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-is paper aims to introduce a robust framework for forecasting demand, including data preprocessing, data transformation and
standardization, feature selection, cross-validation, and regression ensemble framework. Bagging (random forest regression
(RFR)), boosting (gradient boosting regression (GBR) and extreme gradient boosting regression (XGBR)), and stacking (STACK)
are employed as ensemble models. Different machine learning (ML) approaches, including support vector regression (SVR),
extreme learning machine (ELM), and multilayer perceptron neural network (MLP), are adopted as reference models. In order to
maximize the determination coefficient (R2) value and reduce the root mean square error (RMSE), hyperparameters are set using
the grid search method. Using a steel industry dataset, all tests are carried out under identical experimental conditions. In this
context, STACK1 (ELM+GBR+XGBR-SVR) and STACK2 (ELM+GBR+XGBR-LASSO) models provided better performance
than other models.-e highest accuracies of R2 of 0.97 and 0.97 are obtained using STACK1 and STACK2, respectively. Moreover,
the rank according to performances is STACK1, STACK2, XGBR, GBR, RFR, MLP, ELM, and SVR. As it improves the per-
formance of models and reduces the risk of decision-making, the ensemble method can be used to forecast the demand in a steel
industry one month ahead.

1. Introduction

Demand forecasting indicates the prediction of the future
needs of a product or service [1]. It is necessary to follow a
procedure to attain a crystalline graph of the demand for
identifying the pulse of the customer’s need to hold their
position in themarket. From the last era, the steel industry in

Bangladesh is a fast-growing industry in the local market.
-e industries managed to manufacture a large amount of
steel to fulfill both local and international markets, but
producing a large amount of steel without proper forecasting
causes various problems. Demand prediction is used to
support many fundamental business assumptions, including
turnover, total revenues, income, capital consumption,
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chance evaluation and moderation plans, scope quantifi-
cation, transportation and distribution plans, andmore. Any
type of misdeed assessment could cost decaying or scarcity
of raw materials. It can also lead to overproduction or
underproduction. All these cases erode the entire supply
chain and total income, resulting in opportunity cost. Again,
the entire industry setup depends on this demand, such as
the amount of raw material, labor, and space. For these
whole arrangements, time is also a crucial issue, as some
processes have predefined deadlines that must be perfectly
synchronized. For smart business strategy, the most im-
portant thing is to forecast the demand precisely but the
industries do not have any intelligent method to measure the
need perfectly. -ey follow the time series of their sales data
and often skip factors, such as raw material supply, avail-
ability, and the number of workers at the factories, signif-
icantly influencing steel production.

Forecasting methods can be classified into three cate-
gories: (1) statistical methods, (2) artificial intelligence-
based methods such as single machine learning (ML)
methods, and (3) ensemble/hybrid methods. Most steel
industries in Bangladesh use traditional statistical ap-
proaches. Statistical approaches, such as exponential
smoothing [2], moving average [3], autoregressive moving
average [4], and autoregressive integrated moving average
[5], are most frequently used for time series prediction. -e
major drawbacks of these techniques are that the parameter
values are fixed using statistical calculations. -e error of
estimation increases when the fluctuations in the entered
data are high and do not yield convincing results for
complicated time series patterns [6]. -us, the companies
need an intelligent decision support system that considers
several factors.

Several researchers reveal that in the investigation of
most cases, ML approaches have drawn much attention and
could provide more accuracy than could traditional ap-
proaches [7]. Single artificial intelligence-basedmodels, such
as support vector machine (SVM), extreme machine
learning, heuristic techniques, and multilayer perceptron
(MLP), are widely used in various industrial aspects to
predict demands because they demonstrate promising re-
sults in the areas of control, prediction, and pattern rec-
ognition [8–10]. Support vector regression (SVR) is popular
for predicting future demand because of its outstanding
generalization capability and no dependency over input
space dimensionality [11]. It produces higher accuracy in
agribusiness prediction [8] and supply chain demand
forecasting [12]. Recently, MLP is used for monthly water
demand prediction [10], wind speed prediction [13], and
water demand prediction [14]. For improving MLP’s pre-
diction accuracy, different MLP architectures were used, and
an optimization algorithm was used to tune its parameters
[15]. -e extreme learning machine (ELM) is another ad-
vanced model, which is a single hidden layer feed-forward
neural network (SLFN) model with incremental learning
speed and fast convergence, making it efficient and fast in
learning [16]. It is widely used in applications, such as sales
forecasting demand of fashion retailing [17] and sales
prediction for the retail industry [18].

Since demand forecasting in steel industries is consid-
erably challenging, it is impossible to solve this problem
accurately using single ML models. No single model is
ideally suited for various ML applications. Each method and
application domain has some prerequisites, advantages,
assumptions, and characteristics [19]. Generally, the per-
formance of combined forecasting models is better than that
of a single forecasting model [20]. -e literature has de-
scribed several strategies to enhance the predictive perfor-
mance of regression models, and one of these is the
regression ensemble [8]. -e regression ensemble theory is
built onML, whose roots are related to the concept of divide-
to-conquer, solving the constraints of MLmodels working in
isolation [21]. An ensemble model is one in which numerous
base models are constructed to address the same problem,
with each model learning the dataset’s feature attributes and
making a prediction. As a result, the separate model’s
forecasts are integrated to generate the final projection. By
combining the mean or weighted average, ensemble ap-
proaches for regression problems can be developed. -e
simple method of grouping regression ensembles by mean
and weighted average is to use mean and weighted average.
-e regression ensemble models construct a collection of
models in order to improve the predictive power of the
selected models and the numerical goal variables [22, 23].
Ensemble methods are used in several studies, such as
forecasting for energy consumption [24], agribusiness
prediction [8], and wind power forecasting [25]. Although
numerous frameworks have been established, there is always
a need for improved forecasting accuracy and robustness,
particularly in the steel industry.

-is study proposes a new pipeline for demand fore-
casting in steel industries. From this aspect, this study ex-
plores the capacity of predictive regression ensemble models
by comparing the ensembles among themselves and con-
sidering the single reference models to forecast the demand.
-e proposed pipeline includes data preprocessing, feature
selection, hyperparameter tuning, cross-validation, and re-
gression ensemble approaches to outperform the state-of-
the-art results. Instead of using the median value of the
attribute, the mean value of the attribute is utilized to fill in
the empty area since it has a more central tendency to the
mean of the attribute distribution than the median. -e
appropriate features are selected using feature selection
algorithms (correlation-based, principal component analysis
(PCA), and independent component analysis (ICA)) to
avoid redundancy andmodel overfitting problems. Different
single ML techniques, such as SVR, MLP, and ELM, are
adopted as reference models. -e ensemble bagging (RFR),
boosting (GBR and XGBR), and stacking (STACK) models
are used in our proposed framework to enhance demand
forecasting robustness and efficiency. -e grid search
technique with cross-validation is used to select the optimal
hyperparameters for each ML model. Comprehensive ex-
periments are conducted on different data preprocessing and
a combination of ML techniques to minimize the RMSE and
maximize R2 of demand forecasting models. All experiments
are carried out under the same experimental settings and
with the same data set as the previous experiment. Finally,
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we investigate the performance of regression ensemble
approaches and verify that ensemble approaches outperform
single reference models. -e contributions of this paper are
summarized as follows:

(i) Collect the dataset from a well-known steel industry
in Bangladesh.

