
Array 19 (2023) 100313

Available online 3 August 2023
2590-0056/© 2023 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-
nc-nd/4.0/).

A real-time application-based convolutional neural network approach for
tomato leaf disease classification

Showmick Guha Paul a, Al Amin Biswas b,*, Arpa Saha a, Md. Sabab Zulfiker a, Nadia Afrin Ritu c,
Ifrat Zahan a, Mushfiqur Rahman a, Mohammad Ashraful Islam c

a Department of Computer Science and Engineering, Daffodil International University, Dhaka, Bangladesh
b Department of Computer Science and Engineering, Bangabandhu Sheikh Mujibur Rahman University, Kishoreganj, Bangladesh
c Department of Computer Science and Engineering, Jahangirnagar University, Dhaka, Bangladesh

A R T I C L E I N F O

Keywords:
Tomato leaf disease
Classification
Deep learning
Transfer learning
CNN
VGG-16
VGG-19

A B S T R A C T

Early diagnosis and treatment of tomato leaf diseases increase a plant’s production volume, efficiency, and
quality. Misdiagnosis of disease by farmers can lead to an inadequate treatment strategy that hurts the tomato
plants and agroecosystem. Therefore, it is crucial to detect the disease precisely. Finding a rapid, accurate
approach to take care of the issue of misdiagnosis and early disease identification will be advantageous to the
farmers. This study proposed a lightweight custom convolutional neural network (CNN) model and utilized
transfer learning (TL)-based models VGG-16 and VGG-19 to classify tomato leaf diseases. In this study, eleven
classes, one of which is healthy, are used to simulate various tomato leaf diseases. In addition, an ablation study
has been performed in order to find the optimal parameters for the proposed model. Furthermore, evaluation
metrics have been used to analyze and compare the performance of the proposed model with the TL-based model.
The proposed model, by applying data augmentation techniques, has achieved the highest accuracy and recall of
95.00% among all the models. Finally, the best-performing model has been utilized in order to construct a Web-
based and Android-based end-to-end (E2E) system for tomato cultivators to classify tomato leaf disease.

1. Introduction

1.1. Background

Identification of plant diseases is a crucial and practical issue in
agriculture since disease prevention begins with an early disease diag-
nosis and ends with the preservation of goods. The scientific name for
tomatoes is Solanum lycopersicum. Tomatoes are able to grow in practi-
cally any soil as long as it has adequate drainage [1]. Fig. 1 demonstrates
the tomato plant cultivation in the field of Bangladesh.

One of the most extensively cultivated plants in the world is the to-
mato, a nutrient-dense fruit that provides farmers with a significant
source of cash. In addition to being incredibly nutrient-dense, tomatoes
also have pharmacological properties that protect against a number of
disorders, including hypertension, hepatitis, gingival bleeding, and
others [2–7]. However, several tomato plant diseases that are seen on
the leaves have an impact on the amount and quality of production. As

shown in Fig. 2, bacterial spot, early blight, late blight, leaf mold, sep-
toria leaf spot, spider mites two spotted spider mite, target spot, tomato
yellow leaf curl virus, tomato mosaic virus, and powdery mildew are a
few well-known ailments of tomato leaves.

Early disease identification and natural treatment are essential
components of effective disease management. Thus, it is crucial to un-
derstand the causes and impact of those diseases.

1.1.1. Bacterial spot
Xanthomonas vesicatoria bacteria is the cause behind bacterial spots

[8]. The bacterial spot may appear in all places where tomatoes are
cultivated. However, it is more usually encountered in warm, humid
regions and in greenhouses. Small, water-soaked, angular circular
patches that are both dark brown and black in color, with a yellow halo
as an option on the leaf, are how this disease is typically identified. The
potentially fatal bacterial spot disease may result in unmarketable fruit
and possibly plant death in extreme circumstances.

* Corresponding author.
E-mail addresses: showmick.cse@gmail.com (S.G. Paul), alaminbiswas.cse@gmail.com (A.A. Biswas), arpasaha.cse@gmail.com (A. Saha), sabab.rumc@gmail.

com (Md.S. Zulfiker), nadiaritu@juniv.edu (N.A. Ritu), ifratjahan5656@gmail.com (I. Zahan), mushfiqur.cse@diu.edu.bd (M. Rahman), ashraful.islam@juniv.edu
(M.A. Islam).

Contents lists available at ScienceDirect

Array

journal homepage: www.sciencedirect.com/journal/array

https://doi.org/10.1016/j.array.2023.100313
Received 14 March 2023; Accepted 26 July 2023

mailto:showmick.cse@gmail.com
mailto:alaminbiswas.cse@gmail.com
mailto:arpasaha.cse@gmail.com
mailto:sabab.rumc@gmail.com
mailto:sabab.rumc@gmail.com
mailto:nadiaritu@juniv.edu
mailto:ifratjahan5656@gmail.com
mailto:mushfiqur.cse@diu.edu.bd
mailto:ashraful.islam@juniv.edu
www.sciencedirect.com/science/journal/25900056
https://www.sciencedirect.com/journal/array
https://doi.org/10.1016/j.array.2023.100313
https://doi.org/10.1016/j.array.2023.100313
https://doi.org/10.1016/j.array.2023.100313
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/

Array 19 (2023) 100313

2

1.1.2. Early blight
Early blight is caused by the fungus Alternaria solani, which can

infect tomato leaves at any time throughout the plant’s growth cycle.
This disease is characterized by irregular lesions near the ground,
developing yellow patches that darken into concentric black rings and
may have a chlorotic region surrounding the lesion. The whole foliage is
destroyed by this disease, which spreads quickly to other plants [9].
Despite the fact that early blight may develop in any kind of weather, it
prefers moist environments like persistent rain or even heavy dews.

1.1.3. Late blight
Late blight, caused by the fungus Phytophthora infestans, is perhaps

the worst disease ever seen in tomato leaves globally, accounting for
large annual economic losses. Late blight disseminates quickly because
of its spore-based mode of transmission. This disease is more likely to
develop in a cool, damp environment. Typically detected on newly
developed leaves in the plant canopy, irregularly formed, water-soaked
lesions are the earliest signs of late blight on tomato leaves. As the dis-
ease worsens, lesions become larger, and the affected leaves turn brown,
shrivel, and die [9].

1.1.4. Leaf mold
The fungus Passalora fulva is responsible for the development of

tomato leaf mold. The top surfaces of leaves develop small, round, pale
greenish-yellow patches with blurry, undefinable edges. Clusters of
brown dots are usually developed on leaves [10]. The fungus settles on
leaves and penetrates the plant’s stomata, which are utilized for gas
exchange.

1.1.5. Septoria leaf spot
The fungus responsible for septoria leaf spots is Septoria lycopersici.

The fungus is transmitted from the soil to the plants by splashing water,
insects, and tools. Septoria leaf spots first appear as round spots sur-
rounded by a yellow-haloed dot on the undersides of older leaves. The
patches will grow and maybe blend together as the disease progresses.
Septoria leaf spot may not be deadly for tomato plants, but it may swiftly
weaken and defoliate them, preventing plants from producing mature
fruit and reducing the fruits’ size and quality [11].

1.1.6. Spider mites two spotted spider mite
Tetranychus urticae, often known as the two spotted spider mite, is a

common polyphagous arthropod pest that has a significant negative
economic impact on the tomato crop. Affected leaves develop a brown or
yellow coating on their undersides. The whole plant may be covered in
fine webbing when the two spotted spider mite is heavily infested [12].

1.1.7. Target spot
Corynespora cassiicola is a fungus that causes tomato target spot.

Regions of the world that are warm year-round experience the disease
on field-grown tomato leaves. Initially, the leaves will develop tiny,
water-filled patches. The spots develop into small, necrotic lesions that
have light brown centers and dark margins [8]. Target spot infections
lower production in two ways: indirectly by lowering the photosynthetic
area and directly by making the fruit less marketable due to fruit spots.

1.1.8. Tomato yellow leaf curl virus
Despite not being seed-borne, whiteflies are able to spread the virus

named Tomato yellow leaf curl. The affected plant has several symp-
toms, such as leaf edges that roll upward and inward, yellowing leaflets,
smaller leaves than usual, dropping off flowers, and elevated scabby
patches [13]. Furthermore, in disease-affected plants, no fruit develop-
ment might happen.

1.1.9. Tomato mosaic virus
The leaves dropped early because of the Tomato mosaic virus. The

production of distorted leaflets, small leaves, yellowing leaves, and
systemic necrotic patterns. Furthermore, the quality and growth of fruit
are affected by the virus [14].

1.1.10. Healthy
Healthy leaves have vigor, a uniform color (unless variegated), open

growth, and an upright look.

Fig. 1. Tomato plant cultivation in the field.

Fig. 2. Sample images (random) for each class of tomato leaf.

S.G. Paul et al.

