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Abstract. A wireless attack is a malicious action against wireless systems and 

wireless networks. In the last decade of years, wireless attacks are increasing day 

by day and it is now a very big problem for modern wireless communication 

systems. In this paper, the author’s used the Aegean Wi-Fi Intrusion Dataset 

(AWID3). There are two versions of this dataset, one is over 200 million tuples 

of full data and one is 1.8 million tuples of reduced data. As our dataset has mil-

lions of tuples and over 100 columns, it is easy to become overwhelmed because 

of its size. The authors used the reduced version and predicted if an attack was 

one of four types using the k-nearest-neighbors classifier. All of the attack types 

we used had a distribution that highly favored the non-attack class. Our best re-

sults were for the attack “arp'' type where we attained the best accuracy with re-

call. The author’s primary goal of the paper was to attain the highest accuracy 

possible when creating a model that is capable of classifying the 4 attack types 

and detecting and classifying wireless attacks using Machine Learning models 

on the AWID3 dataset. One of the goals that supported this main objective was 

determining a way to avoid the curse of dimensionality. 

Keywords: Data Mining, AWID3, Cybersecurity, Machine Learning, Wireless 

Security 

1 Introduction 

Wireless attacks have become a very common security issue. Different kinds of at-

tack methods can happen such as “Rogue access points, Jamming or Interference, Evil 

twin, Wardriving, Bluejacking, Packet sniffing, Near field communication, WEP or 

WPA attacks, WPS attacks, IV attack, Warchalking”.  

 

A rogue access point is an unauthorized access point that can be added to one's wire-

less network without one's knowledge. Being able to combat this can be done by having 

network access controls in place or by walking around one's building. The evil twin is 

a technique used by criminals to gain unauthorized access to a network. With this 

method, they only need to purchase a wireless access point and then configure it as 

exactly as the network it's connected to. Doing so allows them to monitor and gain 

control of all the details of the wireless network. Bluejacking is an illegal practice that 

enables people to send and receive messages to another device through Bluetooth. This 
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is similar to hacking, where the goal is to send an email or a message to another device. 

Bluesnarfing is a far more dangerous type of attack that involves taking advantage of a 

vulnerable Bluetooth network to steal sensitive information. This vulnerability can al-

low an attacker to access a mobile device's contacts and images. War chalking is a 

method used to determine the location of a wireless access point. An Initialization Vec-

tor attack is a type of wireless network attack that can cause modification to the Initial-

ization Vector of a packet. Analyzing the details of a given packet after an attack is 

performed will allow an attacker to extract valuable information from it. Packet sniffing 

is a very challenging technique when it comes to wireless networks. In this process, an 

individual can capture a packet that is sent across a network and see the details of the 

message that it contains. This feature makes it incredibly easy for an individual to read 

and hear what's happening in real-time. This technique allows one device to collect data 

from another device that is in range. An attacker can also collect details about a con-

versation between two people. An attacker with this kind of information can easily gain 

access to a computer without its owner's knowledge. He can also use it to prove his 

identity or authenticate himself. In some cases, a legacy wireless access point can be 

considered an encryption method that is not suitable for sensitive data. Attacks with the 

use of WPS passwords are very dangerous and can lead to unauthorized access to a 

particular network. These types of attacks are usually carried out by criminals who are 

looking to steal sensitive information. With the help of this tool, an attacker can easily 

obtain the passwords of wireless networks and gain access to the data and information 

that is on their network. 

