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Electroencephalography (EEG) is a reliable method for identifying the onset of sleepiness behind the wheel. Using EEG
technology for driving fatigue detection still presents challenges in extracting informative elements from noisy EEG signals. Due
to their extensive computational parallelism, which is similar to how the brain processes information, neural networks have been
explored as potential solutions for extracting relevant information from EEG data. Te existing machine learning frameworks
sufer from high computing costs and slow convergence, both of which contribute to low classifcation accuracy and efciency due
to the large number of hyper parameters that need to be improved. It is necessary to automate this micronap detection process
before it can be used in real-time scenarios. To distinguish between micronap and non-micronap states, a deep neural network
(DNN) framework is developed in this research using diferent EEG representations as input. Additional EEG representations
utilized in this investigation include cleaned EEG as a time series, log-power spectrum, 2D-spatial map of log-power spectrum,
and raw EEG. Finally, traditional machine learning algorithms are evaluated for their efectiveness in detecting micronaps from
these EEG inputs. Te fndings suggest that micronap detection can be greatly improved by combining cleaned EEG with DNN.

1. Introduction

In many professions and everyday activities, the ability to
sustain concentration is essential. When a process or system
is semiautomated, the importance of this element increases.
Automation has permeated all professions in today’s world.
Even though maximum blood alcohol levels and the en-
forcement of speed limits have recently decreased, trafc
accidents continue to be a major source of fatalities and
injuries [1]. Among the many circumstances where it is
essential for the individual afected and those closest to them
to concentrate, the brief amount of time during which the

drivers involved in these incidents lost awareness or con-
centration is frequently unknown to them at the time of the
accident. Te fatigue masked by the accident disguises their
drowsiness. A micronap is an unintentional, brief spell of
unconsciousness that can last up to 30 seconds. Micronaps
can be distinguished from tiredness by their complete lack of
visuomotor responsiveness and partial eye closure. Micro-
naps can occur without warning. A person might not be
aware of having experienced these light sleep stages [2].

Micronaps are more likely due to physical exhaustion,
mental exhaustion, circadian rhythm problems, and bore-
dom from repetitive work. However, even in subjects who
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are not sleep deprived and perform repetitive activity
without warning signs such as fatigue, these types of lapses
are possible [3]. Te drivers involved in these collisions were
unaware of the short period of time they lost consciousness
or concentration or how the postcrash adrenaline masked
their fatigue. Major safety issues are raised by this, especially,
for those who engage in high-risk professions including
driving, fying, navigating, traveling by boat, and process
control, all of which call for consistent, uninterrupted
visuomotor function. Terefore, accurate detection of
approaching micronaps has the potential to prevent fatal
mishaps and save lives. Micronaps are challenging because
they occur suddenly and unintentionally [4].

Machine learning has been used in several studies to identify
microsurges in EEG data. Tese experiments were primarily
concerned with developing a model for identifying short naps
and testing diferent feature extraction, selection, and reduction
strategies. It is challenging to maintain relationships when using
such algorithms with electroencephalogram (EEG), multivariate
signal, and dynamic time series signal as input. Additionally,
since the features provided to machine learning algorithms are
hand-picked by algorithm or system designers, they have dif-
fculty understanding the dynamics of microvoltages due to
selectivity invariance. Recent innovations such as deep learning
(DL) algorithms that can extract, analyze, and capture infor-
mation from unstructured data ofer the full answer. With DL,
greater focus may be put on model creation to enhance the
efectiveness of micronap detection [5, 6].

Te performance of the model is signifcantly infuenced by
the feature selection. Features that are derived from data using a
specifc handcrafted process based on expert knowledge are
referred to as handcrafted features. Tis might limit how the
characteristics and signals the data provide can be portrayed. In
contrast, learners are built from a dataset using a training ap-
proach to achieve a certain goal (e.g., gender recognition). Te
objective of this article was to create a dependable technique for
detecting brain activity micropulses that could be used as the
foundation for a real-time system that would warn the subject of
his condition and avert a deadly accident.

