 65, 68, 71, 74, 75, 88, 91, 92, 105, 106, 110, 116, 120, and 154. After reading

in these specific columns, we iterated over a text file containing the attribute names for

the columns in our dataset. If the index of our desired columns existed in that list of

attribute names, we added it to a list. Then, we were easily able to set the column head-

ers for our minimized dataset. After we had successfully removed unwanted columns

from our larger dataset and given each column a name, we were ready to proceed with

the rest of our preprocessing. To start this process, we replaced the question marks in

the dataset with a NumPy NaN value. The authors performed this operation to enable

us to use other methods provided in the panda library to remove missing values from

our data set. After replacing these values, we iterated over the columns in our dataset

and removed a column if over 60% of its values were NaN (Not A Number). If a large

majority of a column in the dataset was NaN, then it was not going to be useful for our

later analysis. By performing this step, we removed 7 columns from our already mini-

mized dataset. Then we removed columns that had zero or one unique value. A column

had zero unique values if there were no values provided, but was not filled in with a

NaN value. In contrast, a column would have one unique value if it had the same value

for every tuple. This target data would not contribute to our future analysis in both of

these situations because there was nothing to help distinguish a tuple with a normal

class value or one of our four attack types. As a final step in preprocessing and cleaning

our dataset, we removed the rows with a target of at least one NaN value left. By doing

this, we removed 1972 rows from the dataset. In hindsight, more caution should have

been exercised when doing this as these tuples with a NaN value could have helped us

further identify anomalies in the dataset. Last, after performing all these steps, we ex-

ported the reduced dataset as a CSV file for later use in our analysis. All of the code for

performing the operations described in this section are shown in data_prepro-

cessing_cleaning.py.

7

Figure 2: AWID3 Full dataset to Reduced Training Dataset (~1.8 Million Rows x

155 Columns)

Dropped columns not listed on the course webpage. Replaced ‘?’ with NaN values,

then dropped columns with over 60% NaN values and removed 7 columns. Drop the

rows with at least one NaN value in it ~ 2000 rows. Output the relatively clean data to

a new file. Perform min-max normalization on attributes used for classification (range

0-1).

Figure 3: Normalization Output

8

3.3 Feature Selection

To select which columns we would use with the classifier we first removed all col-

umns except the columns listed on the course webpage. We then went through them by

hand looking for attacks that had null values (? 's in our case) and non-null values for

the normal type or vise-versa. None were found so we went on to the next step where

we removed many null valued columns and rows (see the preprocessing/data cleaning

section). Next, we used the following SQL query: Select Count(Dis-

tinct(<COLUMN_NAME>)) from <AWID_DATABASE> where

class=’<CLASSTYPE>’ where <CLASSTYPE> equaled the normal and all attack

classes we used and <COLUMN_NAME> was varied to equal the remaining columns

in our data. Before deciding that a column wasn’t going to be removed we looked at

the data further to make sure that even if all classes had the same number of distinct

values that they weren’t different distinct values for the attack and the normal type.

Below are the results of these queries and our analysis of them. We didn’t choose the

radiotap_flags_shortgi column because it had no variation. We chose the wlan_fc_type

column because after looking at it further it showed that the normal class type varied

highly among 3 values while the attack types all had the same values and this

frame_time_delta_displayed variable because upon looking further into it we saw that

for the attack types all the tuples had very close values while the normal type was more

spread out. We didn’t choose the wlan_fc_version, wlan_fcs_good, frame_offset_shift,

frame_offset_shift and radiotap_rxflags_badplcp variable because of the lack of varia-

tion. And also the wlan_duration variable because there is a lot of variation for type

normal and barely any for those whose class value is one of the four attack types.

After much debate, we decided to not use this variable (wlan_ra) even though it has

the variation we are looking for because it is nominal and not ordinal and the rest of our

variables are continuous. Since SMOTE only works for continuous variables we felt it

would be best not to use it otherwise we would probably have to one-hot-encode all of

our data and use a different classifier than K-Nearest-Neighbors and not use SMOTE.

We didn’t choose this attribute (wlan_fc_moredata) because even though it has the var-

iation we were looking for, 99.99% of the normal tuples had the same value as the

attack types making it useless. The authors attempted PCA but ran out of memory even

on CSU's Big Data Servers. We examined distinct values in the remaining columns and

chose those with more distinct values for the normal class value than the attack class

values using a little SQL magic. Then, chose the following 3 columns for our analysis

and Isolated the attack types. Separate files to handle each attack type are shown in

figure 4.