 
Figure 1: Different attack methods 
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2 Related work 

In the paper [1] implementation of AMBA-AXI protocol by using VHDL for SoC 

(System on a Chip) integration with different components and IPs. But the main chal-

lenge in the paper is to verify chip communication properties. They propose a protocol 

checker such as rule-based AMBA AXI and this contains almost 44 different rules for 

the check. Bisht et al. [2] develop the first systematic approach for detecting parameter 

tampering opportunities in web applications and implement this approach in a tool that 

is called NOTAMPER. This paper presents an approach that combines JavaScript code 

analysis and black-box vulnerability analysis. It tackles many of the issues traditional 

methods face in generating and validating inputs. Although it eliminates many of the 

issues faced by traditional methods, it still requires some effort and compromises. So-

leimani et al. [3] research work proposes a black-box method to detect web application 

vulnerabilities including XSS, CSRF, and information leakage. Takamatsu et al. [4] 

propose a technique that automatically detects session management vulnerabilities in 

web applications by simulating real attacks. This method requires the test operator to 

enter a few details about the web application before testing it. However, it can detect 

the existence of special characters on the web page. This method can only detect the 

existence of the special string. Kumar et al. [5] research work propose a detection mech-

anism of session fixation vulnerability. This paper has limitations like the automated 

solution architecture of session fixation vulnerability detection has not been defined 

using any prototype. The model elements are session Id, prepare post request using the 

valid credential, capture Authenticated session, match authenticated and unauthenti-

cated session. Nadar et al. [6] propose a model that can detect attacks such as cross-

site request forgery attacks, broken authentication. Model elements are CSRF: “Request 

Checker, Packet Tracer, Request Differentiator, Attack Handler, Module, Notify Client, 

Attack Database Repository”. Important result parameters are “True positive, True neg-

ative, False positive, False negative, accuracy, Recall, Precision”. Dahse and Holz’s [7] 

research paper, they are the first to propose an automated approach to statically analyze 

second-order data flows through databases, file names, and session variables using 

string analysis. They propose to detect multi-step and second-order exploitation risks 

in web applications. They study the issue of second-order sanitization. We discovered 

159 previously unknown security issues in the code of our clients. Some of these issues 

were caused by exploitation techniques such as XSS and remote code execution attacks. 

Three false negatives were reported in Scarf due to the parser not handling SQL string 

functions. This vulnerability was discovered in the following list of attacks. Aliero et 

al. [8] proposed solution is the only solution that performs stored procedure attacks 

SQL and bypass login authentication even if the returned records are limited restriction 

is applied. The following steps are needed to trigger SQL injection vulnerability and 

store procedure vulnerability in web pages. These steps will introduce the necessary 

vectors and techniques to trigger SQL injection attacks. Ze et el. [9] proposed an effi-

cient Web application vulnerability detection mechanism based on optimized crawler 

and feature recognition. This research introduces black-box testing ideas and fuzzy test-

ing technology into Web vulnerability detection and realizes a Web vulnerability de-

tection system based on page code analysis and page code analysis modules. Jovanovic 
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et al [10] proposed flow-sensitive, interprocedural, and context-sensitive data flow 

analysis. The complexity of the PHP analysis process was due to its untyped nature. 

Additional steps such as alias analysis and literary analysis lead to more precise and 

comprehensive results. The proposed system, called Pixy, was developed to address 

these issues. Marashdih and Zaaba at el. [11] shows detection of XSS vulnerability, 

removing the detected vulnerability. But didn’t consider an experiment on DOM-based 

XSS. Medeiros and Neves at el. [12] propose the insights from the behaviors of SATs, 

they analyze applications written. But the research work is done with only one vulner-

ability which is SQLi. Lukanta et al. [13] propose to detect session management vul-

nerabilities, we developed a vulnerability scanning tool extending an existing open-

source tool, namely Nikto. But the random token detection mechanism should be re-

vised due to errors in random token detection. Yuan et al. [14] investigate vulnerabili-

ties and analyze the common vulnerabilities in web applications. Anbiya et al [15] in 

the paper will present an approach using static analysis with lexical analysis techniques 

for reducing an expert's knowledge. Lexical analysis is a static analysis technique that 

transforms source code to other representations, usual tokens for future use. But this 

research only works with SQL injection, cross-site scripting, and directory traversal. 

