

This Project report has been submitted in fulfilment of the requirements for the Degree

of Bachelor of Science in Software Engineering

© Daffodil International University

1 | P a g e
© Daffodil International University

ACKNOWLEDGE

Throughout the system's planning and development phases, my supervisor, MD. Rajib Mia, a lecturer in

the Department of Software Engineering (SWE), was a tremendous help. I could not have progressed to

this stage of my development without his shrewd counsel and tactical direction. He was a major

contributor to the project's success, coming up with the original concept and offering constant assistance

all along.

I want to express my appreciation to my friends, family, and coworkers for your unwavering support under

all circumstance.

ABSTRACT

"Lactos World A Open world Unreal Engine Game."

An ambitious open-world game project called Lactos World aims to maximize player interaction and

immersion. This ambitious project delivers a gaming experience that goes beyond accepted conventions by

fusing innovative technology, imaginative design, and player-centric features.

This abstract provides a succinct summary of the extensive defensive documentation and provides an

overview of the main elements of the Lactos World project.

© Daffodil International University
IV

INDEX

Feasibility Analysis ... 4

2.1.1 Technical Feasibility .. 4

2.1.2 Operational Feasibility ... 4

2.2 Functional Requirements… .. 5-6

2.3 System Requirements… ... 7

2.4 Non-Functional Requirements… ... 7

2.5 Performance ... 8-9

1 | P a g e

1 | P a g e

Chapter 6 Gameplay Manual ... 26-34

6.1 Landing Page ... 26-34

Chapter 7 Conclusion ... 35

7.1 Future Roadmap… ... 35

Reference ... 35

1 | P a g e

CHAPTER 1: INTRODUCTION

The ambitious open-world game project Lactos World transports players to a huge and engrossing virtual

realm. The game offers an unmatched gaming experience by fusing gorgeous graphics, inventive gameplay

mechanisms, and an engaging story.

1.1 Project Overview

The demands of an ardent player base, technological improvements, and creative innovation are propelling

the gaming industry's extraordinary evolution. The Lactos World project comes to light as a trailblazing

effort that has the potential to completely alter the open-world gaming experience in response to this

changing scenario.

1.2 Project Purpose

The Lactos World project aims to provide a unique gaming experience through a blend of innovative

technology, artistic vision, and unwavering dedication. The general objectives of the project can be summed

up as follows:

Elevating Player Experience:

Lactos World is conceived with the primary objective of providing players with a gaming experience that

transcends conventional boundaries. The purpose is to immerse players in a meticulously crafted, expansive

open world, offering a dynamic and captivating adventure that resonates with a broad audience.

Innovation in Gameplay:

At the core of the project is a commitment to innovate in gameplay mechanics. Whether through the

seamless exploration of a vast and diverse world, the intuitive combat system, or the intricate crafting and

economic systems, Lactos World seeks to push the envelope of what players expect from an open-world

game.

Storytelling and Player Agency:

The project aims to weave a rich narrative tapestry, immersing players in a captivating storyline with deep

lore. Importantly, Lactos World places significant emphasis on player agency, allowing individual choices

2 | P a g e

to influence both personal experiences and the overarching narrative, providing a sense of ownership in the

game world.

Technical Excellence:

Lactos World is built on the robust Unreal Engine 4, incorporating advanced graphics and technical

features. The purpose is to deliver a visually stunning and technically impressive gaming environment while

ensuring smooth performance across various gaming platforms.

Cross-Platform Accessibility:

The decision to develop Lactos World for PC, PlayStation, and Xbox platforms is driven by the purpose of

reaching a diverse gaming audience. Cross-platform accessibility ensures that players can engage with the

game regardless of their preferred gaming device, fostering inclusivity.

1.2.1 Proposed System

The comprehensive framework of the Lactos World proposed system is intended to realize the project's

goals. It includes a range of parts, tools, and techniques to guarantee the game's effective creation,

implementation, and upkeep. An outline of the suggested system is provided here:

Game Engine:

• Utilize Unreal Engine 5.3 as the primary game engine for its powerful capabilities in rendering,

physics, and scalability.

• Leverage the engine's Blueprint system for rapid prototyping and iterative development.

Performance Optimization:

• Conduct rigorous performance testing to optimize the game for various hardware configurations.