(ii) Present a modification of the theory underlying
regression ensembles based on bagging (RFR),
boosting (GBR and XGBR), and stacking (STACK)
as well as single models (SVR, MLP, and ELM)
(details in Supplementary Material Appendix A).

(iii) Find the best preprocessing pipeline using filling
missing values, data transformation, standardiza-
tion, and feature selection algorithms where the
number of selected features is also varied.

(iv) Implement different ML regression models with its
optimal hyperparameters, obtained using grid
search algorithms with cross-validation. Investigate
and analyze the performance of bagging, boosting,
and stacking ensemble approaches and compare
them with each other on the same dataset and
preprocessing under the same experimental
condition.

(v) Verify the superiority of the proposed ensemble
approaches using Friedman test and Wilcoxon
signed rank test.

-e remainder of the paper is arranged in the following
manner: Section 2 describes a collection of related studies for
the purpose of forecasting. Section 3 illustrates the suggested
approach, dataset, feature selection methods, and assess-
ment measures. Various experimental findings are docu-
mented in Section 4 based on the interpretation of the data.
Section 5 provides a conclusion as well as a scope for further
development.

2. Related Works

Forecasting demand for industrial products is an urgent
matter since a massive portion of a company’s planning
process is based on the amount of product to be produced.
To meet the increasing demand, precise demand forecasting
is required. In this section, we will discuss the work that has
been done to anticipate demand in a variety of disciplines
and will describe numerous exemplary studies.

Ribeiro and dos Santos Coelho [8] proposed a system for
agribusiness prediction using ensemble methods. Bagging,
boosting, and stacking ensembles along with single reference
models named SVR, MLP, and KNN were used for their
purposes. In this experiment, it was shown that ensemble
methods performed better than single models. -ey ob-
tained MAPE of 0.9787 and 0.7394 for both cases for best
ensemble models. -ey did not apply any metaheuristics
algorithm for optimizing hyperparameters. Yu et al. [9]
developed an ensembling and decomposition algorithmwith
EEML for crude oil price forecasting. In Ref. [12], they
introduced a system by ensembling regression algorithms
and time series algorithms to forecast the supply chain

demand. -e system showed superior outcome because of
the reality of invalidating the over-gauging and under-de-
termining. Cankurt [26] employed a variety of regression
models, including M5P and M5-Rule model trees, bagging,
boosting, randomization, stacking, and voting, to anticipate
tourism demand. In this case, they obtained R of 0.986 and a
RAE of 14.96. -e bagging and boosting methods have great
significance for the improvement of performances in re-
gression tree models.

Yang et al. [27] developed a system for forecasting ag-
riculture commodities using the bagging and combining
approaches with the Heterogeneous Autoregression (HAR)
model. HAR model along with bagging and the principal
component combination shows outstanding performance
for agriculture commodities forecasting. In Ref. [28], they
introduced a system by ensembling empirical mode de-
composition (EEMD) to analyze global food price volatility.
Tao et al. [29] proposed a method using a combination of
ensemble empirical mode decomposition (EEMD), extreme
learning machine (ELM), and ARIMA for forecasting hog
price. -ey obtained the best-estimated accuracy of R �

0.848. Ribeiro et al. [30] designed nonlinear prediction
models based on ensemble aggregation in order to improve
the prediction accuracy of electricity load forecasting. In the
proposed system, they used hourly load values from Italy in
2015 and Global Energy Forecasting Competition in 2012 to
validate their proposed framework. Compared to the mul-
tilayer perceptron neural network (MPNN) and regression
tree approach, their proposed forecasting framework based
on wavelet ensemble provided a better performance.

da Silva et al. [31] introduced a decomposition-ensemble
learning strategy for multi-step forward extremely short-
term forecasting, which involved aggregating many re-
gression models. -ey employed a range of preprocessing
strategies to account for the system’s high degree of input
correlation. Across all time horizons, the proposed models
outperform the CEEMD, STACK, and single models. In Ref.
[32], they presented an excellent rolling decomposition-
ensemble model for gasoline forecasting, which was both
accurate and efficient. -e researchers’ experimental results
demonstrate that the rolling decomposition-ensemble
model is both accurate and resilient when it comes to
projecting gasoline consumption levels and trends. A unique
wind speed ensemble forecasting system (WSEFS) was de-
veloped by Liu et al. [33] in order to enhance point fore-
casting (PF) and interval forecasting (IF). -ey obtained
MAPE of 1.9322%, 2.1579%, and 2.2808% for the 1st step, 2nd
step, and 3rd step, respectively. -e experimental results
showed that the MOMA ensemble forecasting system is
better than MOGWO and MODA. In order to estimate the
sediment movement in open channels, Ebtehaj and
Bonakdari [35] developed the ELM algorithm [35]. In all
training and testing modes, the FFNN-ELM outperformed
the FFNN-BP and GPmethods, which were previously used.
For the testing mode, they found RMSE� 0.121 and
MARE� 0.023, respectively.

Considering the existing literature in Table 1, it is ob-
served that ensemble models contribute significantly to
determine predictions, more than traditional models in each
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Table 1: Summary of most recent works for demand forecasting in various fields with their input factors and performances.

Publication Objectives Domain Performance Finding

Ribeiro and
dos Santos
Coelho [8]

Ensembling bagging (RFR),
boosting (GBR and XGBR),
and stacking (STACK), as
well as adopting reference

model SVR, MLP, and KNN

Agribusiness
prediction

MAPE� 0.0093–1.6354,
RMSE� 0.0013–0.0680

-e ensemble approach
outperforms the single models,
especially the STACK model

Yu et al. [9]

Developing an ensembling
and decomposition algorithm
with ensemble empirical
mode decomposition
(EEMD) and extended

extreme learning machine
(EELM)

Forecasting crude
oil price MAPE� 0.0003, RMSE� 0.1431

-is ensembling method shows
better results than some existing
popular model as well as single

model in terms of accuracy, speed,
and resilience

Adhikari et al.
[12]

Ensembling time series
methods and regression

techniques in order to reduce
forecast error from the actual

value

Supply chain
demand

forecasting

TS FACC� 62% − 69% Reg
FACC� 62% − 65%, En
FACC� 65% − 71%

Showed superior outcome because
of the reality of invalidating the

overgauging and underdetermining
and bringing the conjecture

esteems closer to the genuine in the
vast majority of the cases

Cankurt [26]

Developing M5P and M5-
Rule model trees,

randomization, boosting,
bagging, voting, and stacking
in order to anticipate the
demand for tourism in

Turkey

Tourism demand
forecasting

R� 0.9866, R2 � 0.973,
RAE� 14.96, and RRSE� 16.77

-e bagging and boosting methods
have great significance for the

improvement of performances in
regression tree models

Yang et al.
[27]

Developing the bagging and
combining approaches with

heterogeneous
autoregression (HAR) model

for the prediction of
agriculture commodities’

future

Forecasting
agriculture
commodities

R2 � 0.6263 − 0.3080
HAR model with bagging shows

outstanding performance
comparing with AR benchmark

Wang et al.
[28]

