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Abstract: Favipiravir (FAV) has become a promising antiviral agent for the treatment of COVID-19.
Herein, a green, fast, high-sample-throughput, non-instrumental, and affordable analytical method
is proposed based on surfactant-assisted dispersive liquid–liquid microextraction (SA-DLLME)
combined with thin-layer chromatography–digital image colourimetry (TLC-DIC) for determining
favipiravir in biological and pharmaceutical samples. Triton X-100 and dichloromethane (DCM) were
used as the disperser and extraction solvents, respectively. The extract obtained after DLLME proce-
dure was spotted on a TLC plate and allowed to develop with a mobile phase of chloroform:methanol
(8:2, v/v). The developed plate was photographed using a smartphone under UV irradiation at
254 nm. The quantification of FAV was performed by analysing the digital images’ spots with open-
source ImageJ software. Multivariate optimisation using Plackett–Burman design (PBD) and central
composite design (CCD) was performed for the screening and optimisation of significant factors.
Under the optimised conditions, the method was found to be linear, ranging from 5 to 100 µg/spot,
with a correlation coefficient (R2) ranging from 0.991 to 0.994. The limit of detection (LOD) and
limit of quantification (LOQ) were in the ranges of 1.2–1.5 µg/spot and 3.96–4.29 µg/spot, respec-
tively. The developed approach was successfully applied for the determination of FAV in biological
(i.e., human urine and plasma) and pharmaceutical samples. The results obtained using the proposed
methodology were compared to those obtained using HPLC-UV analysis and found to be in close
agreement with one another. Additionally, the green character of the developed method with previ-
ously reported protocols was evaluated using the ComplexGAPI, AGREE, and Eco-Scale greenness
assessment tools. The proposed method is green in nature and does not require any sophisticated
high-end analytical instruments, and it can therefore be routinely applied for the analysis of FAV in
various resource-limited laboratories during the COVID-19 pandemic.

Keywords: favipiravir; surfactant-assisted dispersive liquid–liquid microextraction; digital image
colourimetry; thin-layer chromatography
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1. Introduction

The outbreak of the coronavirus represents one of the most dreadful viral diseases
which has been endangering the lives of millions of people [1]. As a result, the World Health
Organization declared the outbreak a pandemic in March 2020. However, the number of
infections is still increasing to unprecedented levels [2]. Therefore, the immediate urge to
identify new therapeutics to combat the COVID-19 pandemic prompted the development
of several possible drugs, including hydroxychloroquine, ivermectin, remdesivir, and
favipiravir (FAV) [3,4]. The results of the clinical trials revealed that favipiravir was a
potential COVID-19 treatment option, as it ameliorated signs and symptoms and enhanced
viral clearance [5].

As depicted in Figure 1, the purine nucleoside precursor FAV (6-fluoro-3-oxo-3,4-
dihydropyrazine -2-carboxamide) is a pyrazine carboxamide derivative providing potent
antiviral activity against a variety of RNA viruses [6]. In 2014, Fujifilm Toyama Chemical
Company was the first to develop FAV as a treatment for influenza in Japan. After being
consumed, the medication is absorbed into the body and assimilates into the cells, where
it is ribosylated and phosphorylated by the host’s cellular enzymes to produce the active
metabolite T-705-ribofuranosyl-5’-triphosphate (T-705-RTP) [7,8]. Then, T-705-RTP inte-
grates into the viral RNA in small amounts and preferentially inhibits the transcription
and replication of the RNA-dependent RNA polymerase (RdRp) enzyme of influenza and
many other RNA viruses [9,10].
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Despite their importance in clinical controls, very few analytical techniques for the
quantitative analysis of FAV have been reported. Electrochemical sensors [11–13], spec-
trofluorimetric methods [1,14], reverse-phase high-performance thin-layer chromatog-
raphy (RP-HPLC) [15], liquid chromatography with tandem mass spectrometry (LC-
MS/MS) [4,16–19], and ultrahigh-performance liquid chromatography with tandem mass
spectrometry [20] have been used to detect FAV in pharmaceutical products and biological
matrices. Although these methods offer sufficient sensitivity, their high cost of analysis,
need for bulky and sophisticated instruments, time consumption, and unsuitability for
onsite detection are some of the major constraints preventing them from being of routine
use in resource-limited settings during the COVID-19 pandemic.

