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Abstract: Osteosarcoma is the most common type of bone cancer that tends to occur in teenagers
and young adults. Due to crowded context, inter-class similarity, inter-class variation, and noise in
H&E-stained (hematoxylin and eosin stain) histology tissue, pathologists frequently face difficulty in
osteosarcoma tumor classification. In this paper, we introduced a hybrid framework for improving the
efficiency of three types of osteosarcoma tumor (nontumor, necrosis, and viable tumor) classification
by merging different types of CNN-based architectures with a multilayer perceptron (MLP) algorithm
on the WSI (whole slide images) dataset. We performed various kinds of preprocessing on the WSI
images. Then, five pre-trained CNN models were trained with multiple parameter settings to extract
insightful features via transfer learning, where convolution combined with pooling was utilized
as a feature extractor. For feature selection, a decision tree-based RFE was designed to recursively
eliminate less significant features to improve the model generalization performance for accurate
prediction. Here, a decision tree was used as an estimator to select the different features. Finally,
a modified MLP classifier was employed to classify binary and multiclass types of osteosarcoma
under the five-fold CV to assess the robustness of our proposed hybrid model. Moreover, the feature
selection criteria were analyzed to select the optimal one based on their execution time and accuracy.
The proposed model achieved an accuracy of 95.2% for multiclass classification and 99.4% for binary
classification. Experimental findings indicate that our proposed model significantly outperforms
existing methods; therefore, this model could be applicable to support doctors in osteosarcoma
diagnosis in clinics. In addition, our proposed model is integrated into a web application using the
FastAPI web framework to provide a real-time prediction.

Keywords: osteosarcoma; convolutional neural networks; transfer learning; feature extraction;
feature selection; machine learning; MLP
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1. Introduction

Osteosarcoma, also known as osteogenic sarcoma, is a primary mesenchymal tumor
that is distinguished histologically by the formation of osteoid by malignant cells. Osteosar-
coma affects people mostly between the ages of 10 and 30, making it the third most common
cancer among children and adolescents. The United States reports approximately 1000 new
cases every year [1,2] that illustrate osteosarcoma as a challenging issue. Osteosarcoma
and Ewing sarcoma are the two malignant bone cancers that mostly affect children and
adolescents, and they represents about 56% and 34% bone cancer, respectively. The most
common sites for osteosarcoma are the femur (42%, 75% of which are in the distal femur),
the tibia (19%, 80% of which are in the proximal tibia), and the humerus (10%, 90% of
which are in the proximal humerus) [3]. Osteosarcoma signs typically start off as mild
localized bone pain, warmth, and redness where the tumor is located [4]. Neoadjuvant
chemotherapy (NAC) and surgery are current therapeutic modalities that have improved
patient survival rates by almost five years. From 1975 to 2010, osteosarcoma patients expe-
rienced an increase in five-year survival rate from 40% to 76% for those under the age of 15
and from 56% to 66% for those aged between 15 and 19 [5]. However, the five-year survival
rate for metastatic osteosarcoma is still under 20% [6]. Early osteosarcoma diagnosis and
careful monitoring during the chemotherapy cycle can increase the overall survival rate [7].

For the majority of malignancies, including osteosarcoma, a biopsy (histology report)
test is the best way to determine if a part of the body has cancer. In addition, non-invasive
imaging methods such as MRI, CT, and PET imaging modalities have been used for
quantitative analyses in osteosarcoma response monitoring and surgical planning [7].
Even though the approaches based on biopsy can successfully identify the malignancy,
approaches such as histologically guided biopsies and similar techniques have limitations
in detecting malignancy. Moreover, the process of preparing histology specimens takes
time; e.g., to represent the surface of a substantial three-dimensional tumor at least 50
histology slides are required to detect osteosarcoma malignancy accurately [8]. While
assessing cancer patients using biopsy-derived tissue slides, pathologists manually find
the most affected areas and examine the nuclear morphology and cellular characteristics.
This manual inspection and diagnosis using tissue slides, which may consist of huge
number of cells, can be laborious and arbitrary. The whole slide image (WSI) analysis can
increase the amount of information retrieved from tissue slides for making the decision
and increase the reliability of analysis [9]. An automated method is expected to emerge
for the histopathological slide classification of osteosarcoma because microscopic analysis
of slides is difficult, time-consuming, tedious, and subject to bias [10]. The morphological
and contextual cues present in the digital WSIs are used as features for tissue classification,
which promotes the usage of image processing and analysis approaches [9,11].

Osteosarcoma is highly heterogeneous, and it is influenced by inter- and intra-observer
differences. In osteosarcoma, the precursor cells and some types of tumor cells are both
stained the same shade of blue, but the precursor cells are rounder, more closely spaced,
and more regular than the tumor cells [12,13]. To accurately determine the percentage of
necrosis, various histological regions must be taken into account, including hemorrhagic
tumor, blood cells, growth plates, clusters of nuclei, fibrous tissues, osteoclasts, cartilage,
osteoid, osteoblasts, and precursors [10]. Recent research based on medical data shows
that CNN can be used for medical images to extract and analyze information [14,15] and
has a very successful impact. Deep learning (DL) and machine learning (ML) methods
achieved tremendous success and popularity in medical research for cancer classification.
In this study, we propose a hybrid approach, combining CNN and ML algorithms to clas-
sify osteosarcoma malignancy by using whole slide images for three classes, specifically,
a viable tumor, necrosis (including fibrosis, osteoid, and coagulative necrosis), and nontu-
mor (cartilage, bone, other normal tissue). The key contribution of our proposed hybrid
approach is the integration of different CNN (transfer learning) and ML techniques for
data preprocessing, optimizer analysis, feature selection, and classification for lower com-
putational costs and better performance. Most of the previously published works either
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employed ML techniques or DL techniques where they only focused on classification tasks
and did not explore enough other ML techniques that may influence accurate prediction.
Initially, we performed normalization in the training phase to enable our model to learn
faster with a zero-centered Gaussian distribution of data. We have also explored a total of
five CNN models and five ML classifiers with different parameter settings to determine
the best feature extractor and classifier integration. Furthermore, an optimizer analysis
was conducted for the MLP classifier to ensure better optimization by selecting the most
suitable optimizer that demonstrates improved convergence time and loss. We also ana-
lyzed the impact of RFE’s criterion concerning the number of selected important features.
Finally, a web application has been developed using our proposed framework for real-time
prediction.

The remaining sections of this article are structured as follows: In Section 2, we
provided a literature review of previous works that has been published on this dataset.
In Section 3, we described our proposed methodology in detail, including the dataset,
preprocessing feature extraction, selection, and classification. The experimental results
from various experiments, with proper analysis, are illustrated in Section 4. Furthermore,
finally, we added a discussion in Section 5.