Array 19 (2023) 100313

3

1.1.11. Powdery mildew
The obligatory parasite Oidium neolycopersici causes powdery

mildew on tomato leaves and obtains nutrients. Mycelium produced by
the fungus grows on unpaid host plants that are either active or dormant.
It’s more frequent in commercial tomato fields and greenhouses than at
home [15]. It hurts plants and diminishes output wherever it flourishes.

The precise and timely classification of tomato leaf diseases is of the
utmost importance for disease management. It is widely accepted that
diseases are one of the most significant reasons for decreased produc-
tivity. In addition, disease caused significant losses to the agricultural
economy associated with tomato farming. For instance, the most prev-
alent diseases that may severely impact crop output are early blight and
late blight [16].

1.2. Motivation

Plants are essential to life as they provide us with food, fiber, shelter,
medicine, and fuel. Plants encounter several challenges despite being
essential to life. Without accurate identification of tomato leaf diseases,
the quality and quantity of tomato production can decrease. This further
harm a nation’s economy [17]. The United Nations Food and Agricul-
ture Organization (FAO) estimates that in order to fulfill future food
demands, agricultural production must increase by 70% by 2050 [18].
The agricultural ecology is significantly impacted by disease-prevention
agents like fungicides and bactericides. Farmers may incorrectly identify
a disease, leading to a less optimal treatment approach that ultimately
harms the plant. Furthermore, field trips for domain experts are
expensive and require time. Therefore, the agroecosystem requires a
rapid and efficient disease classification system. Improvements in dis-
ease detection technologies, such as image processing and a CNN-based
model, will allow for the creation of systems capable of early disease
classification on tomato leaves. The danger of production loss, pro-
cessing costs, and the negative environmental consequences of chemical
inputs (contamination with soil and water) can be mitigated when dis-
eases can be detected in their early stages and the appropriate proced-
ures are taken to stop the disease’s spread [19].

1.3. Contribution

I. Various transfer-learning-based CNN models and a custom CNN
model are utilized for classifying tomato leaf disease of ten classes
with one healthy class.

II. This study analyzed the relationship among performance, data
augmentation, and ablation studies.

III. This study proposes a custom lightweight and efficient CNN that
has achieved adequate classification accuracy and outperformed
the majority of earlier studies on tomato leaf disease.

IV. The final model has been deployed in Web-based and Android-
based applications to aid tomato cultivators in disease
classification.

Following is a breakdown of the remaining parts of this research
work: the related work on the subject of disease classification is dis-
cussed in Section 2. Section 3 describes the TL-based models and pro-
posed custom CNN architectures for tomato leaf disease classification, as
well as the training procedure and parameters. Section 4 describes the
tomato leaf disease dataset as well as its preprocessing for training
purpose. Additionally, the evaluation metrics utilized in the study are
described. Furthermore, the experimental results, performance analysis,
comparison of results, and E2E system deployment procedure are also
included in this section. In Section 5, the study is concluded and the
potential future research directions are highlighted.

2. Related work

The production quantity and quality of tomato plants are affected by

the early identification of tomato plant disease. Various studies have
been performed related to tomato disease classification using diverse
techniques and procedures. The use of deep learning (DL) techniques
significantly increases the classification accuracy of image-related tasks.
Researchers adopted machine learning and deep-learning techniques for
tomato leaf disease classification are reviewed here.

In order to classify tomato leaf disease, TM et al. [20] added an extra
block to the LeNet architecture, which consisted of convolution layers,
activation layers, and pooling layers. For reducing the time needed for
the training process, the dataset images have been resized by 60 × 60
pixel size and has achieved an accuracy of 94.00–95.00%. Despite its
effectiveness, nine tomato leaf diseases and one healthy tomato leaf class
have been considered in the study.

Deep learning models based on transfer learning are used for disease
classification as they can achieve satisfactory results. Therefore, to build
a custom CNN-based model, it’s required to compare it with the transfer-
learning models to justify the improvement. Agarwal et al. [21] devel-
oped a simplified and effective CNN model with three convolutions,
three max-pooling, and two fully connected layers. By applying data
augmentation techniques, new sample images are generated to balance
image quantity across all ten classes. With the comparison of the pro-
posed model with the VGG-16, MobileNet, and InceptionV3, the pro-
posed model has achieved an improved accuracy of 91.20%.

Despite data augmentation, other factors such as batch size and the
optimizer may affect the model’s performance. Zhang et al. [22] con-
ducted a study that included eight diseases class and one healthy tomato
leaf class, and analyzed the rule of batch size and used optimizers on the
performance of transfer-learning models by applying various combina-
tion. Among different optimization techniques used on various deep
learning models, ResNet with the stochastic gradient descent (SGD)
optimizer has achieved the highest accuracy of 96.51%, while other
models’ performances have been significantly increased by the use of
SGD.

The dataset acquisition procedure has an impact on the effectiveness
of the applied models. Ahmad et al. [23] have used two tomato leaf
disease image datasets, one laboratory-based and the other a dataset
that has been self-collected from the field. With the use of feature
extraction and parameter tuning on ResNet, VGG-19, VGG-16, and
InceptionV3 models, the performance of various metrics shows a vari-
ance in the range of 10.00%–15.00%. Among the variances, InceptionV3
using parameter tuning has obtained the highest accuracy value of
99.60% based on the laboratory-based dataset.

Although DL models are widely used to classify diseases of tomato
leaves. Some researchers have extracted features from the image dataset
to perform classification using ML algorithms. Basavaiah et al. [19] have
used a dataset containing five classes of tomato leaf and extracted fea-
tures such as hu moments, color histograms, local binary patterns, and
haralick to perform classification. Various ML algorithms have been
used for classification, among those methods, RF has achieved a higher
accuracy of 94.00%. The proposed mechanism, however, is not auto-
matic, and less number of the tomato leaf disease has been covered.

Various CNN-based architectures have been used not only for tomato
leaf disease classification but also for other plant-related disease clas-
sifications. Mia et al. [24] have utilized CNN-based TL and traditional
ML techniques and compared their performance for the classification of
cucumber disease. In the study, a total of 525 image samples repre-
senting six disease classes have been acquired and preprocessed. The
sample size has been increased by applying data augmentation tech-
niques, with a total sample size of 4200 images. In the next phase,
various ML algorithms has been applied. Furthermore,
transfer-learning-based VGG-16, InceptionV3, and MobileNetV2 have
been applied, and a comparison has been performed. Among all the
procedures, CNN-based MobileNet has achieved the highest accuracy of
93.23%.

Biswas et al. [25] have used several ML classifiers based on
segmentation-based feature extraction and ranking approaches to

S.G. Paul et al.

Array 19 (2023) 100313

4

classify carrot disease. The study employed a dataset consisting of two
categories of carrots, totaling 599 images. Using the histogram equal-
ization approach, which redistributes the intensity values in the image,
the contrast of the carrot images has been boosted. Using K-means
clustering, further segmentation of the carrot disease has been per-
formed, and the top ten features have been extracted. In order to address
the imbalanced dataset, Synthetic Minority Oversampling Technique
(SMOTE) approaches have increased the minority class sample size. The
resulting processed dataset has been then classified using a variety of ML
algorithms, including Random Forest (RF), Adaptive Boosting (AB),
Decision Tree (DT), Gradient Boosting (GB), and Bagging classifier
(BAG). Among various techniques, RF has obtained the highest accuracy
of 94.17% by utilizing the top nine ranking features.

In another study, the disease classification of tomato leaves has been
conducted by Chen et al. [26], utilizing the combination of B-ARNet and
ABCK-BWTR. Images consisting of five classes are denoised and
enhanced by the Binary Wavelet Transform combined with Retinex
(BWTR). Furthermore, background separation of images has been per-
formed using KSW optimization by the Artificial Bee Colony Algorithm
(ABCK) and classified using the Both-channel Residual Attention
Network (B-ARNet), achieving an accuracy of 89.00%.

Thangaraj et al. [27] used a TL-based DNN model to recognize nine
classes of tomato leaf disease and one class of healthy leaf. Different
optimizers such as SGD, Adam, and RMSprop have been used to evaluate
their effects on the performance of the TL model. Among the used op-
timizers, with the application of an Adam optimizer, the
Modifed-Xception model has been able to achieve a better accuracy of
99.55%.

Tomato leaf disease has been classified using DCNN, which includes
residual blocks and attention extraction modules performed by Zhao
et al. [28]. The dataset contains ten classes, including one healthy class,
with a sample size of 4585, which has been further augmented with the
count of 22925 images. Among the ResNet-50 and SE-ResNet-50 models,
SE-ResNet-50 has achieved the highest accuracy of 96.81%.

In another study by Kannan E et al. [29], a pre-trained ResNet model
has been used to classify tomato leaf disease. Six classes of leaves are
used in the study, with a sample size of 12,206 images. Further
augmentation has been applied to the dataset to increase the image
count. The author achieves an accuracy of 97.00% by applying the
ResNet-50.