Te main contribution of this article is as follows:

(1) To design deep neural networks (DNN) to classify
the micronap and nonmicronap classes

(2) To use various EEG representations as an input form
to the designed DNN and analyze its performance

Te contribution of real-time data to the identifca-
tion of micronaps is another important fnding in this
article. After this thorough introduction, Section 2
provides a survey of the literature. Te data, an illus-
tration of a micronap detection system, the validation
processes, and the performance metrics, are all provided
in Section 3. Te various EEG input data formats are
discussed in Section 4 along with a comparison of the
outcomes, followed by the conclusion in Section 5.

1.1. Related Study. We will review key concepts in EEG-
based sleep, exhaustion, and sleepiness research. Forms of
lapsing and an overview of several micronap detection

studies are also reviewed. Understanding the nature and
properties of the EEG information associated with brain
activity in various contexts is required in order to accom-
plish this [7]. Additionally, this is required to back up the
choice to employ EEG to detect micronaps. Te human
brain is revealed by an electroencephalogram (EEG), a
measurement of potentials. It is a simple test that shows how
the brain changes over time [8]. EEG is frequently used by
medical professionals and researchers to study brain activity
and identify neurological problems. Modern research in
many felds depends on EEG. A patient’s brain death, the
severity of a stroke or head injury, epileptic activity, sleep
issues, andmany other things can all be determined with this
technique in medicine. It is useful in other studies inves-
tigating various cognitive processes such as memory or
attention as well as in linguistic and clinical studies such as
aphasia [9, 10].

Experts have to spend a lot of time visually checking the
stages of sleep in order to assign a score. In order to diagnose
and treat sleep-related diseases, automatic classifcation of
sleep stages is preferred. A response lapse is a period of time
during which a person is unable to respond to a continuous
task. Depending on the underlying cognitive systems, there
are several types of blackouts. Some typos cause delays in
rapid response, while others lead to incorrect responses.
Some errors may result in complete sensory-motor collapse.
A brief interruption that causes a delay or lack of reaction in
the main work without making the person unconscious is
called an attention lapse [11]. In certain situations, a person
could unconsciously engage in a secondary task such as
walking, looking, or driving. Te unwelcome loss of con-
sciousness related to sleep happens during micronaps. Te
individual enters the stage of light sleep during this brief (up
to 30 s) time.Te behavioral signs of micronaps include head
nodding, lack of facial expression, and partial eye closure.
Sleep is defned as a period of inactivity lasting more than
30 seconds [12, 13].

Te current benchmark for micronap state identifca-
tion, which refects the top outcomes for micronap state
detection on unpruned data, was attained using a range of
classifers and an ensemble of features. Despite numerous
studies on the subject, there is still no technique that per-
forms well enough for use in practical situations [14]. Te
accuracy of EEG data was tested using a variety of con-
volutional neural network (CNN) topologies. To create
learning representations that are efcient and resistant to
intrinsic EEG noise as well as inter- and intrasubject vari-
ation, deep recurrent convolutional neural networks are
used [15]. To avoid the need for handcrafted features, deep
belief networks, an unsupervised feature learning architec-
ture, were applied to the sleep data [16]. Compared with
handcrafted features, the deep belief network (DBN) tech-
nique improved the sleep classifcation accuracy. Te task
identifes seizures using a range of formats and machine
learning algorithms. Numerous applications based on EEG
have shown the efcacy of CNNs and recurrent neural
networks (RNNs), including epilepsy, seizures, and diferent
stages of sleep. EEG has been successfully compressed using
a convolutional auto encoder (CAE) with the best subspace
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reduction [17]. DNNs’ architecture permits the addition of
signal processing techniques to conventional statistical data.
DNNs are very extendable and fexible. From single-layer
shallow patterns to numerous successive convolutional
layers, they can have diferent numbers of convolutional
layers [18, 19]. Tis article used deep learning to analyze
scalp EEG signals to identify the phases and onsets of
micronaps.