Jeevitha and Bhuvaneswari et al. [16] paper-primarily focus on detecting the malicious 

node. But some limitations in this paper such as prevention techniques for the malicious 

nodes are not included in this paper. Pan and Mao. et al. [17] propose the notion of 

DOM-sourced XSS which emphasizes the hierarchical document source and distin-

guishes it from DOM-based XSS. Mokbal et al. [18] propose extensive real-world data 

composed of 138,569 unique records to detect XSS attacks that have been constructed 

comprehensively and uniquely. Kao et al. [19] review different types of SQLi attacks, 

provide their descriptions, and analyze possible investigative techniques. Moustafa et 

al. [20] proposed a methodology to automatically capture web data, network traffic data 

for extracting relevant features. Alswailem et al. [21] feature a combination that comes 

from the Random Forest technique, as it has high accuracy, is relatively robust and has 

a good performance. Wang et al. [22] summarize the framework of access control vul-

nerability detection. Deepa et al. [23] proposed a system called “XiParam”; this proto-

type is not tested in real-world web applications due to its dependence on the database 

driver files. Figueiredo et al. [25] developed a learning-based tool that can detect input 

validation vulnerability using static data flow analysis. But the study did not compare 

their outcome with another dictation tool. Ibarra-Fiallos et al. [26] design a durable, 

reliable, and effective protection filter for reducing common web injection attacks. The 

evolution of web applications, as well as the need to protect them against injection at-

tacks, requires the development of a filter that can safeguard the various parameters of 

web applications. Choi et al. [27] used static and dynamic analysis approaches, where 

Static analysis is used to boost up XSS vulnerability detection speed and automatically 

extracts from a web page and filters out duplicates which saves time. 
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3 Research Methodology 

Here the author’s used three different programming languages to assist us: Python, 

R-Studio, and Microsoft SQL. For Python, the author’s used the latest version available 

at the time of writing Python 3.9.0. In this language, we used the Scikit-Learn, Pandas, 

and NumPy libraries to help us with our preprocessing steps. Then, in R we used the 

DMwR library for its SMOTE and K-nearest-neighbors functionality. Finally, we used 

Server Management Studio to perform queries for Microsoft SQL. We imported the 

reduced version of our dataset into it to use the SQL server after adding the headers to 

it. Then reduced AWID3 dataset [28] with only the columns posted on the class web 

page in Microsoft SQL Server. Lastly, install a streamlet and other dependencies on the 

system. Ensure both the dataset and the python file are in the same directory. The details 

about how we were able to achieve this task are authentication discussed in greater 

detail in our preprocessing and data cleaning section. In the reduced version of the 

AWID3 dataset, there is a class variable with the values “normal, arp, cafe_latte, amok, 

deauthentication, authentication_request, beacon, evil_twin, fragmentation, and 

probe_response”. The type normal represents the packets that are not an attack. The 

other types listed represent an attack. For the author’s analysis, chose to use the k-near-

est-neighbors classifier algorithm to predict if a packet was of the type: “arp, deauthen-

tication, amok, or authentication_request”. 

 

An IP address spoofing attack is another type of attack that uses the address resolu-

tion protocol to trick a host into sending traffic to an attacker [29]. A deauthentication 

attacker uses unprotected deactivation packets. The attacker monitors network traffic 

to find out which MAC addresses are associated with certain customers. Then, a deau-

thentication message is sent to the access point on behalf of those particular MAC ad-

dresses to force a client of the network. Our third attack type is an authentication request 

attack. This is a flooding attack in which the attacker tries to exhaust the access point’s 

resources by overflowing their client association table. The last type of attack is an 

amok attack. Though information on this particular form of cyberattack is limited, we 

determined that it is another flooding attack on a server, similar to the authentication 

request. This attack causes the client association table to overflow due to the number of 

clients that can be maintained there. An entry is inserted into the client association table 

after an Authentication Request message. 