2. Literature Review

Researchers have developed automatic systems to identify various malignancies and
tumors that can evaluate and classify medical images such as X-rays, histology images,
ultrasound imaging, CT scan, MRIs, etc. [16–25]. The use of digital histopathology has
grown significantly and shown great potential recently. In 2014, Irshad et al. [11] pre-
sented a survey on histopathology images, specifically in H&E and immunohistochemical
staining protocols, that discusses classification techniques, segmentation, feature compu-
tation, and the major trends of various nuclei detection. Their study involves techniques
including image thresholding, morphological features, active contour models (ACMs),
K-means clustering, and probabilistic models. In order to distinguish between different
tumor regions on osteosarcoma histology slides, Arunachalam et al. [26] demonstrated
multi-level Otsu thresholding and shape segmentation. Mandava et al. [7] proposed an
automatic segmentation technique of osteosarcoma using MRI images. A dynamic cluster-
ing algorithm called DCHS was proposed in their work, and it is based on a combination
of fuzzy c-means (FCM) and Harmony Search (HS). To designate the tumor volume by
DCHS, they used pixel intensity values and a subset of Haralick texture features as feature
space. Nasor et al. [27] presented an automatic segmentation technique for osteosarcoma
using MRI images combined with image processing techniques that includes K-means
clustering, iterative Gaussian filtering, Chan–Vese segmentation, and Canny edge detection.
An enhanced graph-cut-based framework was introduced by Vandana et al. [28] to deter-
mine malignancy level in H&E-stained histopathology images. They used mathematical
morphology, color-based clustering, and active contour for extracting feature, and ana-
lyzed those features for malignancy classification using a multiclass random forest (RF)
classifier. Zhi et al. [6] proposed ML approaches to classify osteosarcoma patients using
metabolomics data analysis. LR, RF, and SVM are applied in their studies to distinguish
between tumor cases and healthy controls. Feng et al. [29] presented a four pseudogene
classifier to identify prognostic pseudogene signatures of osteosarcoma using RNA-seq
data. The cox-regression analysis was used to construct the signature model (univariate,
multivariate, and lasso), and achieved 0.878 AUC value.

Due to the availability of enormous computing power, DL approaches have gradually
taken the place of traditional histopathological image classification [14,15,30–32]. In order
to increase effectiveness and accuracy of osteosarcoma classification, Mishra et al. [10]
developed a convolutional neural network (CNN). They have used WSI in their work to
classify tumor classes (necrosis, viable tumor) versus nontumor class. The accuracy of their
proposed CNN model was 92%, and the model was compared with three existing CNN
models AlexNet, LeNet, and VGGNet. The first fully automated tool to evaluate viable
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and necrotic tumors in osteosarcoma is reported by Arunachalam et al. [33] that uses both
DL and conventional ML techniques. Their intention was to classify the various tissue
regions as viable tumor, necrotic tumor, or nontumor. They selected 13 different ML models
in their study. Among them, the support SVM was the top performer, and a DL model
was also developed to train on the same dataset. SVM, ensemble learner, and complex
trees achieved an overall accuracy of 80.9%, 86.8%, and 89.9% respectively, and the overall
accuracy for the deep learning model was 93.3% and 91.2% for patches and tiles of WSI’s.
Osteosarcoma classification using histopathological images using sequential region-based
convolutional neural network (R-CNN) was proposed by Nabid et al. [5] that consisted
of bidirectional gated recurrent units (GRU) and CNN. Performance of their proposed
model compared with AlexNet, SVM models, ResNet50, LeNet, and VGG16 on the same
dataset and shows an accuracy of 89%. D’Acunto et al. [34] applied a DL approach to
discriminate between Mesenchymal Stromal Cells (MSCs) from osteosarcoma cells and
to classify the cell populations. A faster R-CNN was adopted in their study via transfer
learning. A deep Siamese network model (DS-Net) was designed by Yu et al. [35] to develop
an automated system for identifying viable and necrotic tumor regions in osteosarcoma.
DS-Net was developed using a fully connected convolutional network that is combined
with an auxiliary supervision network (ASN) and a classification network. Their model
achieved an average accuracy of 95.1%. In order to find best classifier and to identify
necrotic images from non-necrotic tissues, Anisuzzaman et al. [4] adopted six well-known
pre-trained transfer learning CNN models. In their study, they employed both multiclass
and binary class classification, and among the six pre-trained models, VGG-19 achieved
the highest accuracy of 96% . Recently, S. Gawade et al.[36] employed multiple supervised
deep-learning models to classify osteosarcoma, where they utilized a transfer learning
approach that modifies only the top layer (classifier) and achieved the highest accuracy
of 90.36% using ResNet. A comparative methodological approach was proposed by I.A.
Vezakis et al. [37] to investigate different deep learning models. They considered various
pre-trained models with transfer learning to perform normalization and resize input images
into different sizes based on individual model sizes and obtained the highest accuracy of
91.00% for the MobileNetV2 model.

In recent years, ML based images processing approaches attracted a lot of interest
and achieved a great success in the analysis of histopathological images of osteosarcoma.
The literature survey motivated us to develop a hybrid model, combining DL and ML,
to classify osteosarcoma using whole slide images. Firstly, a preprocessing technique was
applied to the WSI cancer dataset to make the dataset more accurate format for analysis
by the proposed method. We trained five cutting-edge CNN models to extract impor-
tant features via transfer learning into a combined form of convolution and pooling from
histopathological images. A decision tree-based RFE was developed to select the optimal
number of features (e.g., 100, 200, . . . , 900) using a decision tree estimator from 1024 ex-
tracted features. Then, a modified MLP classifier was combined with different feature
extractors with varying parameter settings for accurate prediction. Finally, we integrate
the best data preprocessing, feature extractor, feature selector, and classifier to build our
proposed model for predicting osteosarcoma. Here, we considered transfer learning with
different hyperparameters that minimize the training time and provide more meaningful
features. Moreover, feature selection techniques remove irrelevant features, thus reducing
model complexity, and the modified classifier offers us more accurate classification results.

3. Methodology

This section describes dataset collection, image preprocessing, feature extraction,
feature selection, and our proposed model. Figure 1 presents the schematic diagram of our
proposed methodology.
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Figure 1. Proposed methodology.

The system Algorithm 1 of our proposed methodology is given as follows:

Algorithm 1 Proposed Algorithm
1: Ep ← Number of Epochs
2: W ← Transfer Learning Model Parameter
3: η ← Learning Rate
4: bs ← Batch Size
5: D ← Osteosarcoma Dataset

Output: The assessment metrics on the test dataset.
Dataset Prepossessing:

6: Xtrain ← prepossessing(D)
7: Xtest ← prepossessing(D)
8: Initialise TL Models (VGG16, VGG19, ResNet50

Xception, DenseNet121)
Feature Extraction:

9: for local epoch ep ← from 1 to Ep do
10: for bs = (xs, ys) ∈ random batch from Xtrain do
11: Optimise model parameters
12: Ws ←Ws − η(∆(L(Ws; bs)))
13: ftrain ← ComputeFeatures(Ws, Xtrain, 1024)
14: end for
15: end for

Feature Selection :
16: fbest ← DT − RFE( ftrain, 900)

Osteosarcoma Tumor Classification :
17: TrainedModel ← MLP( fbest, ytrain)
18: Pred← TrainedModel(Xtest)
19: Evaluation metrics← ComputeMetrics(Pred, ytest)

Initially, the input whole slide images (WSI) were pre-processed as described in
Section 3.2 and then fed into the feature extractor. We have employed five different pre-
trained CNN models as our feature extractors and extracted 1024 features from every feature
extractor with transfer learning techniques. Then we applied four different feature selection
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techniques on those 1024 extracted features, including principal component analysis (PCA),
recursive feature elimination (RFE), mutual information gain (MIG), and univariate analysis,
respectively, to select the significant features. Different numbers of features (e.g., 100, 200...,
900) are chosen for each feature selector before being fed into the classifier to determine
the optimal number of features. Five different ML-based classifiers, including decision
tree (DT), random forest (RF), XGBoost, multi layer perceptron (MLP), and light gradient-
boosting machine (LGBM), respectively, are employed as classifiers. The model was tested
for binary and multiclass classification using a variety of performance metrics. To assure
real-time prediction for osteosarcoma malignancy using whole slide images, we developed
a web application by integrating our proposed model as well.