2. System Methodology

2.1. Dataset Description. Tis is the frst behavioral and
EEG dataset ever collected using deep learning. Te main
motivation for selecting the deep dataset (https://www.
kagggle.com/) for this work’s initial experimentation is
that it has been widely used in previous research projects
that have shown a number of discoveries and charac-
teristics of micronaps [20]. As a result, a basic standard
was established, especially for the detection of micro-
naps. Ten healthy individuals between the ages of 20 and
45 were examined. None of the participants had any
neurological or sleep issues in the past or present, and all
of them had enhanced visual acuity. In addition, all
subjects reported a sound sleep the previous night
(mean � 7.35 h, with a minimum of 6 h) and were,
therefore, not considered sleep-deprived. Sixteen elec-
trodes (10–20 international standards) were placed on
the subjects’ scalp at the following locations: F7, F3, F4,
F9, T7, C3, CZ, C4, T8, P7, PZ, P4, P8, and 01 during the
EEG capture task at a sampling frequency of 240 Hz [21].

EEG and face images were captured at a frame rate of 15
frames per second (fps). Based on visual indications in-
cluding head nodding, head jerking, and protracted eyelid
closure, the facial video helped identify gaps brought on by
micronaps. Te gold standard has been developed through
the use of visual signals and performance tracking. Te
validation of training and test data was made easier by this
designation [22, 23]. All subjects took part in the experi-
ment, which took place in a 4m2 space equipped with a PC
screen and all necessary devices for EEG data collection. Te
distance of the object from the screen was between 75 and
115 cm. All subjects were ftted with an EEG headset and
pretests were performed to ensure the integrity of the entire
recording pipeline. An experimenter oversaw the session
from a nearby room with a one-way glass window. Subjects
were instructed to refrain from excessive head movements,
eye blinks, and facial muscle contractions before the study

began. Subjects were instructed to silently count the number
of target fashes to help maintain focus.

2.2. EEG Preprocessing. Each subject’s scalp’s recorded EEG
signals completed the preprocessing illustrated in Figure 1 as
follows:

(i) Te reference was reset to a common average ref-
erence in order to improve the signal-to-noise ratio.
Te EEG data were then band-pass fltered from 0.5
to 1Hz using a high pass flter.

(ii) Te independent component analysis (ICA) com-
ponents were projected to the calibration data space
using its own covariance matrix.

(iii) To take into account the EEG’s nonstationarity, it is
divided into 2min sections with 50% overlap.

(iv) Each epoch’s calibration data were discovered and
utilized to clean the same epoch. Te original EEG
data were then cleaned by concatenating the epochs.
To prevent discontinuity, the overlapping portions
of succeeding epochs were averaged.

A behavioral expert divided episodes of blackouts into
one of four groups as follows: Type 0 is with drooping lids
and periods of noticeably increased tracking imprecision but
a response rate above zero (complete eye closure). Type 1:
episodes persist longer than 500ms, have drooping eyes, and
have a fat or jumbled response (complete or partial slow eye
closure). Micronaps are defned as episodes lasting less than
30 seconds, while naps are classifed as episodes lasting over
15 seconds. Type 2 is strange incidents and forced eye
closure. Type 3 is lack of droopy eyes and fat or senseless
shouts. Micronap events were transformed into labels at
250Hz (gold standard). Only Type 1 was employed to learn,
recognize, and detect the onsets of micronaps in this in-
vestigation, and only the responsive states were used as the
gold standard [24–26].

2.3. Deep Neural Network Micronap Detection Framework.
Figure 2 depicts the overall micronap detecting mechanism.
Figure 3 depicts the proposed DNN framework. As previ-
ously noted, the EEG data obtained from the scalp are
preprocessed to reduce artifacts and serves as an input to
visualize and extract suitable features on its own. Te frst
layer specifes the input dimensions. ReLU and max-pooling
layers are inserted between a series of convolutional layers

Re-reference/
down-sample
(if necessary)

High pass filter
(~.5–1 Hz) Examine raw data

DoneRun ICA and
reject components

Reject large artifact
time points

Identify/reject
bad channels

Figure 1: Preprocessing EEG signal.
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that make up the intermediate layers. To produce a single
output, the pooling layer subsamples tiny rectangular blocks
from the convolutional layer. Te softmax layer and fully
linked layers are used in the fnal layer to categorize patterns.