One of the contributing factors of research work is the deployment of
the trained model on a Web or other application-based platforms, which
provides an E2E solution for farmers to identify suspected disease and
take early measurements. Elhassouny and Smarandache [30] have built
a CNN-based model, which has been deployed on a mobile application to
recognize tomato leaf disease. For building a model based on CNN, the
MobileNet model has been applied to the nine most common diseases,
with one healthy class. A total sample size of 7176 images has been used
for training the model, which has obtained the highest accuracy of
90.30%.

Chen et al. [31] applied AlexNet to classify tomato leaf diseases and
implemented the model on the Android platform. For that purpose, a
dataset with 18345 training samples and 4585 testing samples from ten
classes, including one healthy class, has been utilized. By using the
Adam optimizer, the highest accuracy of 98.00% has been achieved.
Furthermore, the trained model has been deployed in a mobile appli-
cation that can be used to identify tomato leaf disease.

H. S. and Sarojadevi H [32]. used devised mechanisms such as CNN,
fuzzy support vector machine (fuzzy-SVM), and region-based CNN
(R–CNN) in another study. Six diseases and one class of healthy tomato
leaves, containing a total of 735 image samples, have been utilized in the
study. Among the techniques, the R–CNN–based model has achieved the
highest accuracy of 96.73%.

According to the previous discussions, it can be concluded that deep
CNN based techniques have not yet been used to classify the eleven
classes of tomato leaf containing ten classes of disease. This study paves

the path for future efforts to address this gap. This study utilized
different transfer-learning-based CNN models and proposed a custom
CNN model to classify tomato leaf disease. Furthermore, augmentation
techniques have been applied and ablation studies have been performed
to select the optimal parameter for training the models and to increase
the models’ performance. Finally, the best performing model has been
deployed using the Web-based and Android-application-based plat-
forms, which can help the tomato cultivators in classifying the tomato
leaf disease.

3. Proposed system architecture and methodology

3.1. System architecture

Fig. 3 illustrates a systematic representation of our proposed system
architecture. The system consists of two phases: the building phase,
during which the models are trained, and the deployment phase, during
which the development of E2E systems and the prediction of tomato leaf
disease are performed. During the building phase, data has been
collected, preprocessed, and trained with multiple models. To predict
tomato leaf disease, a custom CNN model has been built from scratch.
The ImageNet dataset pretrained-weight has been utilized to train the
TL-based VGG-16 and VGG-19 models. The last phase is the deployment
phase, in which the best-performing models are chosen according to the
evaluation criteria and then implemented in the local Web-based system
and Android application to predict tomato leaf disease.

3.2. Methodology

The proposed approach includes different steps. Fig. 4 illustrates a
systematic representation of implementation step. In the first step, the
dataset containing eleven classes, including one healthy leaf class, has
been acquired. This dataset has been preprocessed by resizing the im-
ages, converting them to jpg format, and applying data augmentation
techniques. The data augmentation mechanism helps to multiply the
sample size of training data as well as increase the complexity of the
dataset, which makes the DL model more robust and helps the model to
generalize common patterns. In the next phase, a custom-built light-
weight, and efficient CNN has been applied, and various other CNN-
based TL models such as VGG-16, VGG-19 have been applied to the
dataset. To extract features and create feature tensors, pre-trained
ImageNet weights have been used for TL-based CNN models. In the
implementation procedure, first, a preprocessed dataset without
augmentation has been applied to the Proposed, VGG-16 and VGG-19
models, and their performance has been evaluated. In another phase,
models have been applied to the augmented dataset, and their perfor-
mance has been evaluated. The overall performance of all the models
with and without augmentation techniques applied has been analyzed
and compared. To select the optimal parameters of the proposed custom
CNN model and data augmentation techniques, an ablation study has
been performed. Ablation study refers to a process, where a certain part
of the DL model’s architecture is removed in order to understand the
model’s behavior. To achieve better performance, it is important to
analyze the model’s behavior and select the most optimal parameter. By
removing certain parts, the influence of the removed part on the model
and on the performance can be observed, which helps to identify and
select the most effective parameters. By performing the ablation study,
the proposed custom CNN model architecture and its most optimal pa-
rameters for the construction of the model have been identified.
Furthermore, an optimal set of data augmentation techniques that aid
the model in obtaining better performance has been considered. Addi-
tionally, a callbacks function is used during the training process to select
the best-performing models based on the validation loss score. The
callbacks function assists in gaining control of the entire training process
by comparing and selecting the best models after each successful epoch.
As the validation loss has been set as the callbacks function’s selecting

S.G. Paul et al.

Array 19 (2023) 100313

5

criteria, the model with the least amount of validation loss is usually
saved. In the next phase, the performance of the models with and
without augmentation with minimal validation loss has been evaluated
and compared. Finally, the best performing model has been deployed in
local web-based system and an Android based smartphone application to
predict disease in tomato leaves.

3.3. Basic CNN

CNN is a type of neural network, which allows the extraction of a
huge quantity of features from images and use those features for better
classification. CNN architectures take the raw image as input and
automatically extract numerous features and, based on those features,
produce output. To produce output, various parts of the CNN architec-
ture, commonly known as the building blocks of CNN, are utilized in
various combinations. There are three types of layers commonly utilized
to build CNN, such as the convolution layer, the pooling layer, and the
fully connected layer. Apart from those layers, other layers such as
dropout, batch normalization, etc. are also often utilized. In the con-
ventional layer, a feature map is generated from the input image and
passed to the next layer to learn various patterns from the feature map.
Most studies then used pooling layers, whose primary task is to reduce
the feature map size in order to reduce computing costs. The pooling
layer’s basic principle is to summarize the features generated by the
convolution layers. The activation function is applied right after a
convolution layer and then that output is max pooled. The activation
function or transfer function determines how a layer’s nodes convert the
weighted sum of input into an output. Finally, after flattening the output
of the previous layer, the process of categorization begins at the fully
connected layer. In the last layer, Sigmoid or SoftMax activation func-
tions are used to produce output.

3.4. Proposed custom CNN

The proposed custom CNN utilized the preprocessed image as input
to train from scratch to classify diseases of tomato leaves. The 224 × 224
image dimensions with three color channels are utilized as input by the
proposed model. This model consists of the following set of layers: 4
convolutions, 4 max pooling, 3 dropouts, one FC layer, and finally dense
layer with SoftMax activation function (see Fig. 5). The custom model’s
layers and parameters have been selected, by prioritizing accuracy and
computational complexity through an ablation study. During an abla-
tion study, specific elements of the network are eliminated to acquire a
better knowledge of the network’s behavior and to determine the final
layers for the custom model. Table 1 presents the parameters that have
been selected after performing the ablation study. These parameters
have been used to construct the proposed model.

The basic principles and working concepts of the convolution layers,
polling layer, FC, and activation function are discussed in the previous

Fig. 3. Proposed system architecture (A systematic representation of our proposed approach).

Fig. 4. Diagram of the implementation step for classifying tomato leaf disease.

Fig. 5. Proposed custom CNN architecture.

S.G. Paul et al.

Array 19 (2023) 100313

6

subsection.
To initialize the weight of the proposed custom CNN architecture,

Xavier Glorot uniform weight initialization has been implemented.
When performing Glorot, the weight (w) for the neuron present in
hidden layers is chosen at random from a uniform distribution. The
representation of Glorot weight initialization is represented by Eq. (1).
The values of the weights fall somewhere between + r and -r in a random
uniform distribution [33]. Where,

r=

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

6
Xi + Xo

√

(1)

here, in Eq. (1), Xi represents the input, and Xo represents the output
connection. When the number of input and output connections are
equal, the weight will be as shown in Eq. (2),

r=
̅̅̅̅̅
3
Xi

√

(2)

To avoid linearity, activation functions must be used. Without them,
the data in the network would be passed across the nodes and layers
using just linear functions. The composition of these linear functions is
another linear function, so regardless of how many layers the data passes
through, the output is always a linear function.

The activation function in the CNN architecture determines how a
layer’s nodes convert the weighted sum of input into an output [34].

Y =Activation function
(∑

(W1×X1+W2×X2+…+Wn ×Xn + bias)
)

(3)

The representation of activation function is represented by Eq. (3).
Using Eq. (3), after the multiplication of inputs and weights the result
has been added and an additional bias is applied, the activation function
is applied. Within the proposed CNN model, the Relu activation function
has been implemented. The Relu activation function is defined mathe-
matically as follows Eq. (4):

y=max(0, x) (4)

f (x)=
{

0 x < 0
x x ≥ 0 (5)

Here, by applying Eq. (5), the Relu activation function’s output is
calculated as either 0 or x. This means that there are no flat areas where
saturation can happen, unless x is negative, which makes gradient
descent happen very quickly. It is the most popular choice of activation
function for hidden layers since it is extremely easy to compute.