• Implement level-of-detail (LOD) systems, occlusion culling, and other optimization techniques to

maintain smooth gameplay.

Post-Launch Support:

• Commit to providing post-launch support with regular updates, addressing player feedback, and

addressing emerging issues.

• Plan and execute downloadable content (DLC) releases to expand the game universe and

introduce new features.

3 | P a g e

Chapter 2: SYSTEM ANALYSIS

2.1 Feasibility Analysis

The feasibility analysis for Lactos World assesses the practicality and viability of the project from various

perspectives, including technical, operational, economic, and scheduling considerations.

2.1.1 Technical Feasibility:

• Technology Stack: The use of Unreal Engine 4 provides a robust foundation for developing a

visually stunning and technically sophisticated game. The engine's capabilities in rendering,

physics, and cross-platform compatibility contribute to the technical feasibility of the project.

• Platform Compatibility: The decision to develop for PC, PlayStation, and Xbox ensures broad

market reach. Cross-platform development, although challenging, is technically feasible with

proper planning and resource allocation.

• Scalability: The technical architecture allows for scalability, accommodating future updates,

expansions, and the integration of advanced features.

2.1.2 Operational Feasibility:

• Development Team: Assessing the availability of skilled developers, designers, and other key

personnel is crucial. The feasibility analysis considers the team's expertise and experience with

Unreal Engine 4 and open-world game development.

• Collaborative Development: Collaboration tools and methodologies are implemented to

facilitate effective communication and coordination among team members, promoting a

streamlined development process.

• Iterative Development: The feasibility of adopting an iterative development approach is crucial

for adapting to changing requirements and player feedback during the development cycle.

4 | P a g e

2.2 Functional Requirements

Functional requirements describe the specific features and functionalities that the Lactos World game

must have to meet its objectives. Here is a set of functional requirements for the game:

➢ Character Creation:

○ Players can create and customize their in-game characters, including appearance, skills,

and abilities.

➢ Open World Exploration:

○ Seamless and expansive open-world environment for players to explore.

○ Diverse landscapes, regions, and ecosystems with unique challenges and rewards.

➢ Quest System:

○ Varied and engaging quests catering to different playstyles.

○ Quest tracking and journal system for player reference.

○ A mix of main storyline quests, side quests, and dynamic events.

➢ Combat System:

○ Intuitive combat mechanics supporting various weapons and skills.

○ Realistic animations and responsive controls.

○ Enemies with diverse behaviors and challenges.

➢ Crafting and Economy:

○ Robust crafting system allowing players to gather resources and create items.

○ In-game economy influenced by player actions, trade, and supply and demand dynamics.

➢ Dynamic Day-Night Cycle:

○ Realistic and dynamic transitions between day and night.

○ Influences on gameplay, creature behavior, and environmental conditions.

➢ Storyline and Lore:

○ Gripping narrative with deep lore and character development.

○ Player choices impacting the unfolding story.

○ Branching storylines based on player decisions.

➢ Graphics and Visual Effects:

○ High-definition visuals with advanced graphics features.

5 | P a g e

○ Realistic lighting, particle effects, and environmental details.

➢ Inventory System:

○ Manageable inventory system for storing items and equipment.

○ Sorting and categorization options for player convenience.

➢ Dynamic Weather System:

○ Realistic and dynamic weather conditions, impacting gameplay.

○ Environmental effects such as rain, snow, and storms.

➢ User Interface (UI):

○ Intuitive and user-friendly interface for easy navigation.

○ HUD elements displaying essential information, such as health, inventory, and quest

status.

➢ Sound and Music:

○ Immersive sound effects corresponding to in-game actions and events.

○ Evocative background music enhancing the gaming experience.

➢ Save and Load System:

○ Autosave and manual save options for player progress.

○ Load system allowing players to resume gameplay from saved points.

➢ Accessibility Features:

○ Customizable controls and settings for players with different preferences.

○ Subtitle options for dialogue and in-game audio.