In order to identify trace levels of these drugs in complex matrices, sample prepa-
ration plays a crucial role prior to instrumental analysis [21]. Today, sample preparation
techniques tend to emphasise principles of green analytical chemistry (GAC). The main ob-
jective of GAC is the advancement of new-generation analytical methods with the purpose
of reducing reagent consumption (possibly using biodegradable and low-toxicity solvents),
minimising waste generation, consuming the least amount of energy, and ensuring op-
erator/analyst safety, along with the automation and miniaturisation of the analytical
process [22]. Dispersive liquid–liquid microextraction (DLLME) has garnered a lot of
interest from analysts due to its ease of use, affordability, environmental friendliness, high
enrichment factors, and quick extraction capabilities [23–25]. DLLME is performed after
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immediate injection of the extraction and disperser solvents into an aqueous phase. As a
result, a cloudy solution is formed, consisting of small extraction solvent droplets scattered
throughout the aqueous phase. The dense extraction solvent obtained by centrifugation
settles as the sedimented phase and is used for further analysis [26]. DLLME has grown in
popularity, as indicated by the growing number of applications in fields such as forensic,
clinical, environmental, and pharmaceutical analysis, among many others [27–32].

TLC is one of the earliest planar chromatographic methods and is still used to separate
and identify organic analytes in a mixture [33]. It is regarded as a sustainable chromato-
graphic method owing to its benefits, such as (i) minimal solvent usage; (ii) easy execution;
(iii) high sample throughput (i.e., simultaneous analysis of 8–10 samples using the same
development solvent); (iv) cost-effectiveness; (v) TLC is based on capillary flow of the
solvent and, therefore, requires no pressure controls, pumps, valves, etc., hence entailing
no wear and tear and requirement for spare parts; and (vi) no need for specifically trained
personnel. Herein, sustainability refers to the probability of system failure and the avail-
ability of resources to restore the system to an operational condition. Chromatographic
methods are more sustainable when the probability of failure is lower and the availability
of restoration resources is higher [34,35]. On the other hand, classical TLC has the limitation
of being only a qualitative method. Therefore, quantitative analysis in TLC is carried out
by its hyphenation with other detection techniques, such as UV–Vis spectrophotometry,
densitometry, FID, and mass spectrometry (MS). However, although these hyphenated
techniques are sensitive, they are very expensive and hard to afford in resource-limited
settings [36–39].

As an alternative to this, combining TLC with smartphone-based digital image
colourimetry (SDIC) can provide a simple, promising, reliable, feasible, and cost-effective al-
ternative for quantitative analysis. Currently, DIC (digital image colourimetry) has attracted
considerable interest from researchers to analyse different analytes in pharmaceuticals and
to convert images into numerical data. DIC is a kind of colorimetric analysis in which
digital images captured by mobile phones, webcams, digital cameras, and scanners are
transformed to the RGB colour system, which is composed of three different colour intensi-
ties (red, blue, and green). Moreover, it has become a notable research area in analytical
chemistry due to its affordability, ease of use, portability, and capacity to analyse data
immediately. In comparison to conventional methods, TLC coupled with SDIC offers a
number of benefits, such as having the least negative impacts on environment and human
health, being able to provide a portable analytical system for a user-friendly experience,
offering high sample throughput, energy-efficiency, and no requirement of specifically
trained personnel [40,41].

Considering the significant burden on analytical laboratories during the COVID-19
pandemic, the present study proposes a novel and green analytical method based on the
coupling of SA-DLLME with TLC-SDIC for instrument less detection of FAV in pharmaceu-
tical formulations, as well as human urine and plasma samples. The proposed method does
not require any complex apparatus and uses a simple TLC setup, a smartphone camera, and
freely available image analysis software. The results obtained by the proposed study were
compared with those obtained by the HPLC method for FAV analysis. Furthermore, the
green character of the developed method was evaluated using the ComplexGAPI, AGREE,
and Eco-Scale greenness assessment tools.

2. Results and Discussion
2.1. Screening of TLC Parameters

Commonly used solvent systems in routine systematic toxicological analysis—viz.,
chloroform–acetone (8:2 v/v), ethyl acetate–ethanol (8:2 v/v), chloroform–methanol (8:2 v/v),
and ethyl acetate–acetone (8:2 v/v)—were screened. In order to choose the best solvent
system for FAV among the four solvent systems, a series of tests were conducted [42]. The
combination of chloroform–methanol (8:2 v/v) had the best separation for FAV. Addition-
ally, saturation times ranging from 10 to 30 min were also investigated, since this had a
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substantial impact on the chromatographic separation. A saturation time of 15 min yielded
a promising performance. As a result, the chloroform–methanol (8:2 v/v) combination was
chosen as the developing system, with a 15 min saturation period [43]. The Rf value was
found to be 0.28.