Furthermore, the Adam optimizer has been employed to find the
optimal node weight and minimize prediction error. Adam is derived
from adaptive moment estimation. The Adam optimizer modifies the
learning rate for each network weight independently, while SGD utilizes
a single learning rate throughout the training process. With its many
advantages, the Adam optimizer is highly recommended as a default
optimization technique and serves as a useful benchmark for deep
learning projects. Compared to other optimization algorithms, this one

runs more quickly, uses less memory, and needs less tuning. The Adam
optimizer is a combination of gradient descent with momentum and the
RMSP algorithm. Adam takes over the attributes of the two optimizers
and builds upon them to give a more optimized gradient descent.

mt = β1 ∗ mt + (1 − β1) ∗

(
δL
δωt

)

vt = β2 ∗ vt + (1 − β2) ∗

(
δL
δωt

)2

m̂t =
mt

(
1 − βt1

)

v̂t =
vt

(
1 − βt2

)

ωt =ω(t − 1) − α ∗
(

m̂t
̅̅̅̅̅̅̅̅
(v̂t)

√
+ e

)

(6)

Here Eq. (6) presents the formula for Adam’s optimizer. In the above
equations, mt is aggregate of gradients at time t. On the other hand, vt
represents the attribute of Root Mean Square Propagation (RMSP) al-
gorithms. Initially, mt and vt are set to 0 and tend to be more biased [35].
Therefore, Adam optimizer solved the biased problem by calculated
bias-corrected m̂t and ̂vt. Finally, by integrating the formula new weight
ωt are computed.

All of the convolution layers employed 2 × 2 kernel size with
padding kept as “same” and used the Relu activation function. The Relu
is a non-linear activation function whose main advantage is that it does
not activate all the neurons at the same time. The kernel size of 2 × 2 is
used in max pooling layers. Furthermore, in the dropout layers, dropout
is set to 0.2. The 0.2 value of dropout means approximately 20.00% of
the neurons randomly deactivate at a time, which helps reduce the
overfitting problem of the model.

In the output layer, the SoftMax activation function is used, which is
used for multiclass classification. The output of a SoftMax is a vector
containing probabilities for each class. The vector’s probability for all
potential outcomes or classes sums to one.

Categorical Cross-Entropy loss has been used in the study. Cross-
Entropy loss, often known as log loss, is a performance metric for clas-
sification models whose output is a probability value between 0 and 1.
As the predicted probability gets closer 1, log loss drops gradually.
Cross-Entropy loss grows when the predicted probability deviates from
the actual label, and as a result, errors are penalized. Categorical Cross-
Entropy loss also called SoftMax loss is combination of SoftMax acti-
vation function and Cross-Entropy loss [36]. Equation (7) defines the
Categorical Cross-Entropy loss formula.

CE = −
∑C

i
ti log

(
f (s)i

)

(7)

where, in Eq. (8), for each class i in C, ti and si represent the ground truth
and the CNN score. Before calculating the Categorical CE loss, a SoftMax
activation function is applied to the score, where f(s)i represents the
activations. The formula of the SoftMax activation function is presented
in Eq. (8).

f(s)i =
esi

∑C

j
esj

(8)

The model has been run for 100 epochs, while the batch size is 32.
The batch size of 32 indicates that images are batched with 32 quantity
to train the models at a time. By utilizing the batch size, the model’s
training time can be shortened. The batch size employed in the model
has been determined by the ablation study. By performing the ablation

Table 1
Training parameter for the proposed custom CNN model.

Parameter Description

Optimization algorithm Adam optimizer
Learning rate (α) 0.001
Weight initialization Glorot uniform
Batch size 32
Number of epochs 100
Dropout rate 0.2 or 20%
Loss function Categorical cross entropy
Activation function (Hidden layers) Relu
Activation function (Output layer) SoftMax

S.G. Paul et al.

Array 19 (2023) 100313

7

study on batch size, it has been observed that there is a strong associa-
tion between the batch size and model performance. Using minimum
validation loss as the selection criterion, the best model has been stored
as the final model using the callbacks function.

3.5. Transfer learning

Transfer-learning is a technique where a pre-trained model is used as
a base for a new or different study. This technique is very popular in DL
and is used for image classification task. Developing a CNN model from
scratch demands a huge dataset and a lot of time. To reduce the
complexity, transfer-learning techniques are used, which reduce the
amount of time and can train on limited quantities of data samples.
Numerous research institutes publish models trained on vast and com-
plex datasets that have been open-sourced, and those models can be used
for other research work. The pre-trained model can then be used to build
a model for the different tasks. All or a portion of the model may be used,
depending on the modeling approach chosen. Those pre-trained models
are usually trained on a large and challenging image classification
dataset such as ImageNet dataset, which contains 1000 image cate-
gories. There are many pre-trained models that are available online and
can be used for developing models [37]. Fig. 6 represents the workflow
of transfer learning for the new study. Every models’ various parame-
ters, such as time, and size vary depending on the models’ architecture.
Therefore, it is very important to select the effective models for better
performance.

3.5.1. VGG-16
The Visual Geometry Group (VGG) is one kind of CNN, which is now

among the top computer vision models available. The 16 refers to the 16
weighted layers present in the networks. The VGG-16 algorithm can
recognize 1000 different classes of objects and classify them accord-
ingly. Fig. 7 illustrates a representation of VGG-16 architecture.VGG-16
takes the input of an image pixel size of 224 × 224 with 3 RGB channels.
There is a total of 21 layers in VGG-16 model: 13 convolutional, 5 max
pooling, and 3 dense layers. Here, only 16 are learnable parameter
layers. In the convolution layers, with padding as same, a 3 × 3 size filter
with stride 1 is used. A filter with a stride of two and dimensions of 2 × 2
is used for the max pooling layers. The architecture shows that convo-
lution and max pool layers are consistently arranged throughout the
architecture [38]. Furthermore, all the extracted features have been
then flattened. Finally, the model is created by inheriting the convolu-
tion layers of VGG-16 and adding two new fully connected layers with
configurable number of neurons (128,64) in first two layers and 11
neurons in last layer with SoftMax activation function. Here, fully con-
nected layers are retrained fully.

3.5.2. VGG-19
VGG-19 is the same as VGG-16 except that it contains 19 learnable

parameter layers. Fig. 8 illustrates a representation of VGG-19

architecture. In the input, layer images are used with a pixel size of
224 × 224 and 3 RGB channels. The same filter sizes used in VGG-16 are
used in the convolution layers of VGG-19. Furthermore, VGG-19 used
the same size of the max pooling layer as VGG-16 [39]. The main dif-
ference between VGG-16 and VGG-19 is that from the 3rd to 5th blocks,
an additional convolution layer is used. Moreover, the model is created
by inheriting the convolution layers of VGG-19 and adding two new
fully connected layers with configurable number of neurons (128,64) in
first two layers and 11 neurons in last layer with SoftMax activation
function. Here, fully connected layers are retrained fully.

4. Experimental evaluation findings and analysis

4.1. Environment specification

Table 2 represents the experimental setup of the study. The research
work takes place on an Intel i7-10510U CPU with 1.80 GHz processing
power. Furthermore, the machine has 24 GB of RAM and an integrated
graphics card. To train the models, an NVIDIA GeForce MX250 graphics
card with 4 GB of dedicated GPU memory has been used. All of the
models are built in Python and run on deep learning libraries like Keras
and TensorFlow.

4.2. Dataset

The study is performed by using the "tomato disease multiple sour-
ces" named dataset, which contains images of tomato leaf disease [40].
The image in the dataset is captured from both laboratory and
in-the-wild scenes. Furthermore, this dataset of images has been
collected from various sources.

Table 3 represent the dataset used in the study. In the dataset, tomato
leaves have a total of 32535 images and are classified into eleven classes.
Among the classes, one contains sample images of healthy tomato
leaves, and the rest of the classes contain various disease-affected to-
mato leaf image samples. Additionally, the dataset consists of images in
several image formats, such as jpg and png. The dataset was pre-split
into 2 sections: train data, which contains approximately 80% of the
total images, and valid data (considered as test data), which contains
approximately 20% of the total images.

4.3. Preprocessing

First, all of the images are converted to jpg format during the pre-
processing stages. Images in the dataset are scaled to a resolution of 224
× 224 pixels to facilitate a faster training time and make model training
computationally feasible. The validation dataset has been created using
10.00% of the training dataset. The final training dataset for this study
has been created using data augmentation techniques. Data augmenta-
tion refers to a set of techniques for generating fictional data points from
pre-existing data. Data augmentation enriches and complicates data,

Fig. 6. Transfer learning procedure.

S.G. Paul et al.

Array 19 (2023) 100313

8

improving model performance and accuracy. Data augmentation tech-
niques reduce operational costs by introducing transformations into the
datasets. To get the higher accuracy model, complex data is essential,
and data augmentation helps with that. Table 4 describes the hyper-
parameter and its corresponding value employed in this study. Fig. 9
illustrates a random sample image and its various augmented forms.