3.1 Processing method 

Build a classifier capable of properly classifying tuples with four specific attack 

types: Amok, Deauthentication, Authentication Request, ARP. The authors had three 

major tasks during this work: preprocessing & data cleaning, feature selection, and 

classification. 
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3.2 Preprocessing & Data Cleaning 

As previously mentioned, we used Python 3.9.0 to perform the majority of our pre-

processing and data cleaning on our dataset. “The dataset focuses on WPA2 Enterprise, 

802.11w, and Wi-Fi 5. It contains multi-layer and modern attacks, including Krack and 

Kr00k. It is available in pcap format” [30]. AWID3 (Aegean Wi-fi Intrusion) Dataset 

produced from real Wireless Network logging. This full dataset is shown in figure 2 

and the reduced training set is shown in figure 3 that produced from 1 hour of logging. 

The majority of data is of the "normal" class in either dataset. To do this, we first down-

loaded the reduced dataset from the dataset’s host. Then, by using the read_csv method 

from the panda’s library, we were able to read in a subset of columns that we wanted 

to work with for our analysis. These 19 desired columns were the following: 2, 5, 45, 

62, 64, 65, 68, 71, 74, 75, 88, 91, 92, 105, 106, 110, 116, 120, and 154. After reading 

in these specific columns, we iterated over a text file containing the attribute names for 

the columns in our dataset. If the index of our desired columns existed in that list of 

attribute names, we added it to a list. Then, we were easily able to set the column head-

ers for our minimized dataset. After we had successfully removed unwanted columns 

from our larger dataset and given each column a name, we were ready to proceed with 

the rest of our preprocessing. To start this process, we replaced the question marks in 

the dataset with a NumPy NaN value. The authors performed this operation to enable 

us to use other methods provided in the panda library to remove missing values from 

our data set. After replacing these values, we iterated over the columns in our dataset 

and removed a column if over 60% of its values were NaN (Not A Number). If a large 

majority of a column in the dataset was NaN, then it was not going to be useful for our 

later analysis. By performing this step, we removed 7 columns from our already mini-

mized dataset. Then we removed columns that had zero or one unique value. A column 

had zero unique values if there were no values provided, but was not filled in with a 

NaN value. In contrast, a column would have one unique value if it had the same value 

for every tuple. This target data would not contribute to our future analysis in both of 

these situations because there was nothing to help distinguish a tuple with a normal 

class value or one of our four attack types. As a final step in preprocessing and cleaning 

our dataset, we removed the rows with a target of at least one NaN value left. By doing 

this, we removed 1972 rows from the dataset. In hindsight, more caution should have 

been exercised when doing this as these tuples with a NaN value could have helped us 

further identify anomalies in the dataset. Last, after performing all these steps, we ex-

ported the reduced dataset as a CSV file for later use in our analysis. All of the code for 

performing the operations described in this section are shown in data_prepro-

cessing_cleaning.py. 
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Figure 2: AWID3 Full dataset to Reduced Training Dataset (~1.8 Million Rows x 

155 Columns) 

 

Dropped columns not listed on the course webpage. Replaced ‘?’ with NaN values, 

then dropped columns with over 60% NaN values and removed 7 columns. Drop the 

rows with at least one NaN value in it ~ 2000 rows. Output the relatively clean data to 

a new file. Perform min-max normalization on attributes used for classification (range 

0-1). 

 

 
Figure 3: Normalization Output 
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3.3 Feature Selection 

To select which columns we would use with the classifier we first removed all col-

umns except the columns listed on the course webpage. We then went through them by 

hand looking for attacks that had null values (? 's in our case) and non-null values for 

the normal type or vise-versa. None were found so we went on to the next step where 

we removed many null valued columns and rows (see the preprocessing/data cleaning 

section). Next, we used the following SQL query: Select Count(Dis-

tinct(<COLUMN_NAME>)) from <AWID_DATABASE> where 

class=’<CLASSTYPE>’ where <CLASSTYPE> equaled the normal and all attack 

classes we used and <COLUMN_NAME> was varied to equal the remaining columns 

in our data. Before deciding that a column wasn’t going to be removed we looked at 

the data further to make sure that even if all classes had the same number of distinct 

values that they weren’t different distinct values for the attack and the normal type. 