3.1. Dataset

Data on osteosarcomas from the work of Leavey et al. [38] were used in our study.
Tumor samples were collected from Children’s Medical Center, Dallas, which consists of
50 patients’s pathology reports of osteosarcoma resection who were treated from 1995 to
2015. A total of 40 WSI (whole slide images) were selected where every WSI represents
different sections of the microscopic slide. The WSI represents tumor heterogeneity and
response properties as well. At 10X magnification factor, thirty 1024× 1024 pixel image
tiles from each WSI were randomly selected. After removing irrelevant tiles such as
those falling in non-tissue, ink-mark regions, and blurry images, 1144 image tiles were
selected from the resulting 1200 tiles. Each image tile is annotated by pathologists in a CSV
(Comma Separated Value) file with Tile Identification Number (TIN) and its corresponding
classification results. Viable tumor, nontumor, and necrotic tumor are the three main regions
used in classification tasks. Among 1144 image tiles 47% (536) are nontumor tiles, 23% (263)
are non-viable tumor (necrosis) tiles, and 30% (345) are viable tiles. Figure 2 illustrates
sample images of the dataset. For our experiments and investigation, we have taken 80%
of the data for training and 20% for testing from the dataset.

3.2. Data Pre Processing

The size of original images in our dataset was 1024× 1024 pixels. The input for the
ImageNet-based pre-trained models is less than or equal to 224× 224. If we use transfer
learning then the inputs must be suited to the pre-trained model, therefore we have resized
all of our input images to 224× 224 pixels. We transformed resized images into tensors to
work with image intensity values. Then we perform normalization on our images by using
this formula:

x = (x−mean)/std (1)

Here, x stands for the input image that is converted into a tensor representing the pixel
intensity, mean is the the average pixel intensity of all images that exist in our dataset and
std stands for standard deviation. Normalization enables data distribution that resembles a
zero-centered Gaussian curve. By applying normalization, the gradient does not go out
of control and makes convergence faster while training. Since we are using RGB images,
we have used mean and standard deviation values of 0.5, 0.5, and 0.5 for the red, green,
and blue channels, respectively. This resulted in image intensity values in the range of
(−1, 1). The preprocessing steps help us to train faster and reduce computational expenses.
Figure 3 illustrates our preprocessing process.
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Figure 2. Sample images from our dataset [38].

Figure 3. Data preprocessing stages where images were resized then performed normalization.

3.3. Model Selection
3.3.1. Feature Extraction (Deep Learning-Based Feature Extraction)

Feature extraction is the process by which we can extract meaningful information
from an input image. DL-based feature extraction mainly uses CNN to extract features
from images [39–42]. In CNN, convolution combined with pooling is utilized as a feature
extractor. This study uses five pre-trained CNN models named VGG-16, VGG-19, Xception,
ResNet-50, and DenseNet-121 as feature extractors via transfer learning. These pre-trained
models were implemented by PyTorch [43] and Keras [44] on ImageNet [45] validation
set. The base results of those models on ImageNet validation set is illustrated in Table 1.
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Here top-1 accuracy is the conventional accuracy (the one with the highest probability),
and top-5 accuracy means the model’s top 5 highest probability answers that match with
the expected answer (considers a classification is correct of any of the five predictions
matches with the ground truth/target label).

Table 1. Parameters and accuracy of pre-trained models (acc. stands for accuracy).

CNN Model Parameters Top-1 acc. Top-5 acc.

VGG-16 138.4M 71.592% 90.382%

VGG-19 143.7M 72.376% 90.876%

Xception 22.9M 79.0% 94.5%

ResNet-50 25.6M 76.13% 92.862%

DenseNet-121 8M 74.434% 91.972%

3.3.2. VGG-16 and VGG-19

Karen Simonyan and Andrew Zisserman from the University of Oxford proposed
VGG Net [46], which took first and second place in the object detection and classification
categories of the 2014 ImageNet challenges. VGG Net architecture has two variants in
terms of layers, and the variations are VGG-16 and VGG-19.

VGG-16 is a deep CNN model which consists of 16 layers (roughly twice as deep as
AlexNet [47]), constructed by stacking uniform convolution, which enhances the network
performance. Without using relatively large respective fields in the first convolution layer
(e.g., 11× 11 with stride 4 in Krizhevsky et al. [47] or 7× 7 with stride 2 in Zeiler and
Fergus et al. [48]; Sermanet et al. [49]), they used very small (3 × 3) respective fields
throughout the network. A stack of respective small filters (3× 3) has been used instead of
large (7× 7 or 11× 11) respective filters because respective small filters make the decision
function more discriminative and reduce the number of parameters, allowing for less
computational complexity. The 16 in VGG-16 stands for 16 weighted layers known as
learnable parameter layers. A total of 21 layers make up VGG-16: 13 convolutional layers,
5 Max Pooling layers, and 3 Dense layers. This model uses ReLU as the activation function
following convolution. In the pooling layer, a max pool layer of 2× 2 filter with stride
2 has been used throughout the whole architecture. A stack of convolutions is followed
by three fully connected layers, the third one having 1000 channels for classification and
the first two each have 4096 channels. The dropout value is set to 0.5 for regularization,
and Softmax is used as the activation function for classification. The model’s default input
tensor size is 224× 224 with 3 RGB channels.

VGG-19 is deeper than VGG-16 as it has 19 layers. It has 16 convolution layers,
5 Max Pooling layers, 3 dense layers, which is a total of 24 layers that make up VGG-
19. The 3rd, 4th, and 5th convolution of VGG-19 has an extra layer over VGG-16 and
the other architectures are the same as VGG-16 i.e., kernel size, stride, padding, pooling,
dropout probability, and activation function. It has a much larger number of parameters
than VGG-16.

3.3.3. Xception

Francois Chollet introduced Xception from Google research [50]. The architecture
is inspired by Inception and entirely based on depthwise separable convolution, where
depthwise separable convolution has been used in place of the Inception module [51]It
is based on a solid hypothesis that performs 1 × 1 convolution to map cross-channel
correlations and separately map the spatial correlations of every output channel. This model
performs channel-wise spatial convolution followed by a 1× 1 convolution to achieve depth-
wise separable convolution. The network contains 36 convolutional layers, which form the
feature extraction base, and a logistic regression layer is used after the convolutional base
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for classification. Xception has 14 modules that are made up of 36 convolutional layers,
and all of them have a linear residual connection around them except the first and last
modules. A global average pooling layer is used at the top layer of this architecture to
produce a 1× 2048 vector, and several fully-connected layers are kept optional. Here, ReLu
has been used as the activation function for non-linearity, and a dropout layer of rate 0.5
has been used before the logistic regression layer in this network. The architecture of this
network reduces the number of connections by using depth-wise separable convolution
and thus reduces the number of parameters, making it computationally more efficient.