4.4. Evaluation metrics

The effectiveness of the statistical, ML, or DL model is assessed using
evaluation metrics. To evaluate a study’s proposed model, it is crucial to
use a variety of evaluation metrics. Metrics for evaluation are crucial for
ensuring models’ performance. Model predictive or classification effi-
cacy can be measured by accuracy, precision, recall, and the f1-score
[41].

4.4.1. Accuracy
Accuracy is the percentage of images correctly predicted from all the

predictions. The following Eq. (9) describes how the accuracy is stated:

Accuracy=
TP+ TN

TP+ TN + FP+ FN
(9)

The accuracy score measures the number of correct predictions (TP
+ TN) made by a model in relation to the total number of predictions
(TP + TN + FP + FN) made. The abbreviations for "true positive", "true
negative", "false positive", and "false negative" are "TP", "TN", "FP", and
"FN" respectively.

4.4.2. Precision
The precision, which measures the percentage of truly right positive

outcomes, is determined by Eq. (10):

Precision=
TP

TP+ FP
(10)

4.4.3. Recall
By comparing the number of true positive findings to the total

number of actual positive samples (TP + FN), the recall value is used to
gauge the accuracy of positive predictions. The following Eq. (11) is
used to determine the recall value:

Fig. 7. VGG-16 architecture.

Fig. 8. VGG-19 architecture.

Table 2
Experimental setup.

Process name S.
N.

Action

Input 1. Collected images of 11 classes of tomato leaf,
including 10 classes of disease.

Environment 2. Anaconda, Jupyter Notebook.
Configuration 3.

4.
Import all necessary libraries and packages.
Load the images.

Directories
Configuration

5. Load directories for training, testing, and create
validation (10% of training data).

Training and
Testing

6.
7.

Build custom CNN models. For transfer learning, use
models trained on the ImageNet dataset.
Fine-tune the models by adding the fully connected
layer and the SoftMax activation function.

Model Compilation 8.
9.
10.
11.

The model compiles with an Adam optimizer and a
learning rate of 0.001.
Set 100 epochs for model training.
As a model checkpoint, use the validation loss to
monitor.
Save model.

Performance
Evaluation

12.
13.
14.

Generate classification report.
Generate models’ accuracy and loss reports.
Generate ROC-AUC Curve.

Prediction 15.
16.
17.

Load best model.
Load random images.
Predict disease classes.

S.G. Paul et al.

Array 19 (2023) 100313

9

Recall or TPR=
TP

TP+ FN
(11)

4.4.4. F1-Score
To measure how well a model performs, researchers utilize measures

like the F1-score, which is calculated by taking the harmonic mean of the
model’s precision and recall. It is defined as Eq. (12):

F1 − Score = 2 ×
Recall× Precision
Recall+ Precision

(12)

4.5. Result analysis and deployment

4.5.1. Result analysis
This section describes the performance of various models that have

been utilized.
Accuracy and loss graphs are used to better understand the model’s

behavior. The ROC-AUC curve of all the applied models has been
demonstrated. Furthermore, the proposed model has been compared to
other studies to determine its relevance.

A learning graph is a graph that depicts time or epoch on one axis and
learning on the other axis. Learning curves are widely used in Deep CNN
(DCNN). The generalization ability of the model may be estimated by
the evaluation of the validation dataset. During the training process,
dual learning curves has been generated for the DL model by applying it
to both the training dataset and the validation dataset. There are two
types of learning curves:

The accuracy graph indicates the obtained accuracy of training and
validation after each epoch run. The loss graph, on the other hand,
shows how much loss training and validation experienced.

By observing the learning curve’s shape and dynamics, DL models’
behavior can be understood, and parameters can be tuned to increase
performance. Fig. 10 presents accuracy and loss graph for VGG-16, VGG-
19, and proposed custom CNN with augmentation and without
augmentation. From the accuracy and loss graphs, it can be seen that
there are fluctuations in the training and validation data. Models that
run without data augmentation techniques tend to fluctuate more than
models that run with data augmentation techniques. From Fig. 10(f), it is
apparent that the accuracy of the training and validation gap is quite
small, which is an indication of a well-fitting model. Additionally, even
though the loss graph shows fluctuations, the actual losses are still
considerably lower than those seen in other graphs. Therefore, based on
the graphs of all of those models, the proposed model with data
augmentation accuracy graph is the best fit among the others.

To examine the performance of CNN-based TL models and the pro-
posed custom model, evaluation metrics such as accuracy, recall, pre-
cision, and f1-score are utilized. Table 5 demonstrates that models with
applied augmentation techniques have a higher recall value than models
without applied augmentation techniques. A considerable improvement
in model performance has been observed with augmentation. VGG-16
without augmentation has achieved a recall of 87.00%, and with
augmentation, it has achieved 92.00% recall. In VGG-19, there is an
improvement of 7.00% in recall when applying augmentation tech-
niques. However, custom CNN has always performed better than
transfer-learning-based VGG-16 and VGG-19, regardless of whether

Table 3
The tomato leaf disease dataset.

Class
ID

Class Name Count Training Testing Leaf Symptoms

C0 Bacterial
spot

3558 2826 732 Small, water-soaked,
angular circular
patches dark brown
and black in color.

C1 Early blight 3098 2455 643 Black or brown spots
appear, leaf spots often
have yellow or green
concentric ring
pattern.

C2 Late blight 3905 3113 792 Water-soaked area
appears and rapidly
enlarges to form
purple-brown, oily-
appearing blotches.

C3 Leaf mold 3493 2754 739 Irregular yellow or
green area appears.

C4 Septoria leaf
spot

3628 2882 746 Round spots, marginal
brown, chlorotic
yellow, appear.

C5 Spider mites
two spotted
spider mite

2182 1747 435 Show white or yellow
spots, blade back
netting.

C6 Target spot 2284 1827 457 Pinpoint-sized, water-
soaked spots on the
upper leaf surface.

C7 Tomato
yellow leaf
curl virus

2537 2039 498 Develop small and curl
upward, crumpling,
and marginal
yellowing, bushy
appearance.

C8 Tomato
mosaic virus

2737 2153 584 Leaflets, small leaves,
yellowing leaves, and
systemic necrotic
patterns.

C9 Healthy 3857 3051 806 Softly fuzzed, medium-
green leaves.

C10 Powdery
mildew

1256 1004 252 Light green and yellow
blotches on leaves.

Total:
32535

Total:
25851

Total:
6684

The train dataset contains 25851 sample images, and 6684 images are present in
the test dataset. Furthermore, 10.00% of the training dataset is used to produce
the validation dataset.

Table 4
Hyperparameter for image data augmentation.

Techniques Parameter

Shear range 0.2 or 20.00%
Zoom range 0.2 or Zoom in and Zoom out by 20.00%
Horizontal flip True
Vertical flip True
Width shift range 0.1 or 10.00%
Height shift range 0.1 or 10.00%

Fig. 9. Image of a random tomato leaf after applying augmentation techniques.

S.G. Paul et al.

Array 19 (2023) 100313

10

augmentation techniques has applied or not. Among all the applied
models, the proposed CNN model applied with data augmentation
techniques has achieved the highest recall value of 95.00%.

The training and validation accuracy and loss compared to the final
(test) accuracy of the applied models are presented in Table 6. By
comparing models trained without augmentation to models trained with

augmentation, a significant difference may be observed between
training and validation loss and accuracy. Furthermore, by applying
augmentation techniques, the applied models have achieved higher
(test) accuracy compared to models without augmentation techniques.
Among the many used models, the proposed model using augmentation
techniques has achieved the highest accuracy of 95.00% with the

Fig. 10. Accuracy and loss graph for VGG-16, VGG-19, and proposed custom CNN with augmentation and without augmentation.

S.G. Paul et al.

Array 19 (2023) 100313

11

smallest loss and smallest accuracy difference between the training and
validation datasets.

Table 7 demonstrates class-wise evaluation metrics generated by the
VGG-16, VGG-19, and proposed custom models. In VGG-16, the recall
value is higher when the augmentation technique is used than when it is
not used. In a comparison of transfer-learning-based CNN models VGG-
16 and VGG-19 with augmentation, VGG-16 outperformed VGG-19. In
general, by applying augmentation techniques, the performance of all
applied models has increased compared to models trained without
augmentation. Among all the models, the proposed custom CNN model

with augmentation demonstrated the most promising evaluation metrics
values, which indicates a higher performance compared to other models.

The applied models’ ROC-AUC curve is shown in Fig. 11. The VGG-
19 model has the lowest AUC score compared to the other models.
However, the VGG-19 with augmentation has performed better in terms
of the AUC score and ROC curve than the VGG-19 without augmenta-
tion. Utilizing augmentation approaches has resulted in improved scores
and more favorable ROC curves than models without augmentation
techniques. The proposed model with augmentation achieves the high-
est AUC score. Moreover, the ROC curves of the proposed model with
augmentation have attained the most optimal curves compared to other
models.