Below are the results of these queries and our analysis of them. We didn’t choose the 

radiotap_flags_shortgi column because it had no variation. We chose the wlan_fc_type 

column because after looking at it further it showed that the normal class type varied 

highly among 3 values while the attack types all had the same values and this 

frame_time_delta_displayed variable because upon looking further into it we saw that 

for the attack types all the tuples had very close values while the normal type was more 

spread out. We didn’t choose the wlan_fc_version, wlan_fcs_good, frame_offset_shift, 

frame_offset_shift and radiotap_rxflags_badplcp variable because of the lack of varia-

tion. And also the wlan_duration variable because there is a lot of variation for type 

normal and barely any for those whose class value is one of the four attack types. 

 

After much debate, we decided to not use this variable (wlan_ra) even though it has 

the variation we are looking for because it is nominal and not ordinal and the rest of our 

variables are continuous. Since SMOTE only works for continuous variables we felt it 

would be best not to use it otherwise we would probably have to one-hot-encode all of 

our data and use a different classifier than K-Nearest-Neighbors and not use SMOTE. 

We didn’t choose this attribute (wlan_fc_moredata) because even though it has the var-

iation we were looking for, 99.99% of the normal tuples had the same value as the 

attack types making it useless. The authors attempted PCA but ran out of memory even 

on CSU's Big Data Servers. We examined distinct values in the remaining columns and 

chose those with more distinct values for the normal class value than the attack class 

values using a little SQL magic. Then, chose the following 3 columns for our analysis 

and Isolated the attack types. Separate files to handle each attack type are shown in 

figure 4. 

 

 
Figure 4: Handle Each Attack 
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Partitioned dataset into 66.6% training data and 33.3% test data. Performed SMOTE 

on training data to create synthetic tuples of attack types. K-Nearest Neighbor classifier 

to train the model for each specific attack type. Made predictions using the model on 

the test dataset. Parameter Selection/Interpretation Recall - “completeness – what % of 

positive tuples did the classifier label as positive?” Recall = TP/TP+FN and Precision 

- “exactness – what % of tuples that the classifier labeled as positive are positive” that 

means Precision = TP/TP+FP. Recall and precision are inversely related measures, 

meaning as precision increases, recall decreases. Accuracy and recall are inversely re-

lated in our case (for a majority of our data). 

3.4 Classification 

Our classification code is written in R. We chose this because it was already known 

by the group member that wrote the classification code. To perform classification we 

decided early that we would use SMOTE to create synthetic minority class tuples be-

cause the dataset is highly biased towards the normal class. We decided on using the 

K-nearest-neighbor classification algorithm later. We chose the k-nearest-neighbor al-

gorithm because it works well with continuous data and every variable we used to clas-

sify was continuous. To perform the classification we first min-max normalized all of 

our target attributes to [0,1]. Next, we removed all classes except the normal and the 

attack class that we were currently predicting. Then, we randomly divided the normal-

ized dataset into 66.6% training and 33.3% test datasets. Next, we fed the training data 

into the function SMOTE() in R studio. Then, we fed the oversampled resulting training 

dataset from SMOTE and the test dataset into the function kNN() in R. From the kNN() 

function we received a vector containing a 0 or 1 depending upon if the attack class was 

predicted. We used different operands for the SMOTE() and kNN() functions depend-

ing upon if we wanted higher recall or higher accuracy. We attempted cross-validation 

but due to an error we received (“too many ties”), we were not able to complete it. 