Ensembling empirical mode
decomposition to analyze
global food price volatility

Forecasting food
price volatility

MSE� 74.29, MAE� 6.969,
MAPE� 3.799

-is model can successfully analyze
the fluctuation of 3 types of
agricultural commodities

Tao et al. [29] Developing a combination of
EEMD, ELM, and ARIMA

Forecasting hog
price R� 0.281 − 0.848

-is model outperforms for the
selected parts and claimed itself as

an alternative for short-term
forecasting for hog price

Ribeiro et al.
[30]

Design of nonlinear
prediction models for the
ensemble aggregation of

waveNet ensemble

Electricity load
time series −

All preprocessing stages and
aggregation techniques contribute
to overall performance, although
perhaps not all to the same extent as
a ceiling analysis would indicate

da Silva et al.
[31]

For multi-step forward
extremely short-term

forecasting, decomposition-
ensemble learning

approaches are used. -ese
methods include K-Nearest
neighbors (KNN), partial
least squares regression
(PLSR), Ridge regression
(RR), support vector

regression (SVR), and Cubist
regression (CR).

Wind energy
forecasting

MAE� 101.32, MAPE� 8.63,
RMSE� 138.97

CEEMD–BC–STACK a stacking-
ensemble learning technique that
significantly improved the accuracy

of weak models CEEMD by
merging and forecasting with a

strong model.
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case. Although several frameworks have already been de-
veloped, there is still a need for improvement in the accuracy
and robustness of demand forecasting, especially in the steel
industry. To sum up, there is up to now no proper pipeline
for data preprocessing, features selection, hyperparameter
tuning, and finally developed a regression ensemble method.
-is study uses bagging, boosting, and two-level stacking
ensemble methods by analyzing the time series of historical
data from the steel industry to achieve more propriety of
forecasting results for demand.-e steel industry follows the
traditional time series trend to predict the demand, which
fluctuates at a high quantity. To avoid this problem, this
study combines multiple approaches instead of using a
traditional single method to determine the precise result for
the industry.

3. Materials and Methods

-is section contains a concise description of the materials
and method used. -e suggested framework is depicted in
Figure 1. -e following are the primary phases in our
suggested framework: (i) collection of industrial environ-
mental data as the primary inputs of the framework; (ii)
preprocessing the data including filling the missing values,
Yeo–Johnson transformation, and standardization; (iii)

discarding the irrelevant and redundant features to avoid
overfitting of the models; (iv) applying the grid search al-
gorithm with cross validation for hyperparameter tuning for
each machine learning model; (v) development of two-level
stacking ensemble method, where machine learning models
with optimal hyperparameters are used as the baseline
model; and (vi) evaluation metrics used to evaluate the
proposed framework. -ese blocks are explained in the
following sections.

3.1. Data Collection. -e data were collected from a well-
known prominent steel company named Bangladesh Steel
Re-RollingMills Ltd., in Chittagong, Bangladesh. During the
industrial attachment, some raw data were procured from
sources, such as workers, production leaders, and human
resources. Later, the data were closely knitted to build the
dataset. -e dataset comprises 132 cases and six input
features from January 2009 to December 2019 (11 years).-e
key responsibility is to identify the demand of every month
based on other factors. -e dataset holds the amount of raw
material used in a month, availability, the number of
workers, working days, and other attributes. -e data were
gathered from their monthly and annual industrial reports
from their official website, such as financial reports,

Table 1: Continued.

Publication Objectives Domain Performance Finding

Yu et al. [32]

Proposing decomposition-
ensemble learning model

(ARIMA, SVR, ANN, RVFL,
KRR, and ELM)

Gasoline
forecasting MAPE� 0.02 − 0.04

Decomposition-ensemble is better
for prediction. Ensemble model or
instantaneous frequency analysis is

applicable for complex and
irregular characteristics.

Liu et al. [33]

Developing a revolutionary
wind speed ensemble

forecasting system (WSEFS)
to enhance point forecasting
(PF) and interval forecasting

(IF)

Wind speed
forecasting

MAPE – 1st step, 2nd step, and
3rd step are 1.9322%, 2.1579%,
and 2.2808%, respectively.

VMD technology is better than
mayfly algorithm (MA) and

ICEEMDAN. MOMA ensemble
forecasting system is better than

MOGWO and MODA.

Cook and
Weisberg [34]

Developing imperialist
competitive algorithms (ICA)

and particle swarm
optimization (PSO)

algorithms were compared
with the results of the MLP
neural network trained with

the back propagation
algorithm

Nondeposition
sediment transport

prediction

MAPE� 2.7% − 6.52% and
RMSE� 0.009 − 0.042

In comparison to the PSO andMLP
algorithms, the ICA method is

more accurate for computing the
densimetric Froude number in pipe

channels

Ebtehaj and
Bonakdari
[35]

Developing an extreme
learning machine (ELM) and

comparing with back
propagation (BP), genetic
programming (GP), and

existing sediment transport
equation

Sediment transport
estimation RMSE� .309 and MARE� .059

FFNN-ELM performs well and is
also an alternative method in

predicting the Fr

∗MAPE�mean absolute percentage error, RMSE� root mean square error, MSE�mean square error, MAE�mean absolute error, R�Pearson correlation,
R2 � coefficient of determination, FACC� forecast accuracy check, TS FACC� time series FACC, Reg FACC� regression FACC, En FACC� ensemble
FACC, RAE� relative absolute error, RRSE� root relative square error, CEEMD� complete ensemble empirical mode decomposition, VMD� variational
mode decomposition, MOMA�multiobjective Mayfly algorithm, ICEEMDAN� improved complete ensemble empirical mode decomposition with adaptive
noise, MOGWO�multiobjective grey wolf optimizer, MODA�multiobjective dragonfly algorithm, FFNN� feed-forward neural network, Fr� densimetric
Froude number, MARE�mean absolute relative error.
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production reports, and some other necessary factors di-
rectly affecting their production achievements. Table 2 de-
scribes each feature and shows a statistical summary.

3.2. Data Preprocessing. -e data preprocessing stage
comprises missing value imputation and power transfor-
mation of data. Raw data inherit some missing attributes
from various features that must be filled before applying any
ML technique. Several imputation techniques can fill

missing values. In our proposed method, the mean-based
imputation technique is used, where the missing value is
filled with the mean of the attributes of that specific feature.

After the imputation of missing or null values, the data
power transformation is performed. In regression analysis,
transformations are crucial [36]. Parametric, monotonic
transformations are power transformations used to make
data more Gaussian-like. -is technique is useful in het-
eroscedasticity problems or other circumstances where data
normality is required. Among the two most popular power

Raw data

Training step
Training set Test set

Predictors

In this step, data set is collected. The input are industrial related features obtained from streel
inadustry and output is demand quantity. Next, Yeo-johnson preprocessing is adopted.

In this step, all ensemble and reference models are trained by LOOCV. In addition, 
hyperparameters are tuned using the grid search algorithm during cross-validation.
In the sequence, predictions are obtained.

In this paper, LASSO and SVR with the linear kernel are adopted
as meta-learner. After training each meta-learner predictions for
test set are obtained.