6 | P a g e

2.3 System Requirements

➢ Hardware Requirements:

Operating System: Windows 10/11 (64-bit)

Processor: Intel Core i3-9100F or AMD Ryzen 3 3200G

Memory: 8 GB RAM

Graphics: NVIDIA GeForce GTX 1050Ti 4GB or AMD Radeon RX 580 8GB

DirectX: Version 11

Storage: 65 GB available space

Sound Card: DirectX compatible soundcard or onboard chipset

2.4 Non-Functional Requirements

➢ Performance:

○ Load Time: The game should load within 15 seconds on average hardware

configurations.

○ Response Time: The game should respond to user inputs within 100 milliseconds to

maintain a smooth and responsive experience.

➢ Scalability:

○ The system should be scalable to accommodate a growing player base, ensuring stability
and performance even during peak usage.

➢ Availability:

○ The game should have a minimum uptime of 99.5%, allowing for routine maintenance

and updates.

➢ Reliability:

○ The system should be reliable, with a low probability of crashes or unexpected downtime.

○ The game should autosave progress at regular intervals to prevent data loss.

7 | P a g e

2.5 Performance

➢ Response Time:

○ The game should exhibit low latency, responding to user inputs quickly and efficiently.

○ Aim for an average response time of 100 milliseconds or less to maintain smooth and

responsive gameplay.

➢ Load Time:

○ Optimize the game's loading times to enhance the overall user experience.

○ Implement efficient resource loading strategies to minimize initial load times and level

transitions.

➢ Frame Rate:

○ Ensure a consistent and high frame rate to provide smooth animation and visual
experiences.

○ Target a minimum of 30 frames per second (FPS) for consoles and 60 FPS for PC, with

support for higher frame rates on capable hardware.

➢ Scalability:

○ Design the game to scale across a variety of hardware configurations, allowing players

with different setups to enjoy the game.

○ Implement graphics settings and optimization options to accommodate a wide range of
performance capabilities.

➢ Network Performance:

○ Optimize network performance to minimize latency and provide a smooth multiplayer

experience.

○ Implement efficient networking code, employ server-client prediction mechanisms, and

consider the impact of network conditions on player interactions.

➢ Memory Management:

○ Implement efficient memory management to minimize resource usage and prevent

memory leaks.

○ Optimize textures, models, and other assets to ensure the game runs smoothly within the

constraints of various hardware specifications.

➢ Rendering Efficiency:

8 | P a g e

○ Optimize rendering techniques to maximize graphical fidelity while maintaining
performance.

○ Implement level-of-detail (LOD) systems, occlusion culling, and other rendering

optimizations to balance visual quality and performance.

➢ Stability:

○ Conduct rigorous testing to identify and address bugs, crashes, and performance

bottlenecks.
○ Implement effective error handling and logging mechanisms to diagnose issues promptly.

➢ Update Performance:

○ Develop a streamlined process for delivering updates and patches to minimize disruption

to players and maintain a smooth gaming experience.

9 | P a g e

Chapter 3: System Design

The choice of a specific system design approach in software engineering often depends on various factors,

including the complexity of the project, development team expertise, project requirements, and scalability

considerations. For a sophisticated and expansive open-world game like Lactos World, a combination of

several system design principles and methodologies would be suitable.

1. Object-Oriented Design (OOD):

▪ Utilize object-oriented principles for modeling and organizing the game's components.

This helps in encapsulating behavior, promoting code reuse, and managing the

complexity of a large-scale project.

2. Service-Oriented Architecture (SOA):

▪ Implement a service-oriented architecture to break down the game into modular and

loosely coupled services. This allows for easier scalability, maintainability, and the

potential for incorporating microservices.

3. Model-View-Controller (MVC):

▪ Apply the MVC design pattern to separate the game's internal representation (model),

user interface (view), and user input (controller). This enhances maintainability and

allows for easier updates to specific components.

4. Entity-Component-System (ECS):

▪ Utilize an entity-component-system architecture for managing game entities and their

behaviors. This provides flexibility, scalability, and efficient performance, especially in

the context of an open-world environment with numerous interactive elements.

10 | P a g e

5. 3.1.1 Use Case Diagram

11 | P a g e

3.1.2 Use Case Descriptions

1. Explore the World:

Description

The player can freely explore the open-world environment.

Pre-Condition

Have to Install the game files on device.