Figure 4: Handle Each Attack

9

Partitioned dataset into 66.6% training data and 33.3% test data. Performed SMOTE

on training data to create synthetic tuples of attack types. K-Nearest Neighbor classifier

to train the model for each specific attack type. Made predictions using the model on

the test dataset. Parameter Selection/Interpretation Recall - “completeness – what % of

positive tuples did the classifier label as positive?” Recall = TP/TP+FN and Precision

- “exactness – what % of tuples that the classifier labeled as positive are positive” that

means Precision = TP/TP+FP. Recall and precision are inversely related measures,

meaning as precision increases, recall decreases. Accuracy and recall are inversely re-

lated in our case (for a majority of our data).

3.4 Classification

Our classification code is written in R. We chose this because it was already known

by the group member that wrote the classification code. To perform classification we

decided early that we would use SMOTE to create synthetic minority class tuples be-

cause the dataset is highly biased towards the normal class. We decided on using the

K-nearest-neighbor classification algorithm later. We chose the k-nearest-neighbor al-

gorithm because it works well with continuous data and every variable we used to clas-

sify was continuous. To perform the classification we first min-max normalized all of

our target attributes to [0,1]. Next, we removed all classes except the normal and the

attack class that we were currently predicting. Then, we randomly divided the normal-

ized dataset into 66.6% training and 33.3% test datasets. Next, we fed the training data

into the function SMOTE() in R studio. Then, we fed the oversampled resulting training

dataset from SMOTE and the test dataset into the function kNN() in R. From the kNN()

function we received a vector containing a 0 or 1 depending upon if the attack class was

predicted. We used different operands for the SMOTE() and kNN() functions depend-

ing upon if we wanted higher recall or higher accuracy. We attempted cross-validation

but due to an error we received (“too many ties”), we were not able to complete it.

4 Result & Discussion

We performed multiple tests on each attack type and recorded our top two, except

for ARP. Our results for ARP were extremely good, which made it very challenging to

further improve them. We either ran into errors or achieved similar results each time

we attempted to modify the parameters. By tuning the parameters for SMOTE and the

KNN classifier we were able to improve our accuracy and precision for each of the

other attacks, but at the cost of the recall. Several tables displaying the results and pa-

rameters used for each of the four attacks can be seen below. We are quite certain the

results for ARP were significantly better than the other three attacks because some of

the variables for ARP had mutually exclusive values, while the same variables for the

other attack type shared values with the normal type. For example, for ARP the fc_type

variable was always 0 and the wlan_duration variable for ARP was always the same

while that was not the case for the other attacks. Performed multiple tests for each

10

attack. ARP (Test 1) KNN Parameters - Smote.k = 3, KNN .k = 5, smote.perc.over =

150, smote.perc.under = 90 Confusion Matrix- N = 576,582.

Table 1. ARP (Address Resolution Protocol) Test 1

 Predicted: NO Predicted: YES Total

Actual: NO 552,958 1,731 554,689

Actual: YES 4 21,889 21,893

Total 552,962 23,620

Table 2. ARP (Test 1) - Anomaly Detection Metrics

False Positives 1,731

True Positives 21,889

True Negatives 552,958

False Negatives 4

Table 3. ARP (Test 1) - Anomaly Detection Metrics (Contd.)

Accuracy 99.6990%

Error Rate 0.3009%

Sensitivity 92.6714%

Specificity 99.9992%

Precision 92.6714%

Recall 99.9817%

Only one set of results with ARP. Difficult to improve on already extremely good

results for ARP. Amok (Test 1) KNN Parameters- Smote.k = 3, knn.k = 5,

smote.perc.over = 150, smote.perc.under = 90. Amok (Test 1) - Confusion Matrix- N

= 565,216

Table 4. Amok (Test 1)

 Predicted: NO Predicted: YES Total

Actual: NO 511,451 42,928 554,379

Actual: YES 562 10,275 10,837

Total 512,013 53,203

Table 5. Amok (Test 1) - Anomaly Detection Metrics

False Positives 42,928

True Positives 10,275

True Negatives 511,451

False Negatives 562

Table 6. Amok (Test 1) - Anomaly Detection Metrics (Contd.)