In this step, the predictions for the test set are obtained from
meta-learner and the performance measures (R2, MAE, MSE,
RMSE, and MAPE) are obtained.

In this step, predictions from step2 are combined ( 2 in 2, 3in 3,
4 in 4, and 5 in 5) and used in layer-0 of meta learner.

Preprocessing Feature Selection
Step 1

Step 2

Meta-Model

Meta Learner-Training

Predictions-1

Predictions-2

Predictions-M

Performance Measures

Step 3

Step 4

Prediction

Meat 
Learner

Figure 1: Proposed architecture of automatic demand forecasting.
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transformations methods are the Box–Cox and
Yeo–Johnson transformations. Here, the Yeo–Johnson
transformation is used because the Box–Cox transformation
demands that input data are strictly positive, whereas both
positive and negative data are endorsed by the Yeo–Johnson
transformation [37]. -e description of the Yeo–Johnson
transformation can be given using

y
∗

�

(y + 1)
λ

− 1 

λ
, if λ≠ 0, y≥ 0,

log(y + 1), if λ � 0, y≥ 0,

−
[(−y + 1)∧ 2 − λ{ } − 1]

(2 − λ)
, if λ≠ 2, y< 0,

log(−y + 1), if λ � 2, y< 0,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(1)

where y∗ is the transformed value, y is a list of n strictly
positive numbers, and λ is a hyperparameter used to control
the transformation. Here, Scikit-learn implementation of
PowerTransformer (method� “Yeo−Johnson,”, ∗ , stand-
ardize�True) is used, performing the Yeo–Johnson power
transformation operation with implicit data standardization
with zero mean and unit variance to the transformed output.

3.3. FeatureSelection. Feature selection or reduction reduces
irrelevant, redundant, or partially important features that
might mislead the model prediction, as the accuracy of an
ML model depends on the features on which it has been
trained. Feature reduction reduces the chances of overfitting
because of the reduction of the redundant feature and lessens
the model’s complexity. Several feature selection or reduc-
tion techniques exist. In our proposed method, PCA, ICA
[36], and correlation-based feature selection algorithms were
used to discard irrelevant features.

PCA is frequently employed in this capacity due to its
adaptability and ease of implementation. PCA works on the
premise of dividing data into an orthogonal space so that the
eigenvectors corresponding to the greatest eigenvalues
preserve the maximum data variance. PCA is a technique
that focuses on the covariance matrix and second-order
statistics. ICA decomposes observable data linearly into

statistically independent components. For the correlation-
based method, it classifies characteristics using a heuristic
evaluation function that takes into account the correlation
between the target outcome and their features. -e design
structure of both PCA and ICA follows the default imple-
mentation of Scikit-learn except the n_components pa-
rameter, resembling the number of features to be chosen by
the respective algorithm, as the value of the parameter is
driven from hyperparameter tuning. -e design of PCA can
be illustrated, respectively, such as (n_components, copy,
whiten, svd_solver, tol, iterated_power) � ({4, 5, 6}, True,
False, auto, 0.0, auto). Algorithms 1–3 summarize the
procedures of PCA, ICA, and correlation-based feature
selection algorithms, respectively.

3.4. Hyperparameters Determination. Hyperparameters de-
fine those values directly controlling the learning process of
ML techniques and can be arbitrarily set by the user before
starting the training phase. -e correct combination of
values is significant in achieving the best and quality model.
Choosing the correct values for the optimal model is known
as hyperparameter optimization or hyperparameter tuning
[38]. Grid search and random search are both well-known
techniques when tuning the hyperparameters of an esti-
mator. -is study used the grid search method based on
cross-validation, resulting in the most precise predictions
[39]. -is algorithm splits the range of parameter values to
be upgraded into the grid and across all points to obtain the
optimal parameters. Different parameter combinations were
evaluated for each model, which were divided into training
and test sets using the cross-validation method [39]. Table 3
provides an overview of hyperparameters tuned using ML
techniques and their range of tuning.

3.5. Cross-Validation in Time Series. Cross-validation is a
widely used validation approach for tuning hyperparameters
and assessing the effectiveness of machine learning tech-
niques [40]. Different parameters must be stated for each
case depending on the dataset. A grid search technique
combined with cross-validation is effective at identifying the
optimal hyperparameter combination for each model. As a
consequence, forecasting errors associated with test samples
may be decreased, allowing for the determination of the ideal

Table 2: Statistical description of influence features for forecasting the demand.

Indices F1 F2 F3 F4 F5 F6 Outcome

Mean 8231.97 52444.08 167.42 28.93 1.46 60.09 51205.62
S.D. 2269.08 12385.54 43.10 1.28 0.90 9.68 10848.99
Q25 6985.25 43731.75 135.00 28.00 1.00 52.00 45167.18
Q50 7883.50 52941.50 150.00 29.00 1.00 62.00 52418.97
Q75 9640.50 59861.00 200.00 30.00 2.00 67.25 61496.95
Range (4010, 10178) (30275, 60000) (100, 200) (26, 30) (0, 4) (38, 76) (26072, 62275)
Skewness 0.297 0.123 0.454 0.322 1.403 −0.309 −0.624
Kurtosis −0.520 −0.801 −0.740 2.569 1.180 −0.829 −0.553
Data type Numeric Numeric Numeric Numeric Numeric Numeric Numeric
∗ S.D.� standard deviation, F1 � availability, F2 � raw material, F3 �worker, F4 �working day, F5 � holiday, F6 � down time, outcome� demand level,
Q25 � first quantile, Q50 � second quantile, Q75 � third quantile.
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collection of hyperparameters that enhance predictive
performance while minimizing model overfitting [41]. -e
leave-one-out cross-validation procedure is acceptable in
this scenario when dealing with time series data [42]. Al-
ternatively, this method can be considered a sequential block
cross-validation procedure and a subset of K-fold cross-
validation.

-us, the training set is iteratively constructed, with
the training and validation sets being utilized concur-
rently, a process known as rolling cross-validation. -is
procedure is performed several times, with each iteration
increasing the amount of observations in the training set
and decreasing them in the validation set. -e associated
training set comprises only observations that happened
before the observation in the test set. -e dataset is
partitioned into training and test sets, with 70% of the data
used for training and verifying the models. -e time series
split notion is to divide the training set in half at each
iteration, assuming that the validation set is still ahead of

the training split. It is initially trained on a limited subset
of data in order to forecast the next data point. Following
that, the forecasted data points are incorporated into the
succeeding training dataset, and subsequent data points
are forecasted. -is process is repeated until the complete
training set has been utilized. Calculate the training
outcome by estimating iteration performance
assessments.