Table 8 demonstrates some recent and related works on classifying
the disease of the tomato leaf, which separately lists the applied archi-
tecture, publishing year, the considered class number and sample size,
limitation, and the best-performing model with the obtained accuracy.
To accomplish the classification of tomato leaf disease, a variety of CNN
models, including transfer-learning-based CNN models and custom
CNN, have been employed. In addition to CNN-based methods, ML
learning models, Fuzzy SVM, and R–CNN have all been used to carry out

Table 5
Models evaluation metrics performance.

Models Recall Precision F1-score

VGG-16 model Without Augmentation 0.87 0.87 0.87
With Augmentation 0.92 0.92 0.92

VGG-19 model Without Augmentation 0.82 0.83 0.82
With Augmentation 0.89 0.89 0.89

Proposed model Without Augmentation 0.89 0.89 0.89
With Augmentation 0.95 0.95 0.95

Table 6
Models training and validation accuracy and loss.

Model
Accuracy Accuracy Validation Loss

Training
Validation

Training

VGG-16 model 87.00% 0.933 0.882 0.2116 0.4252
VGG-16 model (Augmentation) 92.00% 0.9135 0.9004 0.2420 0.3614
VGG-19 model 82.00% 0.8539 0.8508 0.4084 0.4768
VGG-19 model (Augmentation) 89.00% 0.8823 0.8694 0.3379 0.3895
Proposed model 89.00% 0.9503 0.9248 0.1442 0.2868
Proposed model (Augmentation) 95.00% 0.9464 0.9488 0.1558 0.2169

Table 7
Class-wise Recall, Precision, F1-score of various applied models.

Class Name Without Augmentation With Augmentation

Recall Precision F1-score Recall Precision F1-score

VGG-16 model C0 0.92 0.85 0.88 0.89 0.96 0.92
C1 0.78 0.83 0.81 0.86 0.87 0.86
C2 0.83 0.85 0.84 0.90 0.85 0.87
C3 0.87 0.83 0.85 0.93 0.94 0.93
C4 0.79 0.77 0.78 0.89 0.91 0.90
C5 0.77 0.96 0.85 1.00 0.78 0.88
C6 0.89 0.79 0.84 0.81 0.93 0.87
C7 0.93 0.99 0.96 0.96 0.98 0.97
C8 0.92 0.99 0.95 0.97 0.99 0.98
C9 0.94 0.95 0.95 0.97 0.97 0.97
C10 0.88 0.73 0.79 0.93 0.94 0.94

VGG-19 model C0 0.88 0.80 0.84 0.86 0.96 0.90
C1 0.70 0.81 0.75 0.84 0.86 0.85
C2 0.77 0.72 0.74 0.76 0.93 0.83
C3 0.64 0.89 0.75 0.93 0.92 0.92
C4 0.75 0.69 0.72 0.91 0.75 0.82
C5 0.81 0.88 0.84 0.94 0.88 0.91
C6 0.92 0.68 0.78 0.79 0.88 0.84
C7 0.92 0.97 0.95 0.91 0.97 0.94
C8 0.94 0.95 0.94 0.96 0.96 0.96
C9 0.92 0.95 0.93 0.99 0.87 0.93
C10 0.74 0.66 0.70 0.88 0.87 0.88

Proposed model C0 0.88 0.87 0.88 0.94 0.94 0.94
C1 0.85 0.88 0.86 0.94 0.92 0.93
C2 0.87 0.81 0.84 0.93 0.94 0.93
C3 0.89 0.93 0.91 0.96 0.97 0.97
C4 0.82 0.84 0.83 0.92 0.94 0.93
C5 0.95 0.93 0.94 0.97 0.96 0.96
C6 0.89 0.96 0.92 0.87 0.96 0.91
C7 0.95 0.98 0.97 0.98 0.98 0.98
C8 0.92 0.98 0.95 0.97 0.97 0.97
C9 0.94 0.96 0.95 0.99 0.92 0.95
C10 0.82 0.60 0.69 0.92 0.93 0.92

S.G. Paul et al.

Array 19 (2023) 100313

12

the classification task. With best of our knowledge, a number of studies
have classified nine diseases and one healthy category, but none have
performed so for ten diseases and one healthy category. Furthermore,
several studies have performed classification on a comparatively small
dataset. Additionally, a variety of images that are captured or collected
in various environments are present in our study’s relatively large data
set. In addition to eliminating the limitations of other factors, our study
processed a relatively compact and efficient model that has higher ac-
curacy compared to other research carrying out the same tomato leaf
disease classification task. Furthermore, this study has deployed the
best-preforming model to the web-based and developed a smartphone-
based Android application for classifying tomato leaf disease.

4.5.2. Deployment
Deploying a DL model is the process of introducing a completed DL

model into a production environment where it may be used for its
intended purpose. The end goal of agriculture-based disease-related
research is to benefit society and meet the requirements of the targeted
mass audience. As tomato is grown all over the world and is vulnerable
to a variety of diseases, early disease identification is essential for
resolving the problem. Many farmers lack both the expertise to diagnose
the disease and the resources to consult with a domain expert. As a
result, they utilize a variety of pesticides and chemicals that can be
detrimental to their crops and land while also placing a burden on their
finances. Deploying an End-to-End (E2E) system that can assist tomato
farmers is one of the primary objectives and motivations of this study.

For deploying the model to an E2E system, web-based and Android-
based applications have been considered. Fig. 12 (a, b) illustrates the
locally deployed tomato leaf disease system process and the result of the
deployed model to predict tomato leaf disease from the perspective of
the user. Fig. 12(c, d) depicts the user interface of the Android appli-
cation as well as the live classification result. To predict tomato leaf
disease based on an image, this study has implemented our most effec-
tive proposed model. This study has employed a variety of Python li-
braries and other supporting technologies to construct the web-based
system. Hypertext Markup Language (HTML) and Cascading Style
Sheets (CSS) has been used to develop the website’s frontend design. The
backend mechanism has been constructed using the Python framework
Flask. The user can upload an image of a tomato leaf, which will then be
classified by the proposed model, and the result will be displayed on the
screen.

The user interface of an Android application has been developed
using Extensible Markup Language (XML), while the backend is devel-
oped using Java. For image classification in the application, the best-
performing proposed model has been converted to a lightweight Ten-
sorFlow version whose format type is "tflite". Then, the Java program-
ming language has been utilized to implement this light TensorFlow
model file in the Android application. The developed Android applica-
tion is compatible with Android versions 5.0 to 12. The Android

Fig. 11. ROC-AUC Curve of applied models.

Table 8
Result comparisons with related studies.

Reference Year Dataset
Size

Number Of
Class

Used Architecture Best Model (Accuracy) Limitation

TM et al. [20] 2018 18160 10 LeNet LeNet (94.00–95.00%) Single model applied,
No deployment

Agarwal et al. [21] 2019 17500 10 VGG-16, InceptionV3,
MobileNet, Custom CNN

Custom CNN (91.2%) Lower accuracy,
No deployment

Zhang et al. [22] 2018 5500 9 AlexNet, GoogLeNet, ResNet ResNet with SGD
(96.51%)

Lower number of class, Lower
size of data,
No deployment

Ahmad et al. [23] 2020 Laboratory 2364, field-
based 15216

4, 6 VGG-16, VGG-19, ResNet,
InceptionV3

InceptionV3 (99.60%) Lower number of class, Lower
size of data,
No deployment

Basavaiah et al. [19] 2020 2000 5 DT, RT RT (94.00%) Lower size of data,
No deployment

Chen et al. [26] 2020 8616 5 B-ARNet B-ARNet (89.00%) Lower accuracy,
No deployment

Thangaraj et al. [27] 2020 16578 10 Modified-Xception Modified-Xception
(99.55%)

Single model applied, Lower
number of class,
No deployment

Zho et al. [28] 2021 4585 10 ResNet-50, SE-ResNet-50 SE-ResNet-50
(96.81%)

Lower size of data,
No deployment

Kannan E et al. [29] 2020 12206 6 ResNet-50 ResNet-50 (97.00%) Single model applied, Lower
number of class,
No deployment

Elhassouny and
Smarandache [30]

2019 7176 10 MobileNet MobileNet (90.3%) Single model applied, Lower
size of data,
No deployment

Chen et al. [31] 2022 22390 10 AlexNet AlexNet (98.00%) Single model applied
H S and Sarojadevi H [32] 2022 735 7 Fuzzy-SVM, CNN, R–CNN R–CNN (96.735%) Lower number of class, Lower

size of data,
No deployment

Our proposed approach – 32535 11 VGG-16, VGG-19, Proposed
model

Proposed model
(95.00%)

No real-time web-based
deployment

S.G. Paul et al.