2.2. Screening of Surfactant and Extraction Solvent

Prior to performing PBD, the initial experiments were carried out to determine the
most suitable surfactant for DLLME. The selected surfactant needs to possess charac-
teristics such as miscibility with both the organic solvent and the aqueous sample, as
well as the ability to speed up the emulsification of the organic solvent into the aqueous
phase. Owing to their amphipathic structure, surfactants reduce the interfacial tension
between two liquids and regulate the hydrophilicity and lipophilicity of the solution [44].
Triton X-100, CTAB, and SDS—three commonly used surfactants—were employed in a
number of experiments to find the optimal surfactant to use as the disperser solvent
for DLLME. Three different mixtures of 0.045 mmol L−1 of disperser solvent (Triton
X-100, CTAB, and SDS) along with a constant volume of CF (200 µL) were prepared.
With the help of a syringe, this mixture was quickly and forcefully added to an aqueous
solution fortified with FAV at 10 µg mL−1. At this step, a turbid solution was formed,
which was sonicated for 2 min before being centrifuged for 3 min at 5000 rpm. Among
all of the tested surfactants, the best extraction efficiency was demonstrated by non-ionic
surfactants, i.e., Triton X-100 (Figure 2a). In comparison to ionic surfactants, non-ionic
surfactants appeared to have a higher solubilisation capacity and sufficient hydrophobicity
for the target analytes. Therefore, Triton X-100 was chosen as the disperser solvent for all
further experiments.

The type of extraction solvent directly affects the preconcentration factor and the
extraction yield; therefore, its choice is crucial for DLLME. The extraction solvent should be
capable of extracting the desired analytes, immiscible in water, and should have a greater
density than water. Additionally, it should show good chromatographic properties when
spotted on a TLC plate. In accordance to these parameters, the three commonly utilised
extraction solvents—viz., DCM, CB, and CF—were evaluated for maximum extraction
efficiency for DLLME. For this purpose, a series of experiments were carried out to deter-
mine the appropriate extraction solvent among the four solvents tested. Then, 0.045 mmol
L−1 of Triton X-100 was rapidly injected into the sample solution together with a constant
volume of 200 µL of each extraction solvent. Similar to the earlier experiments, all other
experimental conditions were identical, and the findings are depicted in Figure 2b. It is
evident that employing DCM as an extraction solvent yielded higher recoveries. Therefore,
DCM was selected as the suitable extraction solvent.

2.3. Multivariate Optimisation
2.3.1. Plackett–Burman Design (PBD)

The selected screening design (i.e., PBD) is a mathematically based statistical tool that
can minimise the number of experiments and identify the variables that have an impact on
the studied process in order to perform further optimisation [45]. In fact, the current study
aimed to enable estimation of the strength of influence of each factor by using Fisher’s test
as well as a p-value comparison with α risk (α = 0.05). Moreover, the Pareto chart was used
to arrange the interactions and effects in decreasing order. This is a quick and effective tool
for finding the significant parameters among a large number of factors while minimising
the time required and maintaining persuasive data on each variable. In addition, the
major effect of each variable was determined as the difference between the average of
measurements recorded at the high level (+) and the average of measurements recorded
at the low level (−) of that factor. With the help of this, the impact of each factor could
be assessed.
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For this study, the seven independent factors involved in the PBD were as follows:
(i) pH, (ii) ultrasonication time (s), (iii) ionic strength (%), (iv) volume of extraction solvent
(µL), (v) volume of disperser solvent (mmol L−1), (vi) vortex time (min), and (vii) vortex
speed (rpm). For each independent factor, there were two classification levels: (−1) denotes
a low level, while (+1) denotes a high level, as shown in Table S1. A 27−4 PBD was
employed to identify significant factors. For 24 runs (7 + 1 = 8 × 3 = 24), each experiment
was performed in triplicate and in a random order. The peak area was used as a response
during the statistical analysis of these factors. In order to analyse the significant parameters,
an analysis of variance (ANOVA) test was applied. Additionally, a t-test was used to
identify significant variables that are represented in the Pareto chart in Figure S1 with a
confidence level higher than 95% (p < 0.05). As a result, the ultrasonication time, pH, and
volume of surfactant act as the disperser solvent were determined to be the most significant
variables. In contrast, the vortex speed, vortex time, and volume of the extraction solvent
were less significant factors for the extraction of FAV, while the ionic strength was found
to be a non-significant factor. In order to further optimise these three most significant
variables (ultrasonication time, pH, and volume of surfactant), a central composite design
(CCD) of experiments was used.