3.6. Structure of Stacked Ensemble Modeling. STACK mod-
eling was conducted by considering two stages, level 0 and
level 1, and the predictions of the base learner (level 0) are
combined with the meta-learner (level 1). From the previous
studies, it is shown that the support vector regression (SVR)
and selection operator (LASSO) regression are used as the
meta-learner [8, 25]. -e key advantages of adopting SVR,
and especially layer-1 in the STACK technique, are its ability
to identify predictor nonlinearities and subsequently exploit

Input: m– dimensional input data matrix X ∈ Rm with number of samples N, and variance threshold Tvar
Output: reduced L– dimensional data matrix Y ∈ RLL<m,
Load X ∈ Rm, and calculate mean for each feature, μj � 1/N 

N
i�1 Xij for j � 1, 2, . . . , m; subtract the mean from each corresponding

dimension, Xij � Xij
′ − μj for j � 1, 2, . . . , m and i � 1, 2, . . . , N;

/∗ Make each signal uncorrelated to each other ∗ /
Calculate covariance matrix of X′, m×m1/N − 1[X′]T � X′;
Solve the m×m as m×m � V− 1DV, where V ∈ Rm is the matrix of eigenvector and Dm×m is the diagonal matrix containing
eigenvalues on both sides of the diagonal matrix ;

Sort the eigenvector matrix V in the descending order to the first L– eigenvector that have variance ≥Tval and form a projection
matrix Pm×L;

Finally, project on the PCA space, Y � PTX;

ALGORITHM 1: Steps for the implementation of principal component analysis (PCA).

Input: m– dimensional input data matrix X ∈ Rm with number of samples N, and variance threshold Tvar
Output: reduced L– dimensional data matrix Y ∈ RLL<m,
Select a nonquadratic nonlinear function g;

Initialize W as X � WH, where W← ratio of source during mixing, H← matrix contains different components, and X← mixed
output;
Perform PCA on X, as X←PCA(X) as in Algorithm 1;

while W changes do
Update X←E Xg(WTX)  − E g′(WTX) ;

Normalize X←W/‖W‖;

Derive the new dataset by taking Y � WTX, where Y ∈ RL;

ALGORITHM 2: Steps for the implementation of independent component analysis (ICA).

Input: m– dimensional input data matrix X ∈ Rm with number of samples N, and expected outcome, YO ∈ R
Output: reduced L– dimensional data matrix Y ∈ RLL<m,
for p←1top≤m do
rpO � (Xp − Xp)(YO − YO)/

�������������������������

 (Xp − Xp)2
������������

 (YO − YO)2


Sort the correlation rpO in descending order to choose first L features for Y ∈ RL;

ALGORITHM 3: Steps for the implementation of correlation-based feature selection (Corr).
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them to improve demand forecasts [8]. -e SVR with linear
kernel and selection operator (LASSO) regressionmodel was
utilized as a meta-learner in our experiment (level 1).

-e following steps were adopted in this work.

(1) After doing the training session of the SVR/LASSO,
RFR, MLP, ELM, GBR, and XBR models, the pre-
dicted results are combined (2 in 2, 3 in 3, 4 in 4, and
5 in 5) to build a STACK (SVR/LASSO) layer 0. Stack
layer 0 does not use the model used in layer 1.

(2) For each STACKmodel, 56 models are analyzed, and
best one is chosen for the study based on the test set
results.

(3) -e findings in Tables S1 and S2 indicate that models
numbered 1–15 indicate a model combination of 2 in
2, models numbered 16–35 indicate a model com-
bination of 3 in 3, models numbered 36–50 indicate a
model combination of 4 in 4, and models numbered

51–56 indicate a model combination of 5 in 5 in the
order specified in step 1.

(4) -e performance evaluation measurements are
achieved for the training and test sets after training
each STACK model.

-e working procedure of the stacking ensemble in this
paper is described in Algorithm 4.

3.7. PerformanceMeasures. Estimating the model’s accuracy
is crucial in designing ML models to define how well the
model is predicting. It is used to determine the goodness of
fit among models and data to compare various models for
model selection. If y1, y2, . . . , yt are T actual values and
y
∧
1, y
∧
2, . . . , y

∧
t are corresponding predicted values, then the

formulas are for evaluating the accuracy of the regression
models as follows:

Table 3: Different machine learning techniques with hyperparameters to be tuned by the grid search algorithm during cross-validation.

Algorithms Hyperparameters Explanation Grid

SVR

C Regularization parameter of the error term 1 − 1 × 10− 3

Kernel Kernel types applied in the algorithm Linear, polynomial,
RBF

Epsilon Border of tolerance 0.1 − 1
Gamma Kernel coefficient for rbf 1 × 10− 3 − 0.1

RFR

n_estimators Number of trees in a forest 5 − 15
Criterion Measurement of the quality of a split mae or mse
max_depth Highest depth of the tree 2 − 10

min_samples_leaf Least number of instances needed to split an internal node 2 − 10
min_samples_split Least number of instances needed to be at a leaf node 2 − 10

MLP

initial_learning_rate Learning rate value at the starting point of training 1 × 10− 3 − 0.1
Solver Used for weight optimization lbfgs, sgd, Adam

learning_rate_adjustment Learning the rate adjustment depending on the cost function’s current
value Constant, adaptive

hidden_layer_sizes Layer: Number of layers between input and output layers 1 ∼ 7
Neurons: Number of hidden layer neurons (4, 8, 12)

activation_functions Output of each neuron Logistic, tanh, relu
Alpha (L2 penalty) Reduces the influence of input parameters 1 × 10− 3 − 0.1

ELM
n_neurons Number of hidden layer neurons 8

activation_functions Transformation function of hidden layer neurons relu
Alpha Regularization strength 0.001

GBR

n_estimators Number of boosting stages to carry out 200 − 500
max_features Number of features while considering the best split Sqrt

min_samples_leaf Least number of instances needed to be at a leaf node 2 − 10
max_depth Utmost depth of individual regression estimators 2 − 10
learning_rate Shrinks the contribution of each tree 0.1 − 1

Loss Loss function based on order information of input variables ls, lad, huber, quantile

XGBR

cosample_bytree Subsample ratio of columns while building each tree 0.1 − 1
Subsample Subsample ratio of training samples 0.1 − 1
reg_lamda L2 regularization On weight 0.1 − 1
reg_alpha L1 regularization On weigh 0.1 − 1

min_child_weight Least sum of sample weight required in a child 1 − 10
learning_rate Step size reduction to prevent overfitting 1 × 10− 3 − 0.1

LASSO Alpha (L1 penalty) A constant value that multiplies L1 1 × 10− 4 − 1 × 102
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where y � 1/T 
T
t�1 yt and in this paper, training set t �

1, . . . , 90 and test set t � 91, . . . , 132 are adopted.
Along with the performance evaluation matrix men-

tioned above, several statistical tests [43, 44] are performed
in this study to ensure the superiority of the proposed
approach. -e Friedman test is used to examine if the ab-
solute percentage errors (APE) of the two models differ
statistically significantly. Once statistical significance has
been established, post hoc tests (nonparametric tests), such
as the Wilcoxon signed-rank test, can be employed to assess
if the APEs of the models change when compared to one
another (lower tail) [44, 45]. Wilcoxon’s null hypothesis
indicates that there is no difference in APE betweenmodels 1
and 2, but the alternative hypothesis states that model 1 has a
lower APE than model 2.

4. Experimental Results and Discussion

In this section, the preparatory analysis of steel industrial
data used in this study is demonstrated in Section 4.2. -e
performance of the adopted models and statistical tests for
test set errors are described in Section 4.3. Tables S1 and S2
represent the performance measurement indices of the 56
generated models.