3.3.4. ResNet-50

ResNet was proposed by Kaiming He from Microsoft research [52]. ResNet’s architec-
ture is based on residual learning and is substantially deeper than previous models. Instead
of learning unreferenced functions, ResNet explicitly reformulates the layers as learning
residual functions. Deeper networks often face a notorious problem of vanishing gradients
that hamper convergence [53,54]. ResNet addressed this phenomenon by normalizing
initialization and utilizing intermediate normalization layers that enable networks with
more layers to converge with backpropagation. ResNet also introduces a deep residual
learning approach to overcome this degradation issue. Instead of using a few layers directly,
this network uses a residual mapping to fit the underlying mapping by reformulating the
residual function F(x) := H(x)− x into F(x) + x (where H(x) is underlying mapping, x is
input). To formulate F(x) + x, a shortcut connection (skipping one or more layers) has been
used. The shortcut connections perform identity mapping, then add their results with the
outputs from the stacked layers. ResNet-50 is a variant of ResNet that is a modified version
of ResNet-34 with a bottleneck architecture and 50 layers. A bottleneck block contains a
stack of 3 layers, which are 1× 1, 3× 3, and 1× 1 convolutions. This architecture uses a
batch normalization layer between the convolution and activation layers. ReLU has been
used as an activation function, and the dropout layer has not been considered. A global
average pooling layer and a fully connected layer of 1000 nodes with softmax are used at
the end of this network.

3.3.5. DenseNet-121

DensNet was proposed by Gao Huang et al. [55], and this model enhances feature
reuse capabilities based on ResNet in its architecture. It has L(L + 1)/2 direct connections,
whereas traditional CNN has L layers with L connections. In DensNet, feature maps are
combined using concatenation instead of summing before passing into a layer, and all
previous layer’s feature maps are used as input for any specific layer. The Dense Block
is the main structure of DensNet, consisting of convolutional layers. DensNet-121 is one
of the variants of the DensNet architecture, having a 121-connected convolutional layer
with a final output layer. DensNet-121 contains four dense blocks, and there is a transition
layer between each dense block. This network’s dense connectivity for x0, x1, xl−1 inputs,
where the lth layer receives feature maps from all preceding layers, can be defined as
Xl = Hl([x0, x1, ..., xl−1]). Hl is a composite function that contains three operations: batch
normalization (BN), rectified linear unit (ReLU), and a 3× 3 convolution. Each dense block
of DenseNet-121 has two convolutions, 1× 1 and 3× 3, which are repeated differently in
each block. A transition layer contains a 1× 1 convolutional layer and an average pooling
layer with a stride of 2. Before sending all feature maps to the fully connected layer for
classification, this network performs a 7× 7 global average pooling layer. This network has
fewer parameters than ResNet and is more computationally efficient.

3.4. Decision Tree Based Recursive Feature Elimination (DT-RFE)

Recursive feature elimination (RFE) is a wrapper-type feature selection technique that
uses different types of machine learning algorithms in its core, and the algorithms help
to select features [56–58]. RFE fits a model and removes the least significant feature (or
features) until the desired(selected) number of features is obtained. The coef or feature
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importances properties of the model are used to rank the features [59], and RFE attempts
to eliminate interdependence and correlation that may exist in the model by recursively
eliminating a small number of features per cycle. The goal of RFE is to maximize general-
ization performance by eliminating the least significant features whose elimination will
have the least impact on training errors and select smaller sets of features recursively [60].
There are two major steps that must be taken to implement RFE. Firstly, we need to choose
an algorithm (also known as a classifier or estimator) that will give us feature importance,
and then we need to specify the number of features we want to select. We have used
the decision tree algorithm [61] as our estimator, and different numbers of features were
selected for our experiment, i.e., 100, 200, 300, 400, 500, 600, 700, 800, and 900. Decision
tree is a tree-based classifier that offers a variety of significance features and performs
relatively well. Decision tree algorithms employ information gain to split a node, and for
calculating information gain, different criteria can be used [62]. In our experiment two
popular criteria have been employed, namely Gini index and entropy to determine which
criterion provides better performance based on the data. Mathematically Gini index and
entropy can be defined as follows:

Gini = 1−
n

∑
i=1

p2(ci) (2)

Entropy =
n

∑
i=1
−p(ci)log2(p(ci)) (3)

where p(ci) is the probability of class ci in a node. The range of the Gini Index is [0, 0.5],
while the range of the entropy is [0, 1]. We have applied multi layer perceptron (MLP)
separately on selected features for our final classification.

3.5. Multi Layer Perceptron (MLP)

Multi layer perceptron, in short MLP, is a unique variety of an artificial neural network
(ANN) [63]. MLP is a feed-forward multilayer network of artificial neurons, and each layer
contains a finite number of units (often called neurons) [64–66]. Each layer’s unit is con-
nected to each layer’s preceding (and consequently succeeding) unit via a network of con-
necting lines. Typically, these connections are referred to as links or synapses [67]. Informa-
tion transmits from one layer to the next layer (thus the term feed-forward). For x1, x2, ..., xn
inputs, the model predicts output as y1, y2, ....., yn with lh hidden nodes or units (h is the
number of nodes). In this study, MLP model works as follows:

1. The input layer produces output of its jth node as xoj.
2. The output xij from each jth node of the (i− 1)th layer is sent to the kth node of the ith

layer. Then the values of xij are multiplied by some constants (referred to as weights)
wijk, and the resulting products are summed.

3. A shift bik(referred to as bias) and then a fixed mapping σ(referred to as activation
function) are applied to the above sum, and the resulting value represents the output
xi+j,k of this kth node of the ith layer. This can be formulated as follows:

xi+1,k = σ(∑
j

wijkxij + bik) (4)

With the above procedure, for input x = (x1, x2, ...., xn), we can write the output ŷ of a
single hidden layer perceptron model with q nodes in the hidden layer as follows:

ŷ =
q

∑
i=1

w2
i .σ(

n

∑
j=1

w1
ijxj + bi) (5)
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Here, w1
ij is the weight of jth unit of the input and ith unit in the hidden layer, bi is

the bias at the ith unit of the hidden layer, and w2
i is the weight between the ith unit of the

hidden layer and the output.
Another step is to determine the values of weights wij and bias bi in a way that the

model behaves well on a given set of inputs and corresponding outputs. This process is
called learning or training, and the MLP model uses backpropagation as the basic learning
algorithm. Backpropagation is a gradient descent algorithm and mathematically it can be
represented as,

repeat unti convergence : wj := wj − α.
δ

δwj
.J(w0, w1, ...., wn) (6)

where wj is weights, α is learning rate, and J is the cost function. Cost function basically
quantifies the error between the predicted value and the true value of inputs, and mathe-
matically it can be represented as follows:

J(w0, w1) =
1

2m
.

m

∑
i=1

(yi − ŷi)
2 (7)

yi is the actual value, ŷi is the predicted value, and m is the number of data samples.
Different activation functions can be used in different layers on MLP. In our experiment

we have used ReLU as an activation function in the hidden layer. Mathematically ReLU
can be defined as follows for input x:

f (x) = max(0, x) (8)

In the output layer, we have used different activation functions for binary and multi-
class classification, respectively. For binary classification we used logistic sigmoid activation
function in the output layer, and mathematically it can be defined as follows for input x:

f (x) =
1

1 + e−x (9)

Additionally, for multi class classification we have used softmax as activation function
of the output layer. Softmax can be defined as follows for input x:

σ(xi) =
ex

i

∑N
k=1 exk

(10)

In our proposed MLP model, the inputs (x1, x2, ...., xn) have 1024 features after extract-
ing the feature, so there are 1024 nodes for each input and 100 nodes in the hidden layer.
The output layer contains 2 nodes for binary classification and 3 nodes (as we have 3 classes)
for multiclass classification. We have used ReLU as the activation function in the hidden
layer, logistic sigmoid as the activation function for binary classification and softmax for
multiclass classification in the output layer. Furthermore, Adam was used as an optimizer,
and it is stochastic gradient-based. beta1 = 0.9, beta2 = 0.999, epsilon = 1× 10−8 has been
used for the Adam optimizer. We applied L2 regularization with a value of α = 0.0001 with
a learning rate of 0.001; we trained our model for 200 epochs.