Molecules 2023, 28, 529 6 of 18

2.3.2. Central Composite Design (CCD)

A quadratic model was constructed between the dependent and independent variables,
using the significant parameters that were identified during the screening procedure. The
response surface was used for the study type, whereas the central composite was used for
the design type. For the purpose of fitting quadratic polynomials, a CCD incorporates a 2f

factorial design with at least one point in the centre of the experimental area to produce
rotatability or orthogonality characteristics and additional points such as star points [46].
In this design, the experimental runs were carried out randomly to reduce the impact of
uncontrolled variables. For each set of experiments, three independent parameters (pH,
ultrasonication time, and volume of surfactant) were specified at three levels (low, centre,
and high), with coded values (−1, 0, +1) and star points -α and +α, respectively, as shown
in Tables S2 and S3. The total number of experiments (N) was determined to be 18 for these
parameters (f = 3) using the following equation:

N = 2f + 2f + N0 (1)

The total number of experiments (N) was calculated from eight factorial points (2f),
six axial points (2f), and four centre points (N0). For the CCD, the peak area served as
the response. The “goodness of fit” of the acquired results was then evaluated using
an ANOVA.

The response surface plots of peak area vs. significant factors are depicted in Figure 3,
along with the most pertinent fitted response surfaces for the design. The curvatures of
these plots represent the interactions of the factors. In addition, desirability function (DF)
is a well-known and established tool for simultaneously determining input variables that
can provide optimal values for one or more responses. DF provides an easy and quick
transformation of various responses into quantitative and qualitative results for a single
measurement. The response is converted into a specific desirability function with a range
of 0 to 1. Desirability 0 denotes undesirable or minimal circumstances, whereas desirability
1 denotes the maximum. A series of graphs are formed for each independent variable,
and a red line shows the resultant optimal value (Figure S2). In this study, the optimal
values for these parameters were as follows: 1.13 mmol/L (volume of disperser solvent),
128.67 s (sonication time), and 4.9 (pH). For ease of operation, sonication time and pH were
rounded to 130 s and 5, respectively.

2.4. Analytical Performance of the Method

Under the optimal conditions, the linearity, accuracy, relative recovery, LODs, and
LOQs of the suggested SA-DLLME-TLC-SDIC approach were evaluated. The target analyte
(i.e., FAV) was fortified into ultrapure water and biological matrices at different concen-
trations in the range of 5–100 µg/spot. The proposed method yielded a strong correlation
between the concentration and the peak area of the analyte (R2 = 0.991–0.994). The ranges
of the LODs and LOQs were determined to be 1.2–1.5 µg/spot and 3.96–4.29 µg/spot at
signal-to-noise ratios of 3 and 10, respectively. Additionally, the repeatability and repro-
ducibility of the proposed method were assessed using intraday and interday precisions
(n = 5), which were represented as %RSD. Three distinct concentration levels were used to
measure the intraday and interday precisions (%RSD), which were found to be less than 5
and 10%, respectively, as highlighted in Table 1. Furthermore, the enrichment factor (EF),
enrichment recovery (ER%), accuracy, and relative recovery (RR%) were also evaluated
and are presented in Table 2. The matrix effect (ME, expressed as RR%) was evaluated
by utilising five distinct drug-free human plasma and urine samples. This was achieved
by comparing the peak area of FAV from post-extracted plasma and urine samples at low,
middle and high QC levels to those prepared in pure standards at similar concentrations.
The RR% in both matrices was found to be in the range of 87–98% (Table 2), indicating that
there was no significant matrix effect on the extraction efficiency of the DLLME procedure.
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Table 1. Analytical characteristics of the SA-DLLME TLC DIC method for FAV (n = 5).

Sample LOD
(µg/Spot)

LOQ
(µg/Spot) R2 Linearity

(µg/Spot)

Precision (%RSD)

Calibration Curve Intraday
(µg/Spot)

Interday
(µg/Spot)

20 60 100 20 60 100

Pharmaceutical
formulation 1.2 3.96 0.9914 5–100 y = (471.92 ± 17.2) x

+ (32,100 ± 1022.70) 0.37 0.28 0.12 5.5 8.78 8.9

Urine 1.3 4.29 0.991 5–100 y = (610.88 ± 19.4) x
+ (40,665 ± 1151.152) 1.3 0.59 0.44 6.3 8.1 6.5

Plasma 1.5 4.95 0.994 5–100 y = (555.58 ± 12.00) x
+ (57,800 ± 710.39) 1.5 0.73 0.51 5.4 6.0 5.5
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Table 2. Extraction efficiency parameters of the proposed method (n = 5).