2.4.MicronapStateDetection. Both intrasubject (during and
between sessions) and intersubject variance has an impact
on the number of occurrences and their corresponding
lengths. Usually, discrete labels are applied while classifying
things.Tis work’s gold standard was discretized or sampled
at 2.5Hz. We used a sliding window with duration of W to
segment the entire 30minutes of EEG data. Figures 4 and 5
show the EEG during sleep and the typical EEG, respectively.
Figure 6 uses the EEG segments as inputs to show the
micronap states at r. Tis procedure is used every 0.5 s up
until all states of the gold standard have been recognised.Te
classifer can only decide whether the behavioral state that
correlates with it is a micronap or a responsive state (i.e.,
r= 0) at the end of the EEG window. For r> 0, where r is the
distance between the state under consideration and the
window’s end, the same conclusions are true.

2.5. Micronap Onset Detection. It is impossible to pinpoint
and mark the precise onsets of micronaps due to the exis-
tence of ambiguous labels. Te frst instance of a micronap
state’s defnite occurrence after the responsive state is
considered to be the ofcial beginning of a micronap in this
article. All responsive states and micronap onsets were the
industry standard for onset detection. EEG segments of W
duration in the time domain or frequency domain, with or
without spatial information, served as the inputs for the
identifcation of the micronap states at r.

2.6. Classifcation. Te classifcation process used a 0.5-
second temporal resolution. Each individual experienced
micronaps at a distinct frequency and length, which pro-
duced quite diverse imbalance ratios. Table 1 displays the
frequency and length of micronaps by subject as well as
imbalance ratios of states and onsets. According to Table 1,
with subject 9 having the largest imbalance ratio, all subjects,
with the exception of subjects 5 and 6, show considerable
imbalance ratios between micronap states and responsive

states. When it comes to the onset of micronaps, the im-
balance ratio gets worse. Te imbalance ratio between the
two classes signifcantly worsens when it comes to onsets.
Table 1: Number of states = 4∗ Time between events (tem-
poral resolution of 0.5 s).

2.7. Validation and Performance Measures. To evaluate the
model’s real performance in classifying the micronap and
responsive classes, data from a test subject must be com-
pletely hidden from the validation and training processes. In
other words, one makes an estimation of the model’s be-
havior with an entirely hypothetical topic. For this purpose,
the planning and experimentation phases of this article
employed the following strategy:

(i) keep one subject out of a total of ten for independent
testing.

(ii) train the deep learning model with the remaining 9
subjects.

(iii) utilize a leave-one-subject-out cross-validation
technique (LOSO-CV). Te deep learning model’s
regularization as well as its hyperparameters
(number of flters, size of flters, number of layers,
types of layers, and number of layers) are altered in
order to obtain the optimal performance.

(iv) Each layer’s hyperparameters were successively
swept through a set of values. Automatically, the
best area under curve (AUC) is used to determine
the ideal values.
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Figure 2: Generic DNN framework.
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Figure 3: Proposed DNN layers.
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(v) Up until all 10 test individuals have been employed,
we repeat processes 1 through 4.

(vi) calculate the performance measurement averages.

Te measures of evaluation serve a dual purpose in
designing classifers and evaluating their performance. Te
concepts present in a confusion matrix for a binary (two-
class) classifcation problem can be used to comprehend the
majority of threshold metrics. Tree crucial parameters,
sensitivity (Sn), specifcity (Sp), and precision, can be esti-
mated using the matrix (P). In this article, two more pa-
rameters are utilized to assess the model’s test performance
in addition to the geometric mean, phi, and others. Te area
under the receiver operating characteristic (ROC) curve and
the area under the precision-recall (PR) curve are two more
curve-based measures with measurements that are inde-
pendent of threshold. Te performance of the models is
compared using the paired nonparametric Mann–Whitney
U test. Every input format that the EEG and DL models
generated was compared. In order to identify the best input
modalities and network architectures, the performances of
various combinations of input modalities and network
designs on a certain window size and dataset were examined.

3. Experimentation Results

A comparison of performance metrics between various
input combinations and DNN was also conducted. Te
outcomes of detecting the micronap state utilizing the fol-
lowing EEG inputs are shown in this section.