Array 19 (2023) 100313

13

application allows the user to classify tomato leaf disease by capturing a
live image or selecting an existing image from the device. This study has
provided open access for our developed smartphone-based Android
application, which can be downloaded from the given GitHub repository
[42]. The proposed model is lightweight and is able to predict the
outcome and show results rapidly and accurately.

5. Conclusion

This study focuses on classifying tomato leaf disease by suggesting a
custom CNN model and comparing that with CNN models based on TL.
The TL-based models utilized are the pre-trained VGG-16 and VGG-19.
The obtained dataset has been preprocessed and augmented. An abla-
tion study has been carried out to determine the most appropriate
augmentation methods and custom model layers and parameters. The
proposed model’s performance has been compared with the transfer-
learning-based VGG-16 and VGG-19 models. Additionally, it is evident
from the model evaluation that augmentation techniques have signifi-
cantly increased the robustness of the models. The proposed CNN model

has a higher accuracy of 95.00% among the employed models, making it
significantly better than other research performing the same task. In
addition, this study has deployed the most accurate classification model
on a web- and Android based application for tomato leaf disease
prediction.

In the future, findings from this research can serve as the state-of-the-
art approach for future researchers who want to work with real-time
classification tasks in the field of agriculture. Furthermore, the work’s
practical implications can be used for the classification of diseases on
other plants’ leaf surfaces. Various other techniques, such as segmen-
tation, feature extraction, and ranking-based classification, can be
combined with existing techniques to provide optimal results.

Declaration of competing interest

The authors declare that they have no known competing financial
interests or personal relationships that could have appeared to influence
the work reported in this paper.

Fig. 12. Tomato leaf disease classification applications.

S.G. Paul et al.

Array 19 (2023) 100313

14

Data availability

Data will be made available on request.

References

[1] Picó B, Díez MJ, Nuez F. Viral diseases causing the greatest economic losses to the
tomato crop. II. The Tomato yellow leaf curl virus — a review. Sci Hortic 1996;67
(3–4):151–96. https://doi.org/10.1016/S0304-4238(96)00945-4.

[2] Lindhout P, Korta W, Cislik M, Vos I, Gerlagh T. Further identification of races of
Cladosporium fulvum (Fulvia fulva) on tomato originating from The Netherlands
France and Poland. Neth J Plant Pathol 1989;95(3):143–8. https://doi.org/
10.1007/BF01999969.

[3] Kubota K, Tsuda S, Tamai A, Meshi T. Tomato mosaic virus replication protein
suppresses virus-targeted posttranscriptional gene silencing. J Virol 2003;77(20):
11016–26. https://doi.org/10.1128/JVI.77.20.11016-11026.2003.

[4] Tian M, Benedetti B, Kamoun S. A second kazal-like protease inhibitor from
Phytophthora infestans inhibits and interacts with the apoplastic pathogenesis-
related protease P69B of tomato. Plant Physiol 2005;138(3):1785–93. https://doi.
org/10.1104/pp.105.061226.

[5] Chaerani R, Voorrips RE. Tomato early blight (Alternaria solani): the pathogen,
genetics, and breeding for resistance. J Gen Plant Pathol 2006;72(6):335–47.
https://doi.org/10.1007/s10327-006-0299-3.

[6] Gao W, Li B, Shi Y, Xie X. ‘Studies on pathogenicity differentiation of Corynespora
cassiicola isolates, against cucumber, tomato and eggplant. Acta Hortic Sin 2011;
38(3):465–70.

[7] Dickey AM, Osborne LS, Mckenzie CL. Papaya (carica papaya , Brassicales:
caricaceae) is not a host plant of tomato yellow leaf curl virus (Tylcv; family
geminiviridae , genus Begomovirus). Fla Entomol 2012;95(1):211–3. https://doi.
org/10.1653/024.095.0136.

[8] Abdulridha J, Ampatzidis Y, Kakarla SC, Roberts P. Detection of target spot and
bacterial spot diseases in tomato using UAV-based and benchtop-based
hyperspectral imaging techniques. Precis Agric 2020;21(5):955–78. https://doi.
org/10.1007/s11119-019-09703-4.

[9] Foolad MR, Merk HL, Ashrafi H. Genetics, genomics and breeding of late blight and
early blight resistance in tomato. Crit Rev Plant Sci 2008;27(2):75–107. https://
doi.org/10.1080/07352680802147353.

[10] Tomato leaf mold. Available : https://extension.umn.edu/disease-management
/tomato-leaf-mold. [Accessed 9 December 2022].

[11] Concepcion R, Lauguico S, Dadios E, Bandala A, Sybingco E, Alejandrino J.
“Tomato septoria leaf spot necrotic and chlorotic regions computational
assessment using artificial Bee colony-optimized leaf disease index,”. In: Ieee
region 10 conference (tencon); 2020. p. 1243–8. https://doi.org/10.1109/
TENCON50793.2020.9293743. Osaka, Japan, Nov. 2020.

[12] Two-Spotted Spider Mite.Available : https://entomology.ca.uky.edu/ef310
[Accessed 9 December 2022].

[13] Tomato yellow leaf curl virus.Available : https://en.wikipedia.org/w/index.php?
title=Tomato_yellow_leaf_curl_virus&oldid=1113057182 [Accessed 9 December
2022].

[14] Tomato mosaic virus. Available : https://en.wikipedia.org/w/index.php?titl
e=Tomato_mosaic_virus&oldid=1046270277 [Accessed 9 December 2022].

[15] Powdery mildew on tomatoes. Available : https://blogs.cornell.edu/livegpath
/gallery/tomato/powdery-mildew-on-tomatoes/[Accessed 9 December 2022].

[16] Blancard D. Tomato diseases. CRC Press; 2012. https://doi.org/10.1201/b15145.
[17] Schreinemachers P, Simmons EB, Wopereis MCS. Tapping the economic and

nutritional power of vegetables. Global Food Secur 2018;16:36–45. https://doi.
org/10.1016/j.gfs.2017.09.005.

[18] Tomato news. Available : https://www.tomatonews.com/[Accessed 15 November
2022].

[19] Basavaiah J, Arlene Anthony A. “Tomato leaf disease classification using multiple
feature extraction techniques,”. Wireless Pers Commun 2020;115(1):633–51.
https://doi.org/10.1007/s11277-020-07590-x.

[20] Tm P, Pranathi A, SaiAshritha K, Chittaragi NB, Koolagudi SG. Tomato leaf disease
detection using convolutional neural networks. In: Eleventh International
Conference on Contemporary computing (IC3); 2018. p. 1–5. https://doi.org/
10.1109/IC3.2018.8530532. Noida, Aug. 2018.

[21] Agarwal M, Singh A, Arjaria S, Sinha A, Gupta S. “ToLeD: tomato leaf disease
detection using convolution neural network,”. Proc Comput Sci 2020;167:
293–301. https://doi.org/10.1016/j.procs.2020.03.225.

[22] Zhang K, Wu Q, Liu A, Meng X. Can deep learning identify tomato leaf disease? Adv
Multimed 2018:1–10. https://doi.org/10.1155/2018/6710865. Sep. 2018.

[23] Ahmad I, Hamid M, Yousaf S, Shah ST, Ahmad MO. Optimizing pretrained
convolutional neural networks for tomato leaf disease detection. Complexity 2020:
1–6. https://doi.org/10.1155/2020/8812019. Sep. 2020.

[24] Mia MJ, Maria SK, Taki SS, Biswas AA. Cucumber disease recognition using
machine learning and transfer learning. Bull EEI 2021;10(6):3432–43. https://doi.
org/10.11591/eei.v10i6.3096.

[25] Biswas AA, Zulfiker Md S, Rajbongshi A, Mia Md J, Majumder A. Feature ranking
based carrot disease recognition using MIFS method. In: Abraham A, Siarry P,
Piuri V, Gandhi N, Casalino G, Castillo O, Hung P, editors. Hybrid Intelligent
systems, vol. 420. Cham: Springer International Publishing; 2022. p. 56–68.
https://doi.org/10.1007/978-3-030-96305-7_6.

[26] Chen X, Zhou G, Chen A, Yi J, Zhang W, Hu Y. Identification of tomato leaf diseases
based on combination of ABCK-BWTR and B-ARNet. Comput Electron Agric 2020;
178:105730. https://doi.org/10.1016/j.compag.2020.105730.

[27] Thangaraj R, Anandamurugan S, Kaliappan VK. Automated tomato leaf disease
classification using transfer learning-based deep convolution neural network.
J Plant Dis Prot 2021;128(1):73–86. https://doi.org/10.1007/s41348-020-00403-
0.

[28] Zhao S, Peng Y, Liu J, Wu S. Tomato leaf disease diagnosis based on improved
convolution neural network by attention module. Agriculture 2021;11(7):651.
https://doi.org/10.3390/agriculture11070651.