Drug
Accuracy% RR%

20
µg/Spot

60
µg/Spot

100
µg/Spot EF ER% 20

µg/Spot
60

µg/Spot
100

µg/Spot

Pharmaceutical
formulation 102 102.3 96.6 53.9 107.8 90.1 96.2 98.2

Urine 97.1 103 102.3 46.0 92.0 92.5 89.5 97.5
Plasma 91.6 98.4 100.8 35.1 70.2 87.6 94.4 96

The preconcentration factor (PF) of the proposed method was found to be 50, as the
initial volume of the sample was 10 mL and the final volume of the extract was 0.2 mL. The
EF was determined as the ratio of the slope of the calibration curve of the FAV obtained by
the proposed method and the slope of the calibration curve of its standard solution. The EF
for FAV ranged between 35.1 and 53.9 under optimal conditions. This correlated to ER%
findings ranging from 70.2 to 107.8%. Furthermore, in order to evaluate the stability of FAV,
low and high-QC samples were used in five replicates. The QC samples were assessed
after six freeze–thaw cycles, held at ~4 ◦C for 12 h, and then thawed separately at room
temperature. The variation of accuracy at each level was well within ±15%.

Minor but deliberate changes in the chromatographic process parameters were applied
to assess robustness, which was represented as the percentage relative standard deviation
(% RSD). Small changes were implemented by altering the composition, the volume of the
mobile phase, and the saturation time within a range of ±10%. The outcomes demonstrated
that there were no significant changes in the Rf values of the FAV, and the %RSD were
found to be 0.89%. This indicates that the proposed method is robust and reliable.

2.5. Assessment of the Green Character of the Developed Procedure

From the perspective of GAC, evaluating the environmental friendliness of analytical
techniques is essential. Since many different parameters are associated with analytical
methodologies, it was essential to establish precise metric systems to measure each variable
that might pose a risk in terms of its ecological impact on the environment and human
safety [47,48]. There are a number of tools that can be helpful for the evaluation of greenness;
however, the most well-known ones are the Green Analytical Procedure Index (GAPI),
Analytical Eco-Scale, and Analytical GREEnness (AGREE) metrics. Herein, the green
character of the proposed analytical method was evaluated using these three prevailing
metrics. With the aid of these metrics, the assessment findings are presented in a very
readable format.

The Analytical Eco-Scale is the first green assessment tool. This metric evaluates
analytical procedures by eliminating penalty points from each stage of the process that
does not conform to GAC guidelines. The following equation (Analytical Eco-Scale score
= 100—total penalty) is used to calculate penalty points for each of the parameters of the
defined procedure, including (i) amounts of reagents, (ii) occupational risks, (iii) waste, and
(iv) energy. Table 3 displays the results of calculating the Eco-Scale score for the proposed
method. The analytical approach is considered to have excellent greenness if the score is
higher than 75. With an Eco-Scale score of 84 (Table 3), the developed approach can be
regarded as having outstanding greenness.

The second assessment tool is GAPI, which was introduced by Płotka-Wasylka in
2018. In GAPI, 15 zones are distributed among five pentagrams in a three-colour pictogram.
Each segment represents a phase in the analytical process, from sample collection to waste
disposal. The ComplexGAPI pictogram generated for the proposed methodology is shown
in Figure 4a,b. The colour of each pentagram (e.g., red, yellow, and green) signifies the
level of environmental impact of each step during the analysis. In this manner, the final
GAPI pictogram offers a complete and rapid overview of the greenness of the analytical
method. Although the majority of the pentagrams in Figure 4a,b are either yellow or
green, this illustrates compliance with the GAC principles. Hence, it is possible to infer
that the proposed analytical approach is sufficiently green and has no negative impact on
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environmental and human safety. Figure 4a,b represent the location of the red pentagrams,
at 5, 7 and 1, 3, 5, 7, respectively. These red pentagrams correspond to (1) sample collection
(offline), (3) transportation (required), (5) extraction (required), and (7) usage of non-green
solvent. According to the GAPI pictograms (Figure 4a,b), the main advantage of the
proposed method is that no high-end analytical instrument is required for the analysis of
FAV; thus, the fifth pentagram related to instrumentation (F12-F15) is not applicable in the
case of SA-DLLME-TLC-SDIC.

Table 3. Penalty points calculated by Analytical Eco-Scale score.