3.1. Cleaned EEG as a Time Series. Diferent EEG window
lengths are utilized to fnd the best EEG window length and
matching model, including 0.5 s, 1.5 s, 2.5 s, 3.5 s, 4.5 s, and

5 s. Te cross-validation ROC was used to determine which
model was best for each subject. Table 2 indicates that the
cross-validation ROC was the greatest for window durations
of 3.5 s and 4.5 s. Te 3.5 s window was found to be the ideal
window length because the 4.5 s window requires more
processing for the same performance.

3.2. Log-Power Spectrum. For several subjects, the Maxpool
layer performed best in cross validation when the log-
spectrum was used as the input, and its size and stride were
both 11. Tis is what would have happened if the layer had
not been there. Similar to this, the dropout layer had an efect
on the performance of certain subjects. For state detection,
the average values for Sn, Sp, P, Phi, ROC, and PR were 0.62,
0.70, 0.15, 0.22, and 0.76, respectively. Figure 7 displays a
comparison of performance metrics when the log-power
spectrum is the input.

3.3. 2D-Spatial Map of Log-Power Spectrum and Raw EEG.
Te input dimension was 56×56, where the number four
represented a mixture of the frequency bands for delta (6),
theta (8), alpha (α), and beta (þ). Tere were 4 possible band
combinations that could be entered as input. By feeding the
individual bands to the DNN, the data contained in the
individual bands to help with micronap state detection are
also evaluated. Te dual combination of bands, which
consisted of the bands 6 and 8, 8 and α, and 6 and α, was also
investigated in addition to the examination of each indi-
vidual band. Table 3 shows the average performance metrics.

Because it would include all artifacts, including EOG,
raw-EEG was chosen as the time series input to the DNN.
Figure 8 illustrates how well state detection works.

4. Machine Learning Approaches

Te performance metrics are derived when several types
of EEG representations are given as input, trained with
SVM, KNN, and LSTM classifers, and then tested. Ta-
ble 4 lists the average state detection performance
metrics phi, ROC, and PR. Tere were no appreciable
improvements in phi and ROC scores between the
classifers. DNN was used as an end-to-end solution
along with EEG, although the increase in phi was just

Figure 4: Normal EEG.

Figure 5: Sleep state-EEG.
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Figure 6: Tracking vs. gold standard performance (measures: time
vs. amplitude).
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marginal (from 0.59 to 0.62). However, DNN has a su-
perior performance as shown in Figure 9 in terms of
sensitivity (Sn) (0.84), compared to SVM (0.78) and
LSTM (0.72). When it comes to state detection, the DNN
model surpassed the LSTM model (0.52) in terms of PR
(0.68). Te SVM has outperformed the LSTM in terms of
PR (0.62). With EEG as the input, the average perfor-
mance metric for state detection had the highest values in
terms of phi, ROC, and PR. EEG waves may, therefore, be
a valuable source of data for identifying onset or status.

In comparison to previous EEG input transformations,
state detection performance was best when DNN and
cleaned EEG were combined. When identifying micronap
states, the 6 and 8 band combination held important in-
formation. A DNN’s flter structure is essential for extracting
information from the data. What the DNN will represent in
the data throughout its learning phase depends on the flter
size. Te DNN was employed in this work as a series net-
work, which imposed limitations on the design. Further-
more, regardless of whether the input was a representation

Table 1: Micronaps and responsive.

Subjects No. of events (ms) No. of states (ms) Responsive State imbalance Event imbalance
Person 1 23 456 34686 1 : 28 1 : 580
Person 2 34 5435 12723 1 : 44 1 : 620
Person 3 2 455 23728 1 : 30 1 : 2778
Person 4 44 344 24264 1 : 58 1 : 532
Person 5 16 234 8467 1 :102 1 :1566
Person 6 42 2444 1276 1 : 5 1 : 484
Person 7 37 24 16767 1.62 1 : 687
Person 8 24 4563 27234 1.248 1 : 544
Person 9 5 675 14676 1.32 1 : 3464
Person 10 28 25 33479 1.50 1 : 764

Table 2: Performance metrics comparison.