4.1. Experimental Setup. A single computer (Asus X556U
with an Intel® Core (TM) i5−72000U, central processor unit
running at 2.50GHz, 8.0 GB of random access memory, and
an Nvidia GeForce 940MX graphics card) running the
Windows 10 operating system was used to create the
findings provided in Section 4. In order to implement the
machine learning approaches and ensemble methods, we
used the Python 3.6 programming language in conjunction
with the Spyder computing environment, which is included
in Anaconda.

4.2. Exploratory Analysis. Correlation analysis is a statistical
approach used to determine the connection between two nu-
merical variables. From an ML viewpoint, it indicates how the
features correspond to the outcome. However, it is challenging
to identify how features are interconnected. Data visualization
can help determine how individual featuresmight correlate with
the outcome. Pearson’s correlation coefficient is used to identify
the relationship between two variables in a statistical analysis. In
the range of +1 to −1, it means that there is no correlation at all,
+1 indicates that there is a perfect positive correlation, and −1

Input: Input dataset D � Xi, yi 
m
i�1 , where (X ∈ R, y ∈ Y),Θset is the set of optimal hyperparameter for each based regression

model, M is number of based model T.
Output: final forecast demand level Y

∧
f and performance indices.

Step 1: learn first-level base regression models;
/∗ Loop for train and evaluate the first-level individual /regressor ∗
for t←1toT do
Divide the dataset D into Dtrain and Dtest;
/∗ 70% data for training and validation, 30% for test set ∗ /
/∗ Leave-One-Out Cross-Validation ∗ /
for i←1 toK(K←size of Dtrain) do

Dval
i � Dtrain(i, : )⇒Dtrain

i � Dtrain/Dval
i ;

Train Mt with optimal hyperparameter set Θset on Dtrain
i ;

Predict the demand level for Mt with Dval
i : ht←Mt(Dval

i );

Step 2: create a new dataset from D;
for t←1 toT do
Create a new dataset Dm×l

′ � Xi
′, yi  for meta-regressor,

Where Xi
′ � h1, h2, . . . , ht , ht← output of ith model, l← number of based model;

Step 3: learn second-level regressor model;
/∗ Loop for train and evaluate the final-level meta-regressor model
∗ /for j←1 toK(K←size of Dtrain) do

D′valj � D′
train

(j, : )⇒D′trainj � D′
train/D′valj ;

Train the meta-model Hmeta with D′trainj using Θset;
Predict the demand level for Hmeta with D′valj ;

Test set D′
test are used for the prediction and performance measure (PHmeta) using Hmeta

return PHmeta;

ALGORITHM 4: Demand forecasting using Stacking Ensemble techniques using cross-validation.
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indicates that there is a perfect negative correlation, according to
the definition. After the Yeo–Johnson transformation has been
performed to the training data set, the correlationmatrix for the
exploratory variables is shown in Figure 2. Figure 2 depicts the
color scale of its association, which is represented on the right-
hand side of the illustration. -e light color indicates a close
relation of 0, whereas the intense color indicates a close relation
of +1 or −1. -e indicators (F1, F2, and F3) and the response
variable (Demand) are highly positively correlated. -us, the
increment or decrement in the value of one tends to increment
or decrement those that are highly correlated. However, indi-
cator (F5) is negatively correlated to the outcome (Demand),
indicating that if the number of holidays in a month increases,
the number of demands decreases and vice versa.

4.3. Evaluation of Proposed Models. In this study, the pro-
posed models are trained using a set of optimal hyper-
parameters achieving the maximum predictive performance
of each model achieved by grid search. -e steel production
data from January 2009 to December 2019, covering
132months, are taken as the training and testing sets.

Table 3 presents an overview of hyperparameters tuned for
each ML model, their explanation, and turning ranges. Table 4
represents the quantified results for selecting the best per-
forming preprocessing and the number of selected features and
ML models, where R2 with standard deviation is stated for
comparison. Table 5 summarizes each model’s capacity to
obtain the highest R2 using the suggested pipeline, along with
the optimal preprocessing and feature selection algorithms and
the number of selected features. In addition, Table 5 illustrates
the best-tuned hyperparameters using the grid search. -e
analysis of Table 4 reveals that when suitable preprocessing is
used, various models produce superior outcomes.-e different
architectures of the MLP model are shown in Table 6. Table 7
summarizes the performance metrics used to evaluate each
model, which include R2, MAE, RMSE, and MAPE. When
either correlation-based or PCA-based feature selection is
applied, each model achieves the best results for filling missing
values, Yeo–Johnson transformation, and data normalization
(Tables 4 and 5). For SVR, the estimated accuracy of R2� 0.931
is obtained from preprocessed data and correlation-based
feature selection.

-e comprehensive experiments were performed on the
same dataset to get the best architecture for the MLP model.
Eight separate MLP models (Table 6) were implemented and
evaluated, with 1–7 hidden layers, where the number of
neurons served as a hyperparameter for selecting the best
numbers.-e experimental results in Figure 3 indicate that the
optimal architecture is the MLP layout with M� 4 hidden
layers (H1, H2, H3, and H4) and N1� 12, N2�12, N3�12, and
N4� 8 neurons. In addition, the presence of additional hidden
layers with fewer samples, like in the steel dataset, limits the
MLP model’s capability (Figure 3). Because of the limited data,
such as in the steel dataset, the wide depth of the MLP model
could be overfitted and cause gradient fading problems. Table 3
lists the optimal hyperparameters of the best MLP model. -e
models have used the ReLU activation function and Adam
solver. It was trained on 200 epochs with a constant learning

rate, batch size, and a regularization parameter of 0.01, 32, and
0.1, respectively. To reduce overfitting, the dropout layer was
used, randomly dropping 60% of neurons. -e highest accu-
racy R2 from the MLP model is 0.961 when we perform data
preprocessing and PCA-based feature selection. Similarly, the
ELM model with eight neurons in the hidden layer obtained
the best result. Table 3 lists the optimal hyperparameters of the
best ELM model. -e model used the ReLU as the transfor-
mation function of hidden layer neurons, and the optimal
regularization parameter was 0.001. -e best-estimated accu-
racy (R2) of the ELM model with preprocessed data and
correlation-based feature selection is 0.942.

Feature selection methods are used to improve the overall
performance of each model (correlation-based, PCA, and
ICA). It is possible to reduce the dimensions of a higher-di-
mensional space to a lower-dimensional space using PCA by
selecting the orthogonal projections with the highest variance.
-e ICA theory implies that data are only partly independent if
their variances across characteristics are larger than their co-
variance.-e number of computers being used has a significant
impact on PCA performance. Because the ICA-based feature
selection technique is used to find newly specified mutually
independent components, it is possible that correlation with
the desired output will be lost when the procedure is used to
discover new predefined mutually independent components.
Due to the fact that both PCA and ICA create new components
in an unsupervised manner, it is not possible to guarantee
greater performance on the steel dataset. Correlation-based
feature selection, on the other hand, takes into consideration
the relationship between quality and outcomes in order to
discover the most closely related features. As shown in Table 4,
the majority of models perform better when four features, F1,
F2, F3, and F6, are used.-ese four features were chosen using
a correlation-based feature selection technique.