Flow And Counts

• Control Up and Down and Round with mouse

• Go forward and backward with keyboard

(W,S,A,D)

12 | P a g e

2. Interact with NPCs:

Description

The player can interact with non-playable

characters (NPCs) for dialogues, trading,

or quests.

Pre-Condition

Player Should Go Near the polyzoon of

NPC.

Flow And Counts

• Go near NPC

• Press “E” to talk with NPC

3. Access Map:

Description

The player can access a map of the open world, helping with

navigation.

Pre-Condition

Open map using Keyboard’s (M) Button

Flow And Counts

• Open map

• Select Location

13 | P a g e

4. Manage Inventory:

Description

The player can manage and organize their inventory, including items,

weapons, and armor.

Pre-Condition

Player Should Go Near the polyzoon of NPC.

Flow And Counts

• Go near NPC

• Press “E” to talk with NPC

5. Complete Quests:

Description

The player can accept and complete quests

provided by NPCs or some certain location.

Pre-Condition

By completing all task

Flow And Counts

• Complete all task

• Pick up some specific item.

14 | P a g e

6. Combat Enemies:

Description

The player engages in combat with in-game enemies, such

as monsters or hostile NPCs.

Pre-Condition

Have Specific item or weapon to attack

Flow And Counts

• Pick up weapon form location or creates.

• Pick ammo for weapon

7. Pause Game:

Description

The player can pause the game to access settings,

controls, or take a break.

Pre-Condition

“ESC” Button for Pause the game

8. Save/Load Game:

Description

The player can save and load game progress.

Pre-Condition

Auto save when a task in complete

15 | P a g e

3.2 Activity Diagram

16 | P a g e

3.3 Sequence Diagram

17 | P a g e

3.4 ER Diagram

18 | P a g e

3.5 Class Diagram

19 | P a g e

Chapter 4: Development Tool and Technology

4.1 Integrated Development Environment (IDE)

• Unreal Engine 5.1/5.2/5.3

• Blender

• Meta Human

• Ableton Live

4.2 Programming Language

• C#

4.3 User Interface Design

• Adobe Creative Cloud Suite

• Photoshop

• Illustrator

20 | P a g e

Chapter 5: System Testing

Test the core gameplay mechanics, including character movement, combat interactions, quest systems,

and crafting elements. Verify that the main storyline and side quests progress logically, considering player

choices and consequences.

5.1.1 Feature to be tested

Features Priority Description

Gameplay Mechanics Exploration mechanics, such as jumping,

climbing, and swimming

Quests and Narrative Main storyline progression and branching

narratives

Crafting and Economy Trading and player-driven economy interactions.

Player Progression Skill trees and character customization.

Dynamic Day-Night Cycle Realistic transitions between day and night.

User Interface (UI) Clarity and intuitiveness of menus and HUD

elements.

21 | P a g e

5.2 Testing Strategies

5.2.1 Test Approach:

Testing strategies and test approaches for Lactos World should be comprehensive and tailored to the

unique characteristics of an open-world game. Here is an outline of potential testing strategies and

approaches:

1. Test Levels:

➢ Unit Testing:

• Focus on testing individual components, functions, and methods in isolation.

• Utilize automated unit tests to ensure the correctness of code at the smallest level.

➢ Integration Testing:

• Verify the interactions and data flow between different components.

• Conduct tests to ensure the seamless integration of various subsystems, such as AI,

physics, and rendering.

➢ System Testing:

• Evaluate the entire system's functionality, including core gameplay mechanics, quests,
multiplayer features, and UI.

• Perform end-to-end testing to simulate real-world player scenarios.

➢ Acceptance Testing:

• Involve stakeholders and real players to validate that the game meets their expectations.

• Execute acceptance tests to ensure that the delivered product aligns with the defined

requirements.

22 | P a g e

5.2.2 Pass/Fail Criteria:

Unit Testing:

Pass Criteria:

▪ All unit tests pass without errors.

▪ Code coverage for unit tests meets or exceeds the defined threshold (e.g., 80%).

▪ No critical defects are identified during unit testing.

Fail Criteria:

• Any unit test fails to execute or returns unexpected results.

• Code coverage is below the defined threshold.

• Critical defects are identified and not addressed.

Integration Testing:

Pass Criteria: Data flow between subsystems is seamless, and data integrity is maintained.