Accuracy 92.3056%

Error Rate 7.6944%

Sensitivity 19.3128%

Specificity 99.8902%

Precision 19.3128%

11

Recall 94.8140%

Amok (Test 2) KNN Parameters- smote.k = 1, knn.k = 1, smote.perc.over = 120,

smote.perc.under = 200. Amok (Test 2) - Confusion Matrix- N = 565,216

Table 7. Amok (Test 2)

 Predicted: NO Predicted: YES Total

Actual: NO 529,906 24,473 554,379

Actual: YES 1099 9,738 10,837

Total 531,005 34,211

Table 8. Amok (Test 2) - Anomaly Detection Metrics

False Positives 24,473

True Positives 9,738

True Negatives 529,906

False Negatives 1099

Table 9. Amok (Test 2) - Anomaly Detection Metrics (Contd.)

Accuracy 95.4757%

Error Rate 4.5242%

Sensitivity 2.8464%

Specificity 99.7930%

Precision 28.4645%

Recall 89.8588%

Deauthentication (Test 1) KNN Parameters- Smote.k = 3, knn.k = 5, smote.perc.over

= 150, smote.perc.under = 90. Deauthentication (Test 1) - Confusion Matrix- N =

558,167

Table 10. Deauthentication (Test 1)

 Predicted: NO Predicted: YES Total

Actual: NO 512,542 42,022 554,564

Actual: YES 95 3,508 3,603

Total 512,637 45,530

Table 11. Deauthentication (Test 1) - Anomaly Detection Metrics

False Positives 42,022

True Positives 3,508

True Negatives 512,542

False Negatives 95

Table 12. Deauthentication (Test 1) - Anomaly Detection Metrics (Contd.)

Accuracy 92.4544%

Error Rate 7.5455%

Sensitivity 7.7048%

12

Specificity 99.9814%

Precision 7.7048%

Recall 97.3633%

Deauthentication (Test 2) KNN Parameters- smote.k = 1, knn.k = 1, smote.perc.over

= 90, smote.perc.under = 400. Deauthentication (Test 2) - Confusion Matrix- N =

558,167

Table 13. Deauthentication (Test 2)

 Predicted: NO Predicted: YES Total

Actual: NO 527,780 26,784 554,564

Actual: YES 379 3,224 3,603

Total 528,159 30,008

Table 14. Deauthentication (Test 2) - Anomaly Detection Metrics

False Positives 26,784

True Positives 3,224

True Negatives 527,780

False Negatives 379

Table 15. Deauthentication (Test 2) - Anomaly Detection Metrics (Contd.)

Accuracy 95.1335%

Error Rate 4.8664%

Sensitivity 10.7438%

Specificity 99.9282%

Precision 10.7438%

Recall 89.4809%

Authentication Request (Test 1) KNN Parameters- Smote.k = 3, knn.k = 5,

smote.perc.over = 150, smote.perc.under = 90. Authentication Request (Test 1) -

Anomaly Detection Metrics- N = 555,805

Table 16. Authentication Request (Test 1)

 Predicted: NO Predicted: YES Total

Actual: NO 513,668 40,945 554,613

Actual: YES 31 1,161 1,192

Total 513,699 42,106

Table 17. Authentication Request (Test 1) - Anomaly Detection Metrics

False Positives 40,945

True Positives 1,161

True Negatives 513,668

False Negatives 31

Table 18. Authentication Request (Test 1) - Anomaly Detection Metrics (Contd.)

13

Accuracy 92.6276%

Error Rate 7.3723%

Sensitivity 2.7573%

Specificity 99.9939%

Precision 2.7573%

Recall 97.3993%

Authentication Request (Test 2) KNN Parameters- Smote.k = 1, knn.k = 1,

smote.perc.over = 100, smote.perc.under = 300. Authentication Request (Test 2) -

Anomaly Detection Metrics- N = 555,805

Table 19. Authentication Request (Test 2)

 Predicted: NO Predicted: YES Total

Actual: NO 540,840 13,773 554,613

Actual: YES 152 1,040 1,192

Total 540,992 14,813

Table 20. Authentication Request (Test 2) - Anomaly Detection Metrics

False Positives 13,773

True Positives 1,040

True Negatives 540,840

False Negatives 152

Table 21. Authentication Request (Test 2) - Anomaly Detection Metrics (Contd.)