[29] Kananan E N, Kaushik M, Prakash P, Ajay R, Veni S. Tomato leaf disease detection
using convolutional neural network with data augmentation. In: 2020 5th
International Conference on Communication and Electronics systems (ICCES).
India: Coimbatore; 2020. p. 1125–32. https://doi.org/10.1109/
ICCES48766.2020.9138030.

[30] Elhassouny A, Smarandache F. Smart mobile application to recognize tomato leaf
diseases using Convolutional Neural Networks. In: 2019 International Conference
of computer science and Renewable Energies (ICCSRE), Agadir, Morocco; 2019.
p. 1–4. https://doi.org/10.1109/ICCSRE.2019.8807737.

[31] Chen H-C, et al. AlexNet convolutional neural network for disease detection and
classification of tomato leaf. Electronics 2022;11(6):951. https://doi.org/10.3390/
electronics11060951.

[32] Nagamani HS, Sarojadevi H. Tomato leaf disease detection using deep learning
techniques. Int J Adv Comput Sci Appl 2022;13(no. 1). https://doi.org/10.14569/
IJACSA.2022.0130138.

[33] Weight Initialization Schemes - Xavier (Glorot) and He. Available: https://mm
uratarat.github.io//2019-02-25/xavier-glorot-he-weight-init [Accessed 9
December 2022].

[34] Activation Functions and their Derivatives – A Quick & Complete Guide. Available
: https://www.analyticsvidhya.com/blog/2021/04/activation-functions-and-thei
r-derivatives-a-quick-complete-guide/[Accessed 9 December 2022].

[35] Adam. Available : https://optimization.cbe.cornell.edu/index.php?title=Adam
[Accessed 9 December 2022].

[36] Understanding Categorical Cross-Entropy Loss, Binary Cross-Entropy Loss, Softmax
Loss, Logistic Loss, Focal Loss and all those confusing names. Available : https://g
ombru.github.io/2018/05/23/cross_entropy_loss/[Accessed 9 December 2022].

[37] Keras Applications. Available : https://keras.io/api/applications/[Accessed 9
December 2022].

[38] Simonyan K, Zisserman A. Very deep convolutional networks for large-scale image
recognition. 2014. arXiv preprint arXiv:1409.1556.

[39] Understanding the VGG19 Architecture. Available : https://iq.opengenus.org/
vgg19-architecture/[Accessed 9 December 2022].

[40] Khan Q. Tomato disease multiple sources. 2022, October. Version 1. Available :
https://www.kaggle.com/datasets/cookiefinder/tomato-disease-multiple-sources.
[Accessed 28 October 2022].

[41] Confusion matrix.Available : https://en.wikipedia.org/w/index.php?title=Confusi
on_matrix&oldid=1107701525 [Accessed 9 December 2022].

[42] Showmick. Application-of-Tomato-Leaf-Disease-Classification [Android Package
Kit]. 2023. https://github.com/showmick5/Application-of-Tomato-Leaf-Diseas
e-Classification/tree/main.

S.G. Paul et al.

https://doi.org/10.1016/S0304-4238(96)00945-4
https://doi.org/10.1007/BF01999969
https://doi.org/10.1007/BF01999969
https://doi.org/10.1128/JVI.77.20.11016-11026.2003
https://doi.org/10.1104/pp.105.061226
https://doi.org/10.1104/pp.105.061226
https://doi.org/10.1007/s10327-006-0299-3
http://refhub.elsevier.com/S2590-0056(23)00038-3/sref6
http://refhub.elsevier.com/S2590-0056(23)00038-3/sref6
http://refhub.elsevier.com/S2590-0056(23)00038-3/sref6
https://doi.org/10.1653/024.095.0136
https://doi.org/10.1653/024.095.0136
https://doi.org/10.1007/s11119-019-09703-4
https://doi.org/10.1007/s11119-019-09703-4
https://doi.org/10.1080/07352680802147353
https://doi.org/10.1080/07352680802147353
https://extension.umn.edu/disease-management/tomato-leaf-mold
https://extension.umn.edu/disease-management/tomato-leaf-mold
https://doi.org/10.1109/TENCON50793.2020.9293743
https://doi.org/10.1109/TENCON50793.2020.9293743
https://entomology.ca.uky.edu/ef310
https://en.wikipedia.org/w/index.php?title=Tomato_yellow_leaf_curl_virus&oldid=1113057182
https://en.wikipedia.org/w/index.php?title=Tomato_yellow_leaf_curl_virus&oldid=1113057182
https://en.wikipedia.org/w/index.php?title=Tomato_mosaic_virus&oldid=1046270277
https://en.wikipedia.org/w/index.php?title=Tomato_mosaic_virus&oldid=1046270277
https://blogs.cornell.edu/livegpath/gallery/tomato/powdery-mildew-on-tomatoes/
https://blogs.cornell.edu/livegpath/gallery/tomato/powdery-mildew-on-tomatoes/
https://doi.org/10.1201/b15145
https://doi.org/10.1016/j.gfs.2017.09.005
https://doi.org/10.1016/j.gfs.2017.09.005
https://doi.org/10.1007/s11277-020-07590-x
https://doi.org/10.1109/IC3.2018.8530532
https://doi.org/10.1109/IC3.2018.8530532
https://doi.org/10.1016/j.procs.2020.03.225
https://doi.org/10.1155/2018/6710865
https://doi.org/10.1155/2020/8812019
https://doi.org/10.11591/eei.v10i6.3096
https://doi.org/10.11591/eei.v10i6.3096
https://doi.org/10.1007/978-3-030-96305-7_6
https://doi.org/10.1016/j.compag.2020.105730
https://doi.org/10.1007/s41348-020-00403-0
https://doi.org/10.1007/s41348-020-00403-0
https://doi.org/10.3390/agriculture11070651
https://doi.org/10.1109/ICCES48766.2020.9138030
https://doi.org/10.1109/ICCES48766.2020.9138030
https://doi.org/10.1109/ICCSRE.2019.8807737
https://doi.org/10.3390/electronics11060951
https://doi.org/10.3390/electronics11060951
https://doi.org/10.14569/IJACSA.2022.0130138
https://doi.org/10.14569/IJACSA.2022.0130138
https://mmuratarat.github.io//2019-02-25/xavier-glorot-he-weight-init
https://mmuratarat.github.io//2019-02-25/xavier-glorot-he-weight-init
https://www.analyticsvidhya.com/blog/2021/04/activation-functions-and-their-derivatives-a-quick-complete-guide/
https://www.analyticsvidhya.com/blog/2021/04/activation-functions-and-their-derivatives-a-quick-complete-guide/
https://optimization.cbe.cornell.edu/index.php?title=Adam
https://gombru.github.io/2018/05/23/cross_entropy_loss/
https://gombru.github.io/2018/05/23/cross_entropy_loss/
https://keras.io/api/applications/
http://refhub.elsevier.com/S2590-0056(23)00038-3/sref38
http://refhub.elsevier.com/S2590-0056(23)00038-3/sref38
https://iq.opengenus.org/vgg19-architecture/
https://iq.opengenus.org/vgg19-architecture/
https://www.kaggle.com/datasets/cookiefinder/tomato-disease-multiple-sources
https://en.wikipedia.org/w/index.php?title=Confusion_matrix&oldid=1107701525
https://en.wikipedia.org/w/index.php?title=Confusion_matrix&oldid=1107701525
https://github.com/showmick5/Application-of-Tomato-Leaf-Disease-Classification/tree/main
https://github.com/showmick5/Application-of-Tomato-Leaf-Disease-Classification/tree/main

	A real-time application-based convolutional neural network approach for tomato leaf disease classification
	1 Introduction
	1.1 Background
	1.1.1 Bacterial spot
	1.1.2 Early blight
	1.1.3 Late blight
	1.1.4 Leaf mold
	1.1.5 Septoria leaf spot
	1.1.6 Spider mites two spotted spider mite
	1.1.7 Target spot
	1.1.8 Tomato yellow leaf curl virus
	1.1.9 Tomato mosaic virus
	1.1.10 Healthy
	1.1.11 Powdery mildew

	1.2 Motivation
	1.3 Contribution

	2 Related work
	3 Proposed system architecture and methodology
	3.1 System architecture
	3.2 Methodology
	3.3 Basic CNN
	3.4 Proposed custom CNN
	3.5 Transfer learning
	3.5.1 VGG-16
	3.5.2 VGG-19

	4 Experimental evaluation findings and analysis
	4.1 Environment specification
	4.2 Dataset
	4.3 Preprocessing
	4.4 Evaluation metrics
	4.4.1 Accuracy
	4.4.2 Precision
	4.4.3 Recall
	4.4.4 F1-Score

	4.5 Result analysis and deployment
	4.5.1 Result analysis
	4.5.2 Deployment

	5 Conclusion
	Declaration of competing interest
	Data availability
	References