4 Result & Discussion 

We performed multiple tests on each attack type and recorded our top two, except 

for ARP. Our results for ARP were extremely good, which made it very challenging to 

further improve them. We either ran into errors or achieved similar results each time 

we attempted to modify the parameters. By tuning the parameters for SMOTE and the 

KNN classifier we were able to improve our accuracy and precision for each of the 

other attacks, but at the cost of the recall. Several tables displaying the results and pa-

rameters used for each of the four attacks can be seen below. We are quite certain the 

results for ARP were significantly better than the other three attacks because some of 

the variables for ARP had mutually exclusive values, while the same variables for the 

other attack type shared values with the normal type. For example, for ARP the fc_type 

variable was always 0 and the wlan_duration variable for ARP was always the same 

while that was not the case for the other attacks. Performed multiple tests for each 
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attack. ARP (Test 1) KNN Parameters - Smote.k = 3, KNN .k = 5, smote.perc.over = 

150, smote.perc.under = 90 Confusion Matrix- N = 576,582. 

 

Table 1. ARP (Address Resolution Protocol) Test 1 

 Predicted: NO Predicted: YES Total 

Actual: NO 552,958 1,731 554,689 

Actual: YES 4 21,889 21,893 

Total 552,962 23,620  

 

Table 2. ARP (Test 1) - Anomaly Detection Metrics 

False Positives 1,731 

True Positives 21,889 

True Negatives 552,958 

False Negatives 4 

 

Table 3. ARP (Test 1) - Anomaly Detection Metrics (Contd.) 

Accuracy 99.6990% 

Error Rate 0.3009% 

Sensitivity 92.6714% 

Specificity 99.9992% 

Precision 92.6714% 

Recall 99.9817% 

 

Only one set of results with ARP. Difficult to improve on already extremely good 

results for ARP. Amok (Test 1) KNN Parameters- Smote.k = 3, knn.k = 5, 

smote.perc.over = 150, smote.perc.under = 90. Amok (Test 1) - Confusion Matrix- N 

= 565,216 

Table 4. Amok (Test 1) 

 Predicted: NO Predicted: YES Total 

Actual: NO 511,451 42,928 554,379 

Actual: YES 562 10,275 10,837 

Total 512,013 53,203  

 

Table 5. Amok (Test 1) - Anomaly Detection Metrics 

False Positives 42,928 

True Positives 10,275 

True Negatives 511,451 

False Negatives 562 

 

Table 6. Amok (Test 1) - Anomaly Detection Metrics (Contd.) 

Accuracy 92.3056% 

Error Rate 7.6944% 

Sensitivity 19.3128% 

Specificity 99.8902% 

Precision 19.3128% 
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Recall 94.8140% 

 

Amok (Test 2) KNN Parameters- smote.k = 1, knn.k = 1, smote.perc.over = 120, 

smote.perc.under = 200. Amok (Test 2) - Confusion Matrix- N = 565,216 

 

Table 7. Amok (Test 2) 

 Predicted: NO Predicted: YES Total 

Actual: NO 529,906 24,473 554,379 

Actual: YES 1099 9,738 10,837 

Total 531,005 34,211  

 

Table 8. Amok (Test 2) - Anomaly Detection Metrics 

False Positives 24,473 

True Positives 9,738 

True Negatives 529,906 

False Negatives 1099 

 

Table 9. Amok (Test 2) - Anomaly Detection Metrics (Contd.) 

Accuracy 95.4757% 

Error Rate 4.5242% 

Sensitivity 2.8464% 

Specificity 99.7930% 

Precision 28.4645% 

Recall 89.8588% 

 

Deauthentication (Test 1) KNN Parameters- Smote.k = 3, knn.k = 5, smote.perc.over 

= 150, smote.perc.under = 90. Deauthentication (Test 1) - Confusion Matrix- N = 

558,167 

 

Table 10. Deauthentication (Test 1) 

 Predicted: NO Predicted: YES Total 

Actual: NO 512,542 42,022 554,564 

Actual: YES 95 3,508 3,603 

Total 512,637 45,530  

 

Table 11. Deauthentication (Test 1) - Anomaly Detection Metrics 

False Positives 42,022 

True Positives 3,508 

True Negatives 512,542 

False Negatives 95 

 

Table 12. Deauthentication (Test 1) - Anomaly Detection Metrics (Contd.) 

