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A B S T R A C T   

The first seven vertebrae of our spine are called the cervical spine. It supports the weight of our head, encloses 
and safeguards our spinal cord, and permits a variety of head motions. The seven cervical vertebrae are joined at 
the rear of the bone by a kind of joint known as a facet joint. These joints enable us to move our necks forward, 
backward, and twist. Fractures of the cervical spine are a medical emergency that may lead to lifelong paralysis 
or even death. If left untreated and undetected, these fractures can worsen over time. Using computed tomog-
raphy, a cervical spine fracture in individuals can be accurately diagnosed. Given the scarcity of research on the 
practical use of deep learning methods in detecting spine fractures in persons, it is imperative to address this gap. 
This study uses a dataset containing fracture and normal cervical spine computed tomography images. This study 
proposed modified transfer-learning-based MobileNetV2, InceptionV3, and Resnet50V2 models. An ablation 
study was also conducted to determine the optimal custom layers for models and data augmentation techniques. 
In addition, evaluation metrics have been used to analyze and compare the model’s performance. Among all the 
approaches, MobileNetV2 with augmentation has achieved the highest accuracy of 99.75%. Furthermore, the 
best-performing model has been deployed in a smartphone-based Android application.   

1. Introduction 

Diagnostic imaging is crucial for the treatment of spinal diseases [1]. 
Over the past few decades, there has been a dramatic increase in spine 
imaging procedures due to the increasing prevalence of spinal disease 
associated with an aging population and the widespread availability of 
computed tomography (CT). Fractures of the cervical spine can occur in 
people of all ages, but they are more prevalent in men. The most com-
mon cause of cervical spine fracture is falling, followed by car accidents, 
motorcycling, and diving, causing 5–10% instant death [2,3]. Further-
more, cervical spine fractures are caused by abnormal movement or a 
combination of abnormal motions, such as hyperflexion, rotation, hy-
perextension, lateral bending, and axial loading of the spinal column 
[4]. A cervical spine injury has the potential to be linked with a high 
morbidity and death rate [5], and a delay in the identification of an 

unstable fracture that leads to insufficient immobilization may result in 
a catastrophic deterioration in the neurologic function that has terrible 
consequences [6–9]. Examining the cervical spine with imaging is thus 
an essential initial step in assessing patients with multidetector and 
trauma. CT has been established as the standard of care imaging tool to 
examine cervical spine injuries [10]. Patients who have sustained an 
injury to their cervical spine have a lower risk of morbidity and death if 
they get prompt diagnosis and treatment. The cervical spine is the source 
of cervicogenic headache (CGH), a chronic secondary headache that 
may originate in the neck or occipital area [11]. Sources of CGH include 
all structures innervated by the C1 through C3 nerve roots [12]. 

Furthermore, depending on which vertebra is fractured, each indi-
vidual with a cervical spine fracture will experience slightly different 
symptoms [13]. By leveraging the capabilities of machine learning (ML) 
and deep learning (DL), cervical spine-related and other diverse tasks 
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within the medical sector can be efficiently undertaken, heralding sub-
stantial advancements and opportunities for improvement. ML and DL 
algorithms, including vanilla convolutional neural networks, 
Fourier-CNN, and residual networks, for image segmentation in mag-
netic resonance imaging scans, can identify anomalies related to car-
diovascular diseases [14]. By employing deep neural networks for 
feature extraction from CT scan images, researchers can achieve an early 
and accurate diagnosis of lung cancer and improved diagnostic accu-
racy, including the ability to distinguish between malignant tumors and 
benign [15]. DL in the medical health sector offers innovative solutions. 
For instance, the use of EEGnet architecture for stress detection enables 
early identification and prevention of health problems [16]. The 
research explores the application of modified DL models using the 
pre-trained VGG-19 models with an improved augmentation technique 
for classifying lung cancer biopsy images [17]. There is also potential for 
the ultrasonic imaging-based DL model to be an effective method of 
monitoring the healing of bone after fracture surgery [18]. DL-based 
models can also be utilized for the automatic detection and posi-
tioning system of fresh rib fractures, which can outperform radiologists 
in terms of sensitivity [19]. Using plain radiographs and employing DL 
methods, fractures, bone mineral density and fracture risk can be 
identified and evaluated [20]. Moreover, DL facilitates sentiment anal-
ysis of user-generated multimedia data, such as tweets related to dis-
eases like monkeypox, enhancing our understanding of public reactions 
and promoting disease awareness and surveillance [21]. Various other 
problems, such as anxiety problems, can be classified at early stages 
using ML algorithms [22]. Introducing automatic X-ray image segmen-
tation techniques, compression fractures can be detected and evaluated 
in X-ray images [23]. Using a deep CNN model, osteopenia and osteo-
porosis can be classified by lumbar spine X-ray images, demonstrating 
the potential for screening these conditions non-invasively [24]. DL also 
extends to real-time health monitoring for athletes using wearable 
technology and recurrent neural networks, resulting in enhanced con-
ditioning and performance while reducing the risk of injuries [25]. This 
application encompasses continuous remote monitoring, analysis of 
medical data from wearable devices, and patient feedback, enabling 
real-time health condition prediction, ultimately improving patient 
outcomes while reducing healthcare costs [26]. Furthermore, light-
weight CNN algorithms can be used to detect pneumonia with a 
deployable diagnostic-aid solution, which can aid in developing remote 