4. Experimental Results

The experiments were conducted in the Google Colaboratory environment that in-
cludes the NVIDIA Tesla K80 graphics card, 12.68 GB RAM, and 107.72 GB disk space.
To implement our proposed model, the Python 3.8.3 programming language with PyTorch,
Keras, Scikit-learn frameworks, and various libraries such as Numpy, Pandas, Matplotlib,
etc. has been utilized.
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4.1. Evaluation

The main objective of our proposed model was to classify the osteosarcoma images
into one of the three tumor phases (nontumor, necrosis, and viable tumor) as mentioned in
the earlier section. In this study, we employed various performance metrics to evaluate our
proposed model. Moreover, the impact of the feature selection technique is also analyzed
by a comparison of the results before and after applying it based on various performance
metrics. Here, accuracy, ROC curve, specificity, sensitivity (recall), precision, F1 score,
Matthews correlation coefficient (MCC), and confusion matrix were all considered in the
evaluation. Confusion matrix is a table that describes how well a classification algorithm
performs, and it visualizes and summarizes the prediction results for a classification
problem. In a confusion matrix where true positive (TP) stands for a value that is correctly
predicted as positive, true negative (TN) stands for a value that is correctly predicted as
negative, false positive (FP) indicates a value incorrectly predicted as positive, and false
negative (FN) indicates a value incorrectly predicted as negative. Mathematically all these
evaluation metrics can be written as follows:

Accuracy = (
TP + TN

TP + TN + FP + FN
)× 100% (11)

Sensitivity =
TP

TP + FN
(12)

Speci f icity =
TN

TN + FP
(13)

Precision =
TP

TP + FP
(14)

F1 score =
2× (Precision× Recall)

Precision + Recall
(15)

MCC =
(TP× TN)− (FP× FN)√

(TP + FP)× (TP + FN)× (TN + FP)× (TN + FN)
(16)

We have also considered ROC curves, which represent two-dimensional charts that are
frequently used to evaluate and assess the performance of classifiers. It simply illustrates a
classifier’s sensitivity or specificity for all possible classification thresholds and indicates
how effectively the model can distinguish between different categories. The true positive
rate is plotted on the y-axis and the false positive rate is plotted in the x-axis in this graph,
and an AUC close to 1 implies a predicted model does well at class label separability, while
an AUC close to 0 indicates a poor predicted model.

4.2. Feature Extractor and Classifier Selection

To determine the best feature extractor, we employed five different CNN models,
including VGG-16, VGG-19, ResNet-50, DenseNet-121, and Xception. Here, we considered
a transfer learning approach rather than training a CNN model from the scratch where
pre-trained weights of those models are utilized. The Fully Connected Layer (used as the
classifier of a model) of every CNN model was discarded and replaced with five different
classifiers based on the ML algorithm. DT, RF, XGBoost, LGBM, and MLP are the algorithms
that have been used as classifiers individually with every CNN. The purpose of this
experiment with a combinational approach is to investigate and compare the performance
of each feature extractor with different ML classifiers. This experiment also allows us to
determine the best classifier among all of the ML based classifiers mentioned earlier in this
section. A dataset containing tumor samples from patients with osteosarcoma is used to
evaluate each combined model; a description of this dataset is given above (see Section 3.1).
The investigation was evaluated on the test set, and from this investigation, we select the
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best feature extractor and the best classifier, as well as the best combination based on their
performance. Table 2 represents the experimental results of every combination.

Table 2. Experimental results of the performance of feature extractor with different classifier.

Extractor Classifier ACC AUC MCC SP SN

VGG-
16

Decision Tree 0.680 0.768 0.497 0.802 0.650

Random Forest 0.627 0.877 0.437 0.743 0.580

XGBoost 0.811 0.921 0.705 0.890 0.791

LGBM 0.759 0.901 0.631 0.845 0.700

MLP 0.908 0.974 0.855 0.950 0.890

VGG-
19

Decision Tree 0.684 0.814 0.505 0.805 0.660

Random Forest 0.737 0.912 0.602 0.836 0.700

XGBoost 0.838 0.930 0.747 0.906 0.820

LGBM 0.768 0.913 0.649 0.857 0.720

MLP 0.895 0.975 0.838 0.946 0.890

Xception

Decision Tree 0.636 0.786 0.418 0.766 0.610

Random Forest 0.781 0.916 0.649 0.861 0.720

XGBoost 0.803 0.928 0.684 0.880 0.760

LGBM 0.803 0.934 0.685 0.882 0.760

MLP 0.820 0.938 0.713 0.895 0.800

Resnet-
50

Decision Tree 0.776 0.762 0.648 0.871 0.739

Random Forest 0.715 0.892 0.553 0.823 0.680

XGBoost 0.842 0.948 0.755 0.916 0.830

LGBM 0.803 0.943 0.699 0.879 0.760

MLP 0.877 0.973 0.812 0.938 0.870

DenseNet-
121

Decision Tree 0.825 0.797 0.725 0.901 0.820

Random Forest 0.825 0.944 0.812 0.930 0.860

XGBoost 0.895 0.957 0.839 0.941 0.900

LGBM 0.829 0.955 0.740 0.897 0.814

MLP 0.934 0.989 0.913 0.966 0.940

From the experimental results shown in Table 2, we can see that DenseNet-121 com-
bined with all five classifiers achieved the highest average accuracy of 86.16% among
all of the feature extractors. VGG-16 obtained the lowest average accuracy among all of
them, which is 75.7%. The three other feature extractors, including VGG-19, Xception,
and ResNet-50, obtained an average accuracy of 78.44%, 76.86%, and 80.26%, respectively,
which are 7.72%, 9.3%, and 5.9% lower than DenseNet-121, respectively. The highest
average AUC score is also achieved by DenseNet-121, which is 92.84%. The average
AUC scores of DenseNet-121 are 4.02%, 1.96%, 2.8%, and 2.48% higher than the VGG-16,
VGG-19, Xception, and ResNet-50 models, respectively. This extractor also achieved the
highest average score for other evaluation metrics, including MCC, specificity, and sen-
sitivity, which are 80.58%, 92.7%, and 86.68%, respectively. The average MCC scores of
DenseNet-121 are 18.08%, 13.76%, 17.6%, and 11.24% higher than the VGG-16, VGG-19,
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Xception, and ResNet-50 models, respectively. The specificity and sensitivity are also 8.1%,
5.7%, 7.02%, and 4.16% and 14.46%, 10.88%, 13.68%, and 9.1% higher than the other four
feature extractors. When compared to other extractors, these differences in results are
quite significant, and DenseNet-121 achieved the highest score in every evaluation metric
aspect. DenseNet-121 also achieved the third highest top-5 accuracy of 91.97% on the
ImageNet validation dataset and used much fewer parameters than others among all of the
mentioned feature extractors (a descriptive overview is provided in Section 3). In our case,
DenseNet-121 outperforms all other CNN models on the test dataset for every evaluation
metric. Therefore, we have chosen DenseNet-121 as our feature extractor.