Accuracy 97.4946%

Error Rate 2.5053%

Sensitivity 7.0208%

Specificity 99.9719%

Precision 7.0208%

Recall 87.2483%

5 Conclusion and Future Work

This paper used the k-nearest-neighbor classifier to predict if data from the AWID

dataset was normal or an attack. Our results were mixed with either high accuracy and

high recall, high accuracy, and lower recall, or high recall and lower accuracy. Most of

our time was spent on deciding how to pre-process the data, deciding which features to

use with the classifier, and deciding which classifier and oversampling method to use.

We learned a lot from the paper but if we could do it again we would select more fea-

tures to classify with. In a future version, we would like to try using a classifier with

the 3 variables we used plus the wlan_ra (MAC address) variable that we didn’t use to

see how it affects accuracy and recall for the 3 attacks that had lackluster results. To do

this we would have to use plain oversampling instead of SMOTE, one-hot-encoding,

14

and probably use a different classifier such as neural network which is compatible with

one-hot encoding. Additionally, we would like to test a more generalized model that

simply determines if an attack occurred. By generalizing the model, the performance

would most likely be improved.

References

1. Ranga, M. a, Venkatesh, M. L. H., & Venkanna, M. (2012). Design and Implementation Of

AMBA-AXI Protocol Using VHDL For Soc Integration. International Journal of Engineer-

ing Research and Applications (IJERA), 2(August), 1102–1106.

2. Bisht, Prithvi. "Notamper: automatic BlackBox detection of parameter tampering opportu-

nities in web applications." Proceedings of the 17th ACM conference on Computer and com-

munications security. 2010.

3. Soleimani, Hamed, Mohmmad Ali Hadavi, and Arash Bagherdaei. "WAVE: Black-Box De-

tection of XSS, CSRF and Information Leakage Vulnerabilities." 2017 14th International

ISC (Iranian Society of Cryptology) Conference on Information Security and Cryptology

(ISCISC). IEEE, 2017.

4. Takamatsu, Yusuke, Yuji Kosuga, and Kenji Kono. "Automated detection of session man-

agement vulnerabilities in web applications." 2012 Tenth Annual International Conference

on Privacy, Security, and Trust. IEEE, 2012.

5. Kumar, Rahul, and Aakash Kumar Goel. "Automated Session Fixation Vulnerability Detec-

tion in Web Applications using the Set-Cookie HTTP response header in cookies." Proceed-

ings of the 7th International Conference on Security of Information and Networks. 2014.

6. Nadar, Virginia Mary, Madhumita Chatterjee, and Leena Jacob. "A Defensive Approach for

CSRF and Broken Authentication and Session Management Attack." Ambient Communica-

tions and Computer Systems. Springer, Singapore, 2018. 577-588.

7. Dahse, Johannes, and Thorsten Holz. "Static detection of second-order vulnerabilities in web

applications." 23rd {USENIX} Security Symposium ({USENIX} Security 14). 2014.

8. Aliero, Muhammad Saidu, et al. "Detection of structure query language injection vulnera-

bility in a with target web-driven database application." Concurrency and Computation:

Practice and Experience (2020): e5936.

9. Ze, Wang. "Design and Implementation of Core Modules of WEB Application Vulnerability

Detection Model." 2019 11th International Conference on Measuring Technology and

Mechatronics Automation (ICMTMA). IEEE, 2019.

10. Jovanovic, Nenad, Christopher Kruegel, and Engin Kirda. "Pixy: A static analysis tool for

detecting web application vulnerabilities." 2006 IEEE Symposium on Security and Privacy

(S&P'06). IEEE, 2006.

11. Marashdih, Abdalla Wasef, and Zarul Fitri Zaaba. "Detection and removing cross-site script-

ing vulnerability in PHP web application." 2017 International Conference on Promising

Electronic Technologies (ICPET). IEEE, 2017.

12. Medeiros, Ibéria, and Nuno Neves. "Effect of Coding Styles in Detection of Web Applica-

tion Vulnerabilities." 2020 16th European Dependable Computing Conference (EDCC).

IEEE, 2020.