Reagents Penalty Points

DCM 1 × 4 = 4
MeOH 1 × 6 = 6

CF 1 × 6 = 6
Instrument
Energy used 0

Occupational hazard 0
Waste 0
Total 16
Score 84
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The third evaluation tool is the AGREE method, which was developed in 2020 by Pena-
Pereira et al. This tool provides a colourful clock-shaped pictogram. Each portion of the
perimeter represents one of the 12 guiding principles of GAC. In the centre of the AGREE
pictogram, a score is displayed. A colour scheme that ranges from green to yellow to red
is used to symbolise each parameter, which is given a score between 0 and 1. Greenness
is higher if the number is significantly closer to 1. This tool is more focused on energy
use and waste production rather than being concerned with the toxic impact of specific
chemicals. Figures 5 and 6 depict the overall AGREE score and the AGREE report sheets
for the proposed analytical approach, respectively. It can be observed from Figures 5 and 6
that the suggested approach obtained an overall AGREE score of 0.69, indicating that it is
an excellent green method. Tables 4 and 5 compare the suggested method to previously
reported methods for identifying similar analytes based on greenness and various analytical
parameters, respectively.
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2.6. Application to Real Samples

Under optimised and validated conditions, the proposed method was successfully
applied to quantify FAV in spiked biological matrices such as human urine and plasma
samples, as well as in pharmaceutical formulations. Using the validated methods, the
amount of FAV in relation to the indicated contents (400 and 800 mg/tablet) was also deter-
mined. In addition, Tables 6 and 7 display the outcomes of applications of the proposed
method for quantitative determination of FAV in biological matrices and pharmaceutical
samples, respectively. Moreover, comparisons were made between the results obtained
by the proposed method and by the standard HPLC method for biological matrices and
pharmaceutical samples. The results from the two approaches were compared using a t-test
with a 95% level of confidence and were found to be very close in agreement. There were
no significant differences between the three sets of results, as the experimental t-values
(–1.2, –1.5, 1.10, and 0.44) were lower than the crucial t-value (2.131 and 2.919) for p = 0.05.
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Table 4. Comparison between the proposed method and previously reported methods for the
determination of FAV.

Methods Eco-Scale GAPI AGREE Ref.

HPLC-UV

Reagents Penalty Points
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Table 5. Comparison of the proposed method with previously published methods for determining
FAV in biological samples.

Sample Matrix
Sample

Pre-Treatment and
Extraction Method

Technique Linearity Range LOD LOQ Ref.

Spiked human
plasma

Protein
precipitation

Spectrofluorimetric
method

40–280
ng mL−1

9.44
ng mL−1

28.60
ng mL−1 [14]

Human serum SPE LC-MS/MS 3291–20,790
µg L−1 - 3291

µg L−1 [51]

Human plasma LLE HPLC/UV 0.5–50
mg L−1

0.15
mg L−1

0.45
mg L−1 [52]

Human plasma Protein
precipitation UPLC–MS/MS 0.25–16

µg mL−1 - 0.25
µg mL−1 [17]

Human urine - SW-AdSV 1.0–100.0 µg mL–1 0.26
µg mL–1

0.87
µg mL–1 [53]

Human plasma
and urine SA-DLLME TLC-DIC 5–100 µg/spot 1.2–1.5

µg/spot
3.96–4.29
µg/spot

Present
work

SW-AdSV: square-wave adsorptive stripping voltammetry.

Table 6. Determination of FAV in spiked biological samples (n = 5).

Samples
Concentration

Prepared
(µg/mL)

Concentration
Found by HPLC

Method
(µg/mL)

Accuracy (%) by
HPLC Method

Concentration
Found by

SA-DLLME
TLC-DIC Method

(µg/mL)

Accuracy (%) by
SA-DLLME

TLC-DIC Method

Urine 10 9.1 91 9.4 94

Plasma 10 9.6 96 9.8 98

Table 7. Determination of FAV in pharmaceutical formulations (n = 5).

Samples
(Claimed

FAV)

Concentration
Prepared
(µg/mL)

Concentration
Found

(µg/mL)

Accuracy with
Respect to

Claimed FAV (%)

Amount of FAV
Found b

(SA-DLLME
TLC-DIC Method) b

Amount of ASA/SA
Found b

(HPLC
Method)

800 mg 10 9.3 99.4 795.2 ± 1.0 798.9 ± 2.4

400 mg 10 9.1 99.2 396.8 ± 1.3 398.9 ± 1.9
b Data are expressed as the mean ± SD.