Accuracy 92.4544% 

Error Rate 7.5455% 

Sensitivity 7.7048% 
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Specificity 99.9814% 

Precision 7.7048% 

Recall 97.3633% 

 

Deauthentication (Test 2) KNN Parameters- smote.k = 1, knn.k = 1, smote.perc.over 

= 90, smote.perc.under = 400. Deauthentication (Test 2) - Confusion Matrix- N = 

558,167 

 

Table 13. Deauthentication (Test 2) 

 Predicted: NO Predicted: YES Total 

Actual: NO 527,780 26,784 554,564 

Actual: YES 379 3,224 3,603 

Total 528,159 30,008  

 

Table 14. Deauthentication (Test 2) - Anomaly Detection Metrics 

False Positives 26,784 

True Positives 3,224 

True Negatives 527,780 

False Negatives 379 

 

Table 15. Deauthentication (Test 2) - Anomaly Detection Metrics (Contd.) 

Accuracy 95.1335% 

Error Rate 4.8664% 

Sensitivity 10.7438% 

Specificity 99.9282% 

Precision 10.7438% 

Recall 89.4809% 

 

Authentication Request (Test 1) KNN Parameters- Smote.k = 3, knn.k = 5, 

smote.perc.over = 150, smote.perc.under = 90. Authentication Request (Test 1) - 

Anomaly Detection Metrics- N = 555,805 

 

Table 16. Authentication Request (Test 1) 

 Predicted: NO Predicted: YES Total 

Actual: NO 513,668 40,945 554,613 

Actual: YES 31 1,161 1,192 

Total 513,699 42,106  

 

Table 17. Authentication Request (Test 1) - Anomaly Detection Metrics 

False Positives 40,945 

True Positives 1,161 

True Negatives 513,668 

False Negatives 31 

 

Table 18. Authentication Request (Test 1) - Anomaly Detection Metrics (Contd.) 
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Accuracy 92.6276% 

Error Rate 7.3723% 

Sensitivity 2.7573% 

Specificity 99.9939% 

Precision 2.7573% 

Recall 97.3993% 

 

Authentication Request (Test 2) KNN Parameters- Smote.k = 1, knn.k = 1, 

smote.perc.over = 100, smote.perc.under = 300. Authentication Request (Test 2) - 

Anomaly Detection Metrics- N = 555,805 

 

Table 19. Authentication Request (Test 2) 

 Predicted: NO Predicted: YES Total 

Actual: NO 540,840 13,773 554,613 

Actual: YES 152 1,040 1,192 

Total 540,992 14,813  

 

Table 20. Authentication Request (Test 2) - Anomaly Detection Metrics 

False Positives 13,773  

True Positives 1,040 

True Negatives 540,840  

False Negatives 152 

 

Table 21. Authentication Request (Test 2) - Anomaly Detection Metrics (Contd.) 

Accuracy 97.4946% 

Error Rate 2.5053% 

Sensitivity 7.0208% 

Specificity 99.9719% 

Precision 7.0208% 

Recall 87.2483% 

 

5 Conclusion and Future Work 

This paper used the k-nearest-neighbor classifier to predict if data from the AWID 

dataset was normal or an attack. Our results were mixed with either high accuracy and 

high recall, high accuracy, and lower recall, or high recall and lower accuracy. Most of 

our time was spent on deciding how to pre-process the data, deciding which features to 

use with the classifier, and deciding which classifier and oversampling method to use. 

We learned a lot from the paper but if we could do it again we would select more fea-

tures to classify with. In a future version, we would like to try using a classifier with 

the 3 variables we used plus the wlan_ra (MAC address) variable that we didn’t use to 

see how it affects accuracy and recall for the 3 attacks that had lackluster results. To do 

this we would have to use plain oversampling instead of SMOTE, one-hot-encoding, 
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and probably use a different classifier such as neural network which is compatible with 

one-hot encoding. Additionally, we would like to test a more generalized model that 

simply determines if an attack occurred. By generalizing the model, the performance 

would most likely be improved. 
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