13. Lukanta, Raymond, Yudistira Asnar, and A. Imam Kistijantoro. "A vulnerability scanning

tool for session management vulnerabilities." 2014 International Conference on Data and

Software Engineering (ICODSE). IEEE, 2014.

15

14. Yuan, Hui, et al. "Research and Implementation of Security Vulnerability Detection in Ap-

plication System of WEB Static Source Code Analysis Based on JAVA." The International

Conference on Cyber Security Intelligence and Analytics. Springer, Cham, 2019.

15. Anbiya, Dhika Rizki, Ayu Purwarianti, and Yudistira Asnar. "Vulnerability Detection in

PHP Web Application Using Lexical Analysis Approach with Machine Learning." 2018 5th

International Conference on Data and Software Engineering (ICoDSE). IEEE, 2018.

16. Jeevitha, R., and N. Sudha Bhuvaneswari. "Malicious node detection in VANET Session

Hijacking Attack." 2019 IEEE International Conference on Electrical, Computer and Com-

munication Technologies (ICECCT). IEEE, 2019.

17. Pan, Jinkun, and Xiaoguang Mao. "Detecting dom-sourced cross-site scripting in browser

extensions." 2017 IEEE International Conference on Software Maintenance and Evolution

(ICSME). IEEE, 2017.

18. Mokbal, Fawaz Mahiuob Mohammed, et al. "MLPXSS: an integrated XSS-based attack de-

tection scheme in web applications using multilayer perceptron technique." IEEE Access 7

(2019): 100567-100580.

19. Kao, Da-Yu, Chung-Jui Lai, and Ching-Wei Su. "A Framework for SQL Injection Investi-

gations: Detection, Investigation, and Forensics." 2018 IEEE International Conference on

Systems, Man, and Cybernetics (SMC). IEEE, 2018.

20. Moustafa, Nour, Gaurav Misra, and Jill Slay. "Generalized outlier gaussian mixture tech-

nique based on automated association features for simulating and detecting web application

attacks." IEEE Transactions on Sustainable Computing (2018).

21. Alswailem, Amani, et al. "Detecting phishing websites using machine learning." 2019 2nd

International Conference on Computer Applications & Information Security (ICCAIS).

IEEE, 2019.

22. Wang, Qian, et al. "Access Control Vulnerabilities Detection for Web Application Compo-

nents." 2020 IEEE 6th Intl Conference on Big Data Security on Cloud (BigDataSecurity),

IEEE Intl Conference on High Performance and Smart Computing,(HPSC), and IEEE Intl

Conference on Intelligent Data and Security (IDS). IEEE, 2020.

23. Deepa, G., et al. "Black-box detection of XQuery injection and parameter tampering vulner-

abilities in web applications." International Journal of Information Security 17.1 (2018):

105-120.

24. Kurniawan, Aditya, et al. "Static Taint Analysis Traversal with Object-Oriented Component

for Web File Injection Vulnerability Pattern Detection." Procedia Computer Science 135

(2018): 596-605.

25. Figueiredo, Alexandra, Tatjana Lide, and Miguel Correia. "Multi-Language Web Vulnera-

bility Detection." 2020 IEEE International Symposium on Software Reliability Engineering

Workshops (ISSREW). IEEE, 2020.

26. Ibarra-Fiallos, Santiago, et al. "Effective Filter for Common Injection Attacks in Online Web

Applications." IEEE Access 9 (2021): 10378-10391.

27. Choi, Hyunsang, et al. "HXD: Hybrid XSS detection by using a headless browser." 2017 4th

International Conference on Computer Applications and Information Processing Technol-

ogy (CAIPT). IEEE, 2017.

28. Chatzoglou, Efstratios, Georgios Kambourakis, and Constantinos Kolias. "Empirical Eval-

uation of Attacks Against IEEE 802.11 Enterprise Networks: The AWID3 Dataset." IEEE

Access 9 (2021): 34188-34205.

29. Address Resolution Protocol From - Wikipedia, the free encyclopedia, accessed 27 June

2021, from https://en.wikipedia.org/wiki/Address_Resolution_Protocol

30. University of the Aegean - AWID3 datasets including Krack and Kr00k. It is available in

pcap format, accessed 1 July 2021, from https://icsdweb.aegean.gr/awid/download-dataset.

View publication stats

https://www.researchgate.net/publication/359258761