EEG window length Sn Sp P Phi ROC PR
0.5 0.56 0.65 0.04 0.12 0.6 0.7
1.5 0.59 0.67 0.05 0.17 0.62 0.72
2.5 0.64 0.71 0.13 0.24 0.66 0.75
3.5 0.66 0.73 0.15 0.27 0.69 0.76
4.5 0.65 0.73 0.18 0.28 0.68 0.77
5 0.53 0.73 0.23 0.26 0.6 0.76
Average 0.61 0.70 0.13 0.22 0.64 0.74

0.00

0.20

0.40

0.60

0.80

53 641 2
Window Length

Sn
Sp
P

Phi
ROC
PR

Figure 7: Comparison metrics analysis.
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in the time domain or the frequency domain, the DNN
always interpreted it as a 2D input. To comprehend char-
acteristics connected to micronaps and important aspects in
the decision-making process, layer-wise feature analysis
must be conducted. However, a parallel DNN framework
can be created to enable the simultaneous application of
several flter sizes to the same input (EEG alone). CNN will
be able to learn about traits from a variety of perspectives as a
result.

5. Conclusion

Tis article summarized the various modalities of EEG
inputs and demonstrated the performance of a DNN-
based micronap categorization system. Te many rep-
resentations of EEG employed as an input to the DNN
model include cleaned EEG time series, log-power
spectrum, 2D-map of log-power spectrum, and raw EEG.
Te hyperparameters and DNNmodel architectures were
tweaked. Te use of a cost-based error function was used
to address the imbalance in the courses during training.
LOSO-CV was used to test each model in order to es-
timate its generalized performance. Sensitivity, speci-
fcity, accuracy, phi, ROC, and PR were the performance
metrics used to assess the model. Te best average
performance for state detection (r � 0) was a phi of 0.24,
ROC of 0.64, and PR of 0.68, attained using DNN. De-
spite having a reasonably good sensitivity and specifcity
for onset detection, the average performance measure
phi was extremely poor. Tis was brought on by a sig-
nifcant number of false detections and a large ratio of
imbalance between the onsets of micronaps and re-
sponsive states. Te DNN learned the changes in activity
between the prefrontal, central, and occipital parts of the
brain, as well as the delta, theta, and alpha bands
chronologically. To determine which raw-EEG signal
contained more specifc information that the DNN could
extract for identifying micronaps, experiments were also
conducted with raw-EEG signals without any pre-
processing. Te purpose of the micronap state detection
system is to continuously monitor the level of atten-
tiveness and forecast impending micronaps before they
happen. If a micronap state prediction is incorrect, an
attempt will be made to identify the subsequent
micronap state. Te micronap onset detection system, on
the contrary, works nonstop to forecast only the be-
ginning of an impending micronap. However, the entire
micronap event is lost if an onset detection is missed
which can be taken for future work.

Data Availability

Te data used to support the fndings of this study are in-
cluded within the article.
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Table 3: Band analysis.

Bands Sn Sp P Phi ROC PR
6, 8, α 0.5 0.76 0.17 0.2 0.59 0.76
6 0.39 0.68 0.1 0.08 0.46 0.66
8 0.45 0.75 0.15 0.19 0.56 0.73
α 0.39 0.62 0.01 0.01 0.48 0.58
Þ 0.23 0.68 0.01 0.03 0.37 0.49
6, 8 0.66 0.74 0.26 0.29 0.69 0.8
8, α 0.56 0.75 0.15 0.21 0.64 0.76
6, α 0.41 0.69 0.06 0.08 0.51 0.65
6, þ 0.56 0.75 0.15 0.21 0.64 0.76
8, þ 0.39 0.62 0.01 0.01 0.48 0.58

93 82 74 5 61 10
SUBJECTS

0.00

0.25

0.50

0.75

1.00

Phi
ROC
PR

Figure 8: Subject-wise state detection.

Table 4: DNN vs. traditional approaches.

Phi ROC PR
SVM 0.04 0.51 0.62
KNN 0.11 0.34 0.50
LSTM 0.18 0.48 0.52
DNN 0.24 0.64 0.68

SVM KNN LSTM DNN
0.0

0.2

0.4

0.6

0.8

phi
ROC
PR

Figure 9: DNN vs. traditional approaches.
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