Fail Criteria: Critical defects remain unresolved.

System Testing:

Pass Criteria: Core gameplay mechanics work as intended. Performance meets predefined standards under

normal conditions.

Fail Criteria: Multiplayer features experience significant issues.

Performance Testing:

Pass Criteria: Acceptable frame rates are maintained under various conditions. Loading times meet or

exceed defined thresholds.

Fail Criteria: Unacceptable frame rates affect gameplay experience.

23 | P a g e

5.2.3 Testing Schedule

Test Phase Time

Testing plan create 1 Week.

Unit testing During development time.

Integration Testing Phase time 3 weeks.

System Testing Phase 4 Week.

Performance testing 2 Week.

Compatibility Testing Phase 2 Week.

Regression Testing and Automation Phase 2 weeks.

Localization Testing Phase 2 weeks

Beta Testing and Player Feedback Integration 2 weeks.

24 | P a g e

5.3 Test Cases:

❖ Player Movement:

➢ Test Case 1: Verify that the player character moves in response to directional input.

➢ Test Case 2: Confirm that the player can perform basic movements such as walking, running, and

jumping.

❖ Combat Mechanics:

➢ Test Case 3: Validate the accuracy of player attacks and weapon interactions.

➢ Test Case 4: Ensure that defensive actions, such as blocking or dodging, are functioning

correctly.

❖ Quest System:

➢ Test Case 5: Test the initiation and completion of a main storyline quest.

➢ Test Case 6: Verify that side quests progress appropriately based on player choices.

❖ Crafting and Inventory:

➢ Test Case 7: Confirm that players can gather resources and use them for crafting.

➢ Test Case 8: Validate the inventory system for proper item storage and retrieval.

❖ Integration of Gameplay Elements:

➢ Test Case 9: Verify that combat mechanics integrate seamlessly with the quest system.

➢ Test Case 10: Confirm that player movement interacts appropriately with the environment.

25 | P a g e

Chapter 6: Gameplay Manual

6.1 Game Play :

26 | P a g e

27 | P a g e

28 | P a g e

6.2 Locations:

29 | P a g e

30 | P a g e

6.2 Character:

31 | P a g e

6.3 NPCs

32 | P a g e

N.B Unreal Engine Mannequin

33 | P a g e

34 | P a g e

Chapter 7: Conclusion

We've strived to create not just a game but a living, breathing universe where players can escape into a

realm of endless possibilities. "Lactos World" is a testament to what can be achieved when passion,

innovation, and a commitment to excellence come together.

7.1 Future Roadmap:

✓ Expansions and Additional Content: Lactos World envisions a future filled with exciting

expansions and additional content, introducing new lands, quests, and challenges for players to

conquer. The roadmap includes a commitment to delivering fresh and engaging experiences for

the growing player base.

✓ Technological Advancements: Embracing advancements in gaming technology, Lactos World

looks forward to incorporating new features, optimizing performance, and exploring emerging

platforms to ensure a cutting-edge gaming experience.

✓ Community Engagement: The game's success is intrinsically tied to the vibrant community of

players. Ongoing community engagement initiatives, such as events, forums, and social media

interactions, foster a sense of belonging and shared enthusiasm among players.

35 | P a g e

Reference:

1. Game: Games like "The Elder Scrolls", "Cyber punk 2077", series (e.g., Skyrim) and "The Legend of

Zelda: Breath of the Wild" offer expansive open worlds with rich narratives and intricate gameplay. And

also Watch Dogs, Call Of duty series By Activison.

2. Unreal Engine Showcase: Explore projects and games that showcase the capabilities of the Unreal

Engine.

https://docs.unrealengine.com/4.26/en-US/Resources/SampleGames/

3. Unreal Engine's scripting language (C++ and Blueprints). https://docs.unrealengine.com/4.27/en-

US/ProgrammingAndScripting/ClassCreation/CodeAndBlueprints/

https://docs.unrealengine.com/4.26/en-US/Resources/SampleGames/
https://docs.unrealengine.com/4.27/en-US/ProgrammingAndScripting/ClassCreation/CodeAndBlueprints/
https://docs.unrealengine.com/4.27/en-US/ProgrammingAndScripting/ClassCreation/CodeAndBlueprints/