Further improvement of demand forecasting was obtained
using regression ensemble models. Bagging (RFR), Boosting
(GBR and XGBR), and stacking (STACK) regression ensem-
bles were adopted to improve the performance of demand
forecasting. Table 5 presents the performance evaluation of the
adopted models. Furthermore, the results are sorted regarding
R2 in the ascending order for the test set results. Finally, the best
models present the lower RMSE and higher R2 in the test set.
RFR is the ensemble learner built-in unpruned decision tree,
and it reduced the effects of overfitting by combining multiple
trees. Table 5 shows the optimal hyperparameters for the RFR
model. -e best-estimated accuracy (R2) of the RFR model is
0.966 obtained from preprocessed data and PCA-based feature
selection. -e RFR performance of the models is better for
SVR,MLP, and ELM in terms of the RMSE, that is, it has lower
RMSE values. GBR and XGBR are also used to increase the
accuracy of forecasts. Extreme gradient boosting is a specific
variant of the gradient boosting strategy that discovers the ideal
tree model by employing a more exact approximation than the
conventional gradient boosting method. -e best-estimated
accuracy (R2) of the GBR model is 0.969, obtained from
preprocessed data and correlation-based feature selection. -e
XGBR can reduce the loss by showing an extreme gradient
capability.-e highest accuracy (R2) of XGBR is 0.974, and the
lowest RMSE is 0.151.-eRMSE of XGBR is significantly lower
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than the reference models and RFR and GBR. -e best
result of XGBR is obtained when a child’s minimum
amount of weight is less than 4, and a subsample ratio to
construct a tree is 0.7.

Finally, the stacking ensemble method is used for in-
tegrating multiple-base models in order to reduce prediction
errors to the smallest possible amount. According to the
results from the test set, level 0 of the STACK1 method is

F1 F2 F3 F4 F5 F6 D
em

an
d

Demand

F1
1

0.8

0.6

0.4

-0.4
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Figure 2: Correlation matrix for all influence features corresponding to the demand.

Table 4: Summary of all extensive experiments to select the best performing preprocessing feature selection methods with the number of
features and regression models.

ML method (s) Preprocessing Algorithm n_features Performance (R2)

SVR

Raw data N/A 6 0.898
Processed data N/A 4 0.919

Corr 4 0.931
PCA 4 0.923
ICA 4 0.923

RFR

Raw data N/A 6 0.918
Processed data N/A 4 0.929

Corr 4 0.966
PCA 4 0.967
ICA 4 0.952

MLP

Raw data N/A 6 0.845
Processed data N/A 4 0.911

Corr 4 0.957
PCA 4 0.961
ICA 4 0.950

ELM

Raw data N/A 6 0.841
Processed data N/A 4 0.849

Corr 4 0.942
PCA 4 0.887
ICA 4 0.909

GBR

Raw data N/A 6 0.934
Processed data N/A 4 0.944

Corr 4 0.969
PCA 4 0.949
ICA 4 0.934

XGBR

Raw data N/A 6 0.949
Processed data N/A 4 0.953

Corr 4 0.974
PCA 4 0.956
ICA 4 0.952

∗N/A�none. Note: the best approaches were shown in bold type.
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formed of the models ELM, GBR, and XGBR, with SVR as
the first model in level 1. For STACK2, the levels 0 and 1 are
made of ELM, GBR, and XGBR, with LASSO as the level 1
component. All of the models in Table A1 have the same
performance (R2) as the models numbered 14, 24, 33, 35, 45,
50, and 55. Model 35, on the other hand, is selected for the
STACK1 technique because its complexity is smaller than
that of other configurations, and it has the lowest MAPE. In
a similar process, the models numbered 33, 35, 50, and 56 in
Table A2 exhibit the same level of performance (R2). For the
STACK2 technique, model 35 is also picked because its
complexity is lower than that of other configurations, and it
has the lowest MAPE of any of the models tested. -e best-

estimated accuracy of STACK1 is 0.977, whereas the best-
estimated accuracy of MAPE is 0.445. In a similar vein, the
best-estimated accuracy of STACK2 is 0.977, and the best-
estimated accuracy of MAPE is 0.463. According to Table 7,
based on the findings of the test phase, the approaches based
on ensemble learning produced results that were compatible
with the objective of minimizing error.

Figure 4 illustrates the violin graph for the APE distri-
bution of each model that was utilized to produce predictions
for the test set, as shown by the APE distribution of each
model. -e mean APE is shown by the white dot in the center
of the chart. Ensemble-based techniques, as compared to
other models, significantly lower the APE to the absolute bare

Table 5: Best−-performing ML model and preprocessing and tuned hyperparameters with the highest possible accuracy (R2).

ML techniques Best preprocessing Best hyperparameters Performance

SVR

Processed data Corr (n_attributes: 4) C: 100 R2: 0.931
Kernel: RBF
Epsilon: 0.1

Gamma: 0.001

RFR

Processed data PCA (n_attributes: 4) n_estimators: 10 R2: 0.966
Criterion: mse
max_depth: 8

min_samples_leaf: 2
min_samples_split: 2

MLP

Processed data PCA (n_attributes: 4) initial_learning_rate: 0.01 R2: 0.961
Solver: Adam

learning_rate_adjustment: Constant
hidden_layer_sizes: (12, 12, 12, 8)

activation_functions: relu
Alpha (L2 penalty): 0.01

ELM
Processed data Corr (n_attributes: 4) n_neurons: (8) R2: 0.942

activation_functions: relu
Alpha: 100

GBR

Processed data Corr (n_attributes: 4) n_estimators: 250 R2: 0.969
max_features: Sqrt
min_samples_leaf: 2

max_depth: 2
learning_rate: 0.2

Loss: lad

XGBR

Processed data Corr (n_attributes: 4) cosample_bytree R2: 0.974
Subsample
reg_lamda
reg_alpha

min_child_weight
learning_rate

STACK (SVR)1 Processed data Corr (n_attributes: 4) C∶ 100 kernel: RBF R2: 0.977
STACK (LASSO)2 Processed data Corr (n_attributes: 4) Alpha (L1 penalty): 0.001 R2: 0.977

Table 6: -e different architectures of MLP with the corresponding number of hidden layers and the number of neurons in each layer.

Numerous architectures -e number of hidden layers and the number of neurons in each layer
Architecture1 H1 ∈ R8

Architecture2 H1 ∈ R8, H2 ∈ R12

Architecture3 H1 ∈ R4, H2 ∈ R8, H3 ∈ R12

Architecture4 H1 ∈ R12, H2 ∈ R12, H3 ∈ R12, H4 ∈ R8

Architecture5 H1 ∈ R12, H2 ∈ R12, H3 ∈ R8, H4 ∈ R12H5 ∈ R8

Architecture6 H1 ∈ R12, H2 ∈ R12, H3 ∈ R8, H4 ∈ R12H5 ∈ R4, H6 ∈ R12

Architecture7 H1 ∈ R8, H2 ∈ R8, H3 ∈ R12, H4 ∈ R12H5 ∈ R12, H6 ∈ R12, H7 ∈ R12
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minimum. In this way, we can show that a model (for the test
set) with lower metric values in Table 7 has a more stable APE
and less volatility than a model with higher metric values.-e
Friedman test established that the APEs for the accepted
models varied in the test set (χ27 � 72.1875, p − value< 0.05).
-is implies that there exist models with observed APE values
that are equal to or less than those of the others. In addition,
Table 8 depicts the results of the Wilcoxon signed rank test
(lower tail) for measuring the APE reduction of the assessed
models in the test set, in the presence of a statistically
significant difference as revealed by the Friedman test (χ27 �

72.1875, p − value < 0.05).
At the 5% level of significance, the APE of the STACK1

model is fewer than the APEs of the RFR, MLP, ELM, and
SVR models, as shown in Table 8. It is statistically equivalent
when the STACK1 model is compared to other models with
error rates at the 5% threshold of statistical significance. In

addition, when the 5% threshold of significance is utilized to
compare the models, Table 8 reveals that the APE of the
STACK2 model is lower than the APEs of the RFR, MLP,
ELM, and SVR models. Using the % level of statistical sig-
nificance, the STACK2 model is compared to other models,
and the errors are statistically equivalent. -is highlights the
advantages of the stacking ensemble models that we provide.
Ensemble-based models, on average, have a lower APE than
ELM and SVR. As a result, the ability of this approach to learn
the data could be described using smaller estimation errors
and variance between the ensemble methods than with the
others, confirming the validity of this methodology. At the 5%
level of significance, the APE of the STACK1 model is fewer
than the APEs of the RFR, MLP, ELM, and SVR models, as
shown in Table 8. When the STACK1 model is compared to
other models, the errors are statistically equal at the 5% level.
Similarly, Table 8 reveals that the APE of the STACK2 model

Table 7: Comparing stacking ensemble model with the best performing ML models.

Models R2 MAE RMSE MAPE
SVR 0.931 0.202 0.246 0.902
ELM 0.942 0.183 0.226 0.880
MLP 0.961 0.149 0.186 0.569
RFR 0.966 0.133 0.172 0.517
GBR 0.969 0.125 0.164 0.401
XGBR 0.974 0.120 0.151 0.619
STACK2 0.977 0.112 0.143 0.463
STACK1 0.977 0.112 0.144 0.445
-e best approaches were shown in bold type.
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Figure 3: Performance of several MLP architectures with the purpose of picking the optimal one with the maximum accuracy ((R)2), where
the best corresponding models are presented in Table 6.
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Figure 4: Violin plot to represent the APE of the models.
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Table 8: Wilcoxon signed rank test statistic (W) (lower tail) and p value for APE comparisons.

Model1 vs Model2 W p − value Model1 vs. Model2 W p value Model1 vs. Model2 W p value
STACK1 vs STACK2 3794 >0.05 STACK2 vs RFR 2947 <0.05 GBR vs RFR 3740 >0.05
STACK1 vs XGBR 4085 >0.05 STACK2 vs MLP 2882 <0.05 GBR vs MLP 3374 >0.05
STACK1 vs GBR 3383 >0.05 STACK2 vs ELM 2270 <0.05 GBR vs ELM 2897 <0.05
STACK1 vs RFR 3057 <0.05 STACK2 vs SVR 1901 <0.05 GBR vs SVR 2392 <0.05
STACK1 vs MLP 2856 <0.05 XGBR vs GBR 3814 >0.05 RFR vs MLP 3857 >0.05
STACK1 vs ELM 2213 <0.05 XGBR vs RFR 3462 >0.05 RFR vs ELM 3048 <0.05
STACK1 vs SVR 1843 <0.05 XGBR vs MLP 3144 <0.05 RFR vs SVR 2372 <0.05
STACK2 vs XGBR 4023 >0.05 XGBR vs ELM 2720 <0.05 MLP vs ELM 3222 <0.05
STACK2 vs GBR 3333 >0.05 XGBR vs SVR 1957 <0.05 MLP vs SVR 2593 <0.05

ELM vs SVR 3657 >0.05
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Figure 5: Continued.
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Figure 5: Correlation-based comparison between predicted demand and actual demand during the testing phase (a) SVR, (b) ELM, (c)
MLP, (d) RFR, (e) GBR, (f ) XGBR, (g) STACK2, and (h) STACK1.
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Figure 6: Continued.

16 Complexity



is less than that of the RFR, MLP, ELM, and SVR models at
the 5% level of significance. When the STACK2 model is
compared to other models, the errors are statistically equal at
the 5% level.-is demonstrates the advantages of the stacking
ensemble models we proposed. Ensemble-based models, on
average, have a lower APE than ELM and SVR. -us, the
capacity of this method to learn the data could be expressed
using lower estimation errors and variance between the en-
semble methods than with the others, demonstrating the
correctness of this approach.

Furthermore, a relationship between the actual and
predicted demand was established. Figures 5 and 6 show
these techniques for better understanding. Figure 5 shows
the correlation-based comparison between actual and
predicted demand levels for both reference models and
regression ensemble models. Figure 6 provides a pictorial
view of actual vs predicted demand. Figure 6 shows that
the demand pattern arbitrarily fluctuates because of the
impact of the variables affecting it.

As shown in Figures 5 and 6, models that are capable of
providing predictions that are consistent with the observed
values are able to learn from data behavior. -e improved
performance attained during the training phases is main-
tained during the test phases, suggesting that the regression
ensemble methodology is reliable in terms of achieving
established predictions.-is is supported by the capability of
machine learning models to manage nonlinearities and
model the complicated interaction between response vari-
ables and input features.

5. Conclusions

Precise demand forecasting significantly influences improv-
ing the performance and durability of the steel industry. -is
study compares the predictive performance of STACK, GBR,
XGBR, and RFR regression ensembles and the MLP, ELM,
and SVR referencemodels. In order to improve the prediction
performance of regression ensemble models, data preparation
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Figure 6: Graphical representation of actual vs predicted demand obtained by (a) SVR, (b) ELM, (c) MLP, (d) RFR, (e) GBR, (f ) XGBR, (g)
STACK2, and (h) STACK1 models, respectively.
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and feature selection procedures are critical. -e proposed
preprocessing scheme improves the raw dataset quality, where
filling the missing values and data standardization are the
main concerns. -e Yeo–Johnson transformation is used to
influence the features and response variables. While PCA and
ICA solely focus on interfeature redundancy, correlation-
based feature selection might improve interfeature correla-
tion. Hyperparameters are tuned to find the optimal
hyperparameter set for eachML technique using a grid search
algorithm. -e best-performing models are combined in
STACK1 to form level 0. SVR with linear kernels and LASSO
regressions are adopted as meta-learners in level 1. -e
Friedman and Wilcoxon signed-rank tests (lower tail) are
used to validate the models’ APE differences. Regarding the
findings, two models may be used to forecast one month as
follows: STACK1 (ELM+GBR+XGBR-SVR) and STACK2
(ELM+GBR+XGBR-LASSO). -e test set results demon-
strate that ensemble approaches outperform single models,
notably the STACKmodel, in forecasting demand in the steel
industry.

Future research will (i) develop other ensemble tech-
niques and integrate other ML regression techniques into
the ensemble; (ii) include other influence variables such as
occasion and political factors; (iii) collect more information,
in this case only 132months of production data are used; and
(iv) extend to other industrial fields to evaluate their gen-
erality and flexibility to predict several types of demand.
[36, 46, 47].
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