3. Experimental Section
3.1. Reagents and Materials

Every reagent and chemical used in the research was of analytical grade unless other-
wise specified. Surfactants such as Triton X-100, SDS (sodium dodecyl sulphate), and CTAB
(cetyltrimethylammonium bromide) were procured from Sigma (USA). Chlorobenzene
(CB) (purity > 99%) and dichloromethane (DCM) (purity > 99%) were obtained from Loba
Chemie (Mumbai, India). Ethanol (EtOH) (purity > 99%), acetone (ACE) (purity > 99%),
and methanol (MeOH) (purity > 99%) were acquired from Merck (Darmstadt, Germany).
Chloroform (CF) (purity > 99%) and hydrochloric acid (HCl) (purity > 99%) were purchased
from Thermo Fisher Scientific (Massachusetts, USA). Throughout the study, triple-distilled
water was used. A standard of Favipiravir (FAV, purity > 99%) was purchased from the
Indian Pharmacopoeia Commission (IPC, Ghaziabad, India) (lot no. IPRS/56/20). TLC
silica gel 60 F254 pre-coated TLC aluminium plates (20×20 cm) were obtained from Merck
(Darmstadt, Germany).
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3.2. Sample Collection

Plasma samples was obtained by centrifuging the whole blood at 5000 rpm for 10 min.
The whole blood was provided by the Rotary and Blood Bank Society Resource Centre,
Chandigarh (India). Urine samples were obtained from three healthy volunteers aged
between 28 and 40 years (two females and one male), who were also authors of this study.
All of the biological samples were kept at ~4 ◦C and thawed at room temperature before
analysis. Two distinct FAV tablets were procured from a local Chandigarh (India) market
and labelled as having 800 and 400 mg of FAV per tablet, respectively.

3.3. Preparation of Standards and Samples

The stock solution of FAV was prepared at a concentration of 1 mg mL−1 in MeOH
and stored at ~4 ◦C until needed. Working solutions of FAV at concentrations in the range
of 5–100 µg/spot were prepared by appropriate dilution of stock solutions with ultrapure
water. In order to imitate drug–protein binding under physiological conditions, biological
samples such as urine and plasma were spiked with various amounts of FAV in the range
of 5–100 µg/spot. These samples were then homogenised by vortex agitation for 5 min and
incubated at 37 ◦C for 30 min [54].

3.4. Multivariate Analysis

Various experimental factors, including pH, volume of extraction and disperser sol-
vents, sonication time, vortex agitation time, and vortex speed, which have significant
impacts on DLLME extraction efficiency, were examined systematically. For this purpose,
the following two-step strategy was utilised to optimise these factors using multivariate
analysis: (i) Plackett–Burman design (PBD) to determine the significant parameters, and
(ii) central composite design (CCD) to optimise the significant factors obtained by PBD.
Multivariate analysis was carried out using the TIBCO STATISTICA software (Palo Alto
CA, USA, Trial version).

3.5. SA-DLLME Procedure
3.5.1. Pharmaceutical Formulations

Five tablets from each dose (i.e., 800 and 400 mg) were weighed and their average
weight was calculated. These tablets were then crushed and converted into a fine powder.
The equivalent to the average weight of the tablets was dissolved in 10 mL of MeOH for
each dose (i.e., 800 and 400 mg) and then sonicated for 10 min. To achieve a concentration
of 10 µg mL−1, the filtrate was appropriately diluted using ultrapure water. Under optimal
conditions, 10 µg mL−1 of FAV was spiked into 5 mL of ultrapure water at a pH of 5 with
the help of a 0.1 M HCl solution. Thereafter, a mixture of DCM (100 µL) and Triton X-100
(1.13 mmol L−1) was instantly injected into the aqueous sample. This stage resulted in
the formation of a cloudy solution with tiny Triton X-100 droplets dispersed throughout
the entire aqueous phase. In order to amplify the mass transfer of the analyte from the
aqueous phase to the extraction solvent, the sample was sonicated for 130 s, followed
by centrifugation at 5000 rpm for 3 min. After centrifugation, the sedimented phase was
kept intact, while the supernatant was carefully discarded. The process of DLLME was
completed within only 10 min. Subsequently, a TLC plate was spotted with 20 µL of the
sedimented phase for further analysis.

3.5.2. Biological Samples

Urine samples were initially centrifuged and filtered to remove any extra debris.
Furthermore, 1 mL of blank biological samples (i.e., human urine and plasma) was fortified
with 10 µg mL−1 of FAV and incubated for 30 min at 37 ◦C to stimulate drug–protein
binding under physiological conditions. For the purpose of drug extraction, the biological
samples were diluted to 5 mL with ultrapure water at pH 5. The samples were then
subjected to the aforementioned DLLME procedure.
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3.6. Thin-Layer Chromatography–Smartphone-Based Digital Image
Colorimetry (TLC-SDIC) Procedure