From Table 2, we can also see that the MLP classifier achieved the highest average accu-
racy of 88.68%, which is 16.66%, 14.98%, 4.9%, and 9.44% higher than four other classifiers,
including DT, RF, XGBoost, and LGBM, respectively. The MLP classifier also achieved the
highest average AUC score of 96.98%, which is 18.44%, 6.16%, 3.3%, and 4.06% higher than
the other four mentioned classifiers. The DT, RF, XGBoost, and LGBM obtained average
MCC scores of 55.86%, 61.06%, 74.6%, and 68.08%, respectively, while MLP achieved the
highest average score of 82.62%. The MCC scores of the other four classifiers are lower than
the MLP classifier. The MLP classifier also achieved the highest average score for other
evaluation metrics, including specificity and sensitivity, which are 93.9% and 87.8%, respec-
tively. The second-highest average scores for ACC, AUC, MCC, SP, and SN are obtained by
the XGBoost classifier, which is 4.9%, 3.3%, 8.02%, 3.24%, and 5.78% lower compared with
the MLP classifier; the differences are quite significant. From our investigation, we found
that the MLP classifier outperformed all other classifiers that we used in our experiment on
our test data. These findings allow us to select MLP as the best classifier. Figure 4 illustrates
the ROC-AUC curve for each feature extractor combined with five different classifiers.

(a) (b)

(c) (d)

Figure 4. Cont.
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(e)
Figure 4. ROC-AUC for five feature extractor. (a) ROC-AUC for VGG-16; (b) ROC-AUC for VGG-19;
(c) ROC-AUC for Xception; (d) ROC-AUC for ResNet-50; (e) ROC-AUC for DenseNet-121.

The experimental results and our investigation also illustrate that the MLP classifier
combined with every feature extractor achieved the highest ACC, AUC, MCC, SP, and SN
scores among all other combinations. On the other hand, every classifier combined with
DenseNet-121 obtained the highest scores compared with other feature extractors. Finally,
we can see that DenseNet-121 combined with the MLP classifier achieved the highest
accuracy of 93.4%, which is much higher than all other combinations. By this finding,
we have chosen DensNet-121 as a feature extractor and MLP as a classifier, and we have
applied this combination to develop our proposed model.

4.3. Optimizer Algorithms, Loss, and Convergence Analysis of MLP

The effectiveness and efficiency of optimization algorithms have a significant impact
on the implementation of ML models. They generate gradients and try to minimize the
loss function that leads to more accurate results. There are many different optimization
algorithms that can be implemented to minimize loss in a ML or DL model for supervised,
unsupervised, semi-supervised, and reinforcement learning. In our study, three different
optimization algorithms have been employed to determine which optimization algorithm
works better on our data for MLP, and those are named Stochastic Gradient Descent (SGD),
Adaptive Moment Estimation (Adam), and Limited-memory BFGS (Lbfgs), respectively.
Table 3 represents the optimization algorithms performance on our data with learning rate,
number iteration to convergence, loss, and execution time for both multiclass and binary
class classification.

Our experimental results show that SGD takes a higher number of iterations to con-
verge than Adam and Lbfgs. After a several number of experiments we found that SGD
takes around 900 iterations to convergence while Adam and Lbfgs takes 500 and 300
iterations, respectively. To investigate the loss value and execution time for each optimiza-
tion algorithm, we set a certain number of iterations for each of them for both multiclass
and binary classification with an initial learning rate of 0.001. The experimental results
indicate that Adam and Lbfgs produce both lower loss value and execution time than
SGD. In multiclass classification, Adam, Lbfgs, and SGD produce loss values of 0.002621,
0.020567, and 0.000057 with execution times of 3.98 s, 57.15 s, and 2.40 s, respectively. Binary
classification’s experimental results also indicate that SGD takes higher execution time,
loss value, and number of iteration than Adam and Lbfgs. This investigation motivates
us to use Adam as our optimization algorithm for our proposed model as it is more com-
putationally efficient and produces less loss value. Furthermore, we plotted the optimizer
analysis for both multiclass and binary class classification based on the no. of iteration, loss,
and execution time that is illustrated in Figure 5.
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Table 3. Experimental results of optimizer analysis.

Classification Optimizer Name LR Iteration Loss Time (s)

Multi class

Adam 0.001 500 0.002621 3.98

SGD 0.001 900 0.020567 57.15

Lbfgs 0.001 300 0.000057 2.40

Nontumor vs.
Necrosis +
Viable

Adam 0.001 500 0.001610 6.09

SGD 0.001 900 0.020836 27.80

Lbfgs 0.001 300 0.000153 4.54

Nontumor vs.
Necrosis

Adam 0.001 500 0.002714 9.42

SGD 0.001 900 0.064409 73.59

Lbfgs 0.001 300 0.000080 3.95

Necrosis vs.
Viable

Adam 0.001 500 0.002406 9.18

SGD 0.001 900 0.040208 38.84

Lbfgs 0.001 300 0.000114 5.22

Nontumor vs.
Viable

Adam 0.001 500 0.003227 4.94

SGD 0.001 900 0.051609 40.33

Lbfgs 0.001 300 0.000098 3.821

4.4. Impact of Feature Selection Techniques

Feature selection (FS) is an effective strategy for choosing the most appropriate feature
subset in pattern recognition and medical image processing. This technique helps us
eliminate irrelevant features that allow us to build a more straightforward and faster model
with higher prediction capability. In recent studies, various feature selection techniques
have been widely used in medical image processing and bioinformatics. To investigate
the effectiveness of FS techniques, we employed four different feature selectors, namely
PCA, RFE, MIG, and univariate, to determine the most effective one that works best in
our dataset. We evaluate our proposed model on the test set, which contains 224 images
belonging to three different classes. Here, 100, 200, 300, 400, 500, 600, 700, 800, and 900
features were selected individually for each FS technique to determine which number of
features yielded the best prediction scores across all evaluation metrics. Both multiclass and
binary-class classifications were performed to ensure each FS technique’s impact. Table 4
illustrates the data samples distributed for different classification tasks.

Table 4. Number of samples in each class in our test dataset (our evaluation based on this data).
NT = Nontumor, Nec. = Necrosis, Via. = Viable.

Classification NT Nec. Via. Nec. + Via. Total

Multiclass 118 56 54 - 228

NT vs. Nec. + Via. 118 - - 110 228

NT vs. Nec. 118 56 - - 174

NT vs. Via. 118 - 54 - 172

Nec. vs. Via. - 56 54 - 110
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(a) (b)

(c) (d)

(e)

Figure 5. Optimizer analysis for both multiclass and binary class classification based on no. of
iteration, loss, and execution time. (a) Analysis for multiclass. (b) Analysis for NT vs. Nec. + Via.
(c) Analysis for NT vs. Nec. (d) Analysis for Nec. vs. Via. (e) Analysis for NT vs. Via.