With the aid of a micropipette, 20 µL (2 × 10 µL) of the sedimented phase obtained by
DLLME was spotted on the marked start edge of the TLC plate (20 × 20 cm pre-coated silica
gel 60 F254 aluminium-backed, purchased from Merck, Darmstadt, Germany) at a height
of 1 cm. The TLC plate was put into a development chamber that had been pre-saturated
with vapours of 10 mL of a mobile phase made up of CF:MeOH (8:2, v/v) after the spots
were air-dried to remove any remaining solvent residues. Ascending mode was used to
develop the plates up to 10 cm of solvent front migration away from the point of origin.
Later, after 15–20 min of development, the TLC plate was taken out from the development
chamber, allowed to air-dry, and then put in a UV cabinet at 254 nm for visualisation of
spots. Under UV illumination, images of the developed TLC plates were captured with a
smartphone camera. The FAV was visible as a blue spot against the light green background
of the TLC plate. This image was transferred onto a laptop and saved in JPEG format.
Furthermore, the image was split into R, B, and G channels (image > colour > split channel)
using the freely available software ImageJ (National Institutes of Health, MD, USA). Since
the green channel displayed the best sensitivity, it was chosen for quantitative analysis.
The following steps were used to transform the spots of the G channel into peaks: (i) the
“Rectangular selection tool” was used to select every spot at once; (ii) using the “plot lane
tool”, peaks were plotted from all of the spots; (iii) a median filter with a resolution of
5–10 pixels was applied to remove noise from the peak; (iv) a line was drawn at the bottom
of each peak using the “line tool”; and (v) by clicking inside the peak with the “magic
wand tool”, the corresponding peak area was displayed. For statistical analysis, these peak
areas were used (Figure 7). TLC densitograms of the standard, human urine, and plasma
samples are depicted in Figure S3a–c, respectively.
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3.7. Method Validation

The proposed method was validated for linearity, precision, recovery, and sensitivity
as per the guidelines of the International Conference of Harmonisation (ICH) [55]. For
method validation purposes, ultrapure water, human urine, and plasma samples were
spiked in a range from 5 to 100 µg mL−1 (which is equal to 5–100 µg/spot). The linearity
of the proposed method was evaluated by plotting calibration curves between peak areas
(obtained by image analysis with ImageJ) and their corresponding concentrations on
the y- and x-axes for aforementioned matrices. Linear regression analysis was used to
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determine the coefficient of determination (R2), slope, and intercept. The sensitivity of the
proposed method was expressed as the limit of detection (LOD) and limit of quantification
(LOQ). Furthermore, based on the assessment of the relative standard deviation (%RSD)
at three different concentration levels of the calibration graph, the intraday and interday
precisions (n = 5) were calculated. Additionally, the accuracy and relative recoveries at
three different concentrations—including 20 µg/spot (low QC), 60 µg/spot (medium QC),
and 100 µg/spot—were evaluated (high QC).

3.8. HPLC Analysis

A Shimadzu LC-2010 HT HPLC system with a UV detector was used for the chro-
matographic analysis. FAV was separated using a C18 column (5 µm film thickness,
250 mm length, 4.6 I.D.). A combination of 50 mM phosphate buffer (pH = 2.5) and ace-
tonitrile at a ratio of 60:40 v/v was chosen as the mobile phase and pumped at a flow rate
of 1 mL min−1 for the elution of the analyte of interest at a 30 ◦C column temperature. A
wavelength of 323 nm was selected for the detection of FAV. After the DLLME procedure,
the sedimented phase was completely evaporated and reconstituted in MeOH, 20 µL of
which was subsequently injected into the HPLC system. The retention time of FAV was
found to be 3.8 min. HPLC chromatograms of the standard, pharmaceutical, human urine,
and human plasma samples are shown in Figure S4a–d, respectively.

4. Conclusions

The development of sustainable and green analytical protocols has attracted significant
attention in the recent past. This has led to the replacement of hazardous organic solvents
in order to reduce the risks to both humans and the environment. As a result, sample
preparation is perfectly compatible with the principles of GAC. Herein, the present study
proposes a simple, green, quick, high-sample-throughput, and cost-effective analytical
approach for determining FAV in biological and pharmaceutical samples. The novel aspect
of the developed method is the integration of SA-DLLME with TLC-SDIC, which pro-
vides a straightforward, instrument-less, and affordable analytical platform with the least
consumption of electricity and minimal waste generation. With the help of SDIC, quantita-
tive analysis can be carried out with a basic smartphone camera and open-source image
processing software, without the need for any heavy, high-end instrumental techniques
such as GC-MS or HPLC. The proposed procedures were evaluated using green metrics
(i.e., the Analytical Eco-Scale, AGREE, and ComplexGAPI tools) and were found to be
easier, sufficiently sensitive, and more environmentally friendly. The proposed method
could be of immense use in forensic and clinical laboratories for medico-legal and phar-
maceutical applications. Furthermore, this approach could serve as a stepping stone
for the development of such analytical methods, which could be of immense use in
resource-limited laboratories.
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