Table 4 shows that we performed a single multiclass classification and four different
binary class classifications. Necrosis and viable samples were combined into a class for
nontumor versus necrosis + viable binary classification and added nontumor as another
class. This binary classification aims to investigate how well our proposed model can clas-
sify a tumorous and a nontumorous sample. We also conducted three class-specific binary
classifications to ensure that our proposed model can discriminate between two classes
in all possible combinations. Initially, multiclass and binary class classification were per-
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formed without FS techniques where applied the MLP classifier to 1024 features extracted
from DenseNet-121. The results are illustrated in Table 5.

Table 5. Experimental classification results without feature selection.

Classification No. of Features ACC AUC

Multiclass 1024 0.934 0.985

NT vs. Nec. + Via. 1024 0.947 0.993

NT vs. Nec. 1024 0.954 0.983

NT vs. Via. 1024 0.971 0.997

Nec. vs. Via. 1024 0.936 0.978

The experimental results of four different feature selection techniques that we used
to classify osteosarcoma malignancy for both multiclass and binary class classification are
shown in Table 6. This table includes the experimental results for those feature dimensions
that achieved the highest performance.

Table 6. Experimental results of feature selection using different feature selection techniques.

Classification Algorithm No. of Feat. ACC AUC SP SN MCC Prec. F1
Score

Multi
class

PCA 100 0.943 0.986 0.970 0.930 0.907 0.930 0.930

RFE 900 0.952 0.987 0.973 0.943 0.922 0.950 0.950

MIG 400 0.943 0.986 0.986 0.936 0.908 0.940 0.940

Univariate 700 0.952 0.987 0.973 0.943 0.922 0.950 0.950

Nontumor
vs. Nec.
+ Via.

PCA 200 0.969 0.993 0.969 0.970 0.939 0.970 0.970

RFE 100 0.969 0.990 0.969 0.970 0.939 0.974 0.970

MIG 600 0.969 0.993 0.969 0.970 0.939 0.970 0.970

Univariate 200 0.969 0.993 0.961 0.970 0.939 0.970 0.970

Nontumor
vs.
Necrosis

PCA 500 0.960 0.976 0.947 0.945 0.907 0.960 0.950

RFE 100 0.966 0.979 0.956 0.955 0.921 0.960 0.960

MIG 700 0.966 0.988 0.956 0.955 0.921 0.960 0.960

Univariate 500 0.966 0.979 0.952 0.950 0.921 0.970 0.960

Nontumor
vs.
Viable

PCA 700 0.994 1.000 0.996 0.995 0.987 0.990 0.990

RFE 600 0.994 0.998 0.996 0.995 0.987 0.990 0.990

MIG 700 0.994 0.998 0.996 0.995 0.987 0.990 0.990

Univariate 300 0.988 0.999 0.991 0.990 0.978 0.980 0.990

Necrosis
vs.
Viable

PCA 400 0.955 0.986 0.954 0.950 0.909 0.950 0.950

RFE 300 0.955 0.977 0.954 0.950 0.909 0.950 0.950

MIG 800 0.945 0.981 0.945 0.945 0.891 0.950 0.950

Univariate 400 0.955 0.977 0.954 0.950 0.909 0.950 0.950

From Table 6, we can see that the average accuracy of five different classification
tasks without FS technique is 94.84%, which is 1.58%, 1.88%, 0.5%, and 1.76% lower than
the average accuracy of PCA, RFE, MIG, and univariate. This observation shows that
FS techniques can improve prediction results significantly on our dataset. The four FS
techniques, including PCA, RFE, MIG, and univariate, obtained an average accuracy
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of 96.42%, 96.72%, 96.34%, and 96.60%, respectively. Among all of the FS techniques,
RFE achieved the highest average accuracy, which is 0.30%, 0.38%, and 0.12% higher
than PCA, RFE, MIG, and univariate, respectively. The RFE also achieved the highest
average score for MCC, precision, and sensitivity, and those scores are 93.56%, 96.48%,
and 96.26%, respectively. The highest average AUC achieved by the MIG technique is
98.72%. The RFE obtained an average AUC score of 98.62%, which is slightly lower than the
MIG (0.1%). The specificity and F1 scores are more or less the same for every FS technique.
The experimental results show that some FS techniques achieved the highest average
accuracy on a single evaluation metric, some prediction results have a slight difference
from each other, and some predictions are the same for all of the techniques. However,
based on various evaluation metrics, we discovered that the RFE FS technique consistently
outperformed all of the others. We also investigate the performance based on the number
of features. PCA, RFE, MIG, and univariate used an average of 380, 400, 640, and 420,
respectively, to obtain their best prediction results. Though PCA uses a smaller average
number of features for the best prediction, it does not provide better results than RFE.
From the experimental results, we can see that for multiclass classification, it uses only
100 features to predict the best results, but its accuracy is 0.9% lower than the RFE technique.
PCA also uses a higher number of features than RFE in all four binary classifications, and its
performance is also significantly lower. RFE and univariate use a higher average number
of features than RFE to obtain their best prediction results. In the binary classification, we
can see that RFE uses a smaller number of features than all other FS techniques except in
the nontumor versus viable tumor classification. We implemented DT-based RFE using
the Scikit-Learn (sk-learn) library, where DT has been used as an estimator that has been
discussed in Section 3.2. As this library offers two different criteria for the DT estimator,
we also analyze its criterion based on the execution time for a more sophisticated version
of DT-RFE that works on our dataset. Table 7 represents the execution time during the
experiment using Gini and entropy criterion.

Table 7. Experimental results of DT-RFE criteria analysis.

Classification Criterion Exec. Time

Multi
class

Gini (500) 5.23 m

entropy 8.41 m

NT vs.
Nec. +
Via.

Gini (100) 8.61 m

entropy 12.18 m

NT vs.
Nec.

Gini (600) 3.35 m

entropy 4.03 m

Nec. vs.
Via.

Gini (300) 4.95 m

entropy 5.46 m

NT. vs.
Via.

Gini (600) 1.93 m

entropy 2.24 m

In this table, it is shown that the entropy criterion takes much more time than the
Gini index to select the most prominent features for both multiclass and binary class
classification. In multiclass classification, the Gini index takes around 5.23 min while
entropy takes 8.41 min, and in other binary classifications including nontumor vs. necrosis
and viable, nontumor vs. necrosis, necrosis vs. viable, and nontumor vs. viable entropy
takes more execution time than the Gini index. Less execution time is more computationally
efficient, which motivates us to use the Gini index as our criterion for the decision tree
estimator in the RFE feature selection technique. We also plotted a violin plot for our
selected feature selector that is shown in Figure 6.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 6. Violin plot the experimental results after applying 4 different feature selection techniques.
(a) For number of features. (b) For accuracy. (c) For AUC. (d) For specificity. (e) For sensitivity. (f) For
Matthew’s correlation coefficient. (g) For precision. (h) For F1 score.

In addition to our study, we applied gradient-weighted class activation mapping (Grad-
CAM) [68] to further analyze and explain the feature extractor of our proposed model. All
convolutional layers in a CNN retain their respective spatial information that is lost in the
FC layer. Grad-CAM uses the gradient information flowing into the last convolutional layer
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of the CNN to assign importance values to each neuron for a particular decision of interest,
as this last layer contains high-level semantics and detailed spatial information of an input
image. This method computes the gradient of the target class score with respect to the last
layer’s feature maps, weights computed gradients by average pooling for the importance of
each feature map channel, and finally combines weighted gradients to generate a heat map
that illustrates the feature importance. We have overlayed this generated heatmap with
input images to obtain the Grad-CAM images. Figure 7 represents some sample Grad-CAM
images from our dataset that have been utilized as input images. By visualizing those
images, we can investigate the decision-making process of our proposed model, where the
red regions are the affected areas considered by the model.

Figure 7. Example of some input images and their Grad-CAM images generated by proposed model,
where red regions indicated the affected area.

4.5. Web Application for Osteosarcoma Classification

A web application is developed using our proposed model with real-time validation to
classify osteosarcoma using whole slide images as input. A modern, fast (high-performance)
web framework named FastAPI [69] has been used to develop our web application on the
Python 3.8.3 version. FastAPI is used for building APIs and backend development, and we
have used HTML, CSS, and JavaScript for frontend development. The workflow of our
web application is given in Figure 8.
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Figure 8. Workflow diagram of our developed web application.

Initially, the user needs to select an image from the user interface as input to see the
classification result. The input image will be preprocessed based on what has been used
in our training phase, then fed into the pre-trained CNN to extract features. The features
will be scaled through the loaded feature scaler and fed into the RFE feature selector.
The selected features will be fed into the loaded classifier for prediction. We have performed
all five classifications including multiclass and binary with saved classifiers, then max-voted
the predicted class from all classifiers, and selected the most frequent class as the predicted
class. This max-voting process ensures the reliability of our model for web applications.

After developing the web application, it has been deployed on a cloud platform as a
service named Render [70]. Render provides a publicly accessible URL by which any user
can access web applications that have been deployed on this platform. The home page
that takes inputs (Figure 9a) and the output page (Figure 9b–d) are presented in Figure 9.
Users need to click on the select an image file box to upload an image, which prompts up
their local store where they can select the input image. By clicking on the submit button,
the user will be able to see the output results for a given image including predicted class,
class probability, and inference time. Some random images are given as input to evaluate
the robustness of our proposed model using the web applications for real-time validation,
and the result is shown in Figure 9.

4.6. Comparison with Existing Models

In this section, we compared our proposed hybrid model with existing state-of-the-art
models that were developed to identify osteosarcoma malignancy on the dataset. To ensure
the effectiveness and robustness of the proposed model, the comparison was performed
with different performance metrics including accuracy, precision, recall, and F1 score. Our
proposed model has been compared with Mishra, Rashika et al. [71], Mishra et al. [10],
Arunachalam, Harish Babu et al. [33], Nabid et al. [5], and Anisuzzaman et al. [4] in terms
of mentioned performance metrics listed in Table 8.
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Figure 9. Sampleinput and output from our web application.

Table 8. Comparison of our proposed model with existing state-of-the-art models.

Article Author Highest
Acc. (%)

Precision Recall F1 Score

Mishra, Rashika et al. [71] 84 0.89 0.84 0.86
Mishra et al. [10] 92 0.97 0.94 0.95
Arunachalam, Harish Babu et al. [33] 89.9/91.2 - - -
Nabid et al. [5] 89 0.88 0.89 0.88
Anisuzzaman et al. [4] 96 0.95 0.95 0.95
Proposed model 99.4 0.99 1.00 0.99

As shown in Table 8, Mishra, Rashika et al. [71], Mishra et al. [10], and Nabid et al. [5]
reported low accuracy, precision, recall, and F1 score. Arunachalam, Harish Babu et al. [33]
obtained the highest accuracy of 89.9% for the ML approach by using SVM. They also
employed deep learning approaches where they obtained the highest accuracy of 91.2%
for tiles (WSI). Both of their accuracy results refer to class-specific accuracy, and they did
not talk about precision, recall, and F1 score. Anisuzzaman et al. [4] achieved the highest
accuracy of 96% for binary class classification using VGG-19 via transfer learning; this is
3.4% lower than ours. Furthermore, the model’s precision, recall, and F1 score are 4%,
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5%, and 4%, respectively, which are all lower than our proposed model. Our proposed
model achieved the highest accuracy of 99.4%, which is higher than all existing models.
Furthermore, the precision, recall, and F1 score of our model are 0.99, 1.00, and 0.99, which
are also higher than all existing models. From this investigation and comparison, we can
clearly see that our proposed model outperforms all the existing models in the literature so
far based on various evaluation metrics. The robustness and high performance of the pro-
posed model are achieved due to the techniques we have developed and implemented for
classifying osteosarcoma malignancy. Initially, normalization techniques were performed
in the preprocessing step to enable our model to learn faster during the training phase
with a zero-centered Gaussian distribution of data. We have also explored various CNN
models and ML classifiers to select the best feature extractor and classifier by conducting
huge experiments on the dataset. A total of 25 different combinations of CNN models
and ML classifiers were evaluated with different parameter settings to determine the best
integration (as shown in Table 2). Furthermore, an optimizer analysis was conducted for
the MLP classifier to ensure better optimization by selecting the most suitable optimizer for
classifying osteosarcoma that demonstrates improved convergence time and loss. In ad-
dition to the above techniques, we have investigated various feature selection techniques
where DT-based RFE is selected based on performance. We also analyzed the impact of
RFE’s criterion concerning time and the number of selected features, aiming for enhanced
performance as well as reduced computational cost. Moreover, the integration of CNN
and ML with feature selectors leverages the advantages of each approach. This integration
makes our proposed model more robust and outperforms all the existing state-of-the-art
models to classify osteosarcoma on this dataset.

5. Conclusions

Classification of osteosarcoma malignancy using histological biopsy by pathologists is
quite challenging, tedious, and time-consuming. In this paper, we proposed a hybrid model
that combines DL and ML to classify osteosarcoma malignancy that will help pathologists
with a computer-aided system. First, it extracts relevant features from whole slide images
using DenseNet- 121, then performs feature selection using DT-RFE to select the most
significant features, and, finally, the MLP classifier is applied to those features chosen for os-
teosarcoma classification. However, we utilized transfer learning (pre-trained CNN models)
for feature extraction rather than building a CNN model from scratch, as it requires a large
amount of data and a higher training time. Feature selection techniques have been applied
in our model to reduce feature dimensions. Transfer learning, DenseNet- 121, and the
feature selection DT-RFE technique reduce computational costs and make our model faster.
Moreover, from the five well-known ML algorithms, we selected MLP for classification as
the best-performing algorithm based on the performance of our dataset. The experimental
results illustrate that our proposed model has higher prediction performance than existing
state-of-the-art models developed for osteosarcoma malignancy classification on the same
dataset. We also developed a web application of our proposed model that can be used in
clinics for early diagnosis of osteosarcoma. After applying feature selection techniques,
the accuracy has increased 1.8% for multiclass classification. For binary classification, it has
been increased by 2.2%, 1.2%, 2.3%, and 1.6% for nontumor vs. necrosis + viable, nontumor
vs. necrosis, nontumor vs. viable, and necrosis vs. viable, respectively. We believe our
proposed hybrid model is not only applicable to osteosarcoma classification, but also it
can be applied to other histopathological image classifications. In the future, we plan to
integrate uncertainty mining and pLOF techniques into our model to make our predicted
results more trustworthy.
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