healthcare systems [27]. 
A severe kind of medical malpractice often involved with doctors is 

misdiagnosis. Because of a misdiagnosis or a delayed diagnosis can 
worsen a patient’s health. A wrong diagnosis could also cause spending 
more time and energy treating problem. A misdiagnosis may even result 
in death in some circumstances. Furthermore, many diagnostic tests may 
be needed to diagnose certain diseases accurately. DL models can tackle 
the issue by assisting doctors in the early detection of cervical spine 
fractures. 

Furthermore, manual evaluation of patient data requires much time 
and is fraught with the risks of diagnostic analysis mistakes and inac-
curate information. On the other hand, health applications can eliminate 
all these potentially deadly obstacles the patient could face. Further-
more, the patient’s current state of health can be digitally managed via 
an application. This makes it easier for medical professionals to conduct 
proper treatment of patients with conditions of the cervical spine. 
Therefore, this study follows some objectives to address the current issue 
of cervical spine fracture detection.  

• To develop and validate a robust cervical spine fracture detection 
model using a state-of-the-art DL-based model, utilizing a dataset 
comprising fracture and normal cervical spine CT images.  

• To conduct an ablation study to identify the optimal custom layers 
and data augmentation techniques that enhance the performance of 
the DL models in detecting cervical spine fractures.  

• To build a real-time application that can aid in early detection to 
prevent worsening complications. 

The development of DL models has recently been in progress, and 
rapid and accurate prediction has recently been widely accessible. As a 
result, experts are now able to save time using DL models to detect issues 
related to medical conditions. Thus, in the study, transfer learning-based 
DL models have been proposed to detect cervical spine fractures, and an 
application based on Android has been developed to aid doctors in 
detecting cervical spine fractures. 

The following are some of the primary muscles that connect to our 
cervical spine[28–32] (see Appendix A).  
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1.1. Ligaments of our cervical spine 

The bones of our cervical spine are connected by ligaments, which 
contribute to the stability of our cervical spine. The primary ligaments of 
the cervical spine are as follows. 

1.1.1. Anterior longitudinal ligament 
The anterior longitudinal ligament is a strong fibrous band that runs 

along the front surface of the cervical vertebrae, extending from the base 
of our skull down to the bottom of the spine. This ligament plays a 
crucial role in stabilizing the vertebral column and preventing excessive 
backward movement of the neck. By providing essential support and 
limiting hyperextension, the anterior longitudinal ligament helps 
maintain the natural curvature of the cervical spine and prevents po-
tential injuries that could result from excessive backward bending or 
hypermobility [33]. 

1.1.2. Posterior longitudinal ligament 
The posterior longitudinal ligament is a tough and flexible band that 

originates at the second cervical vertebra and runs down the entire 
length of the back surface of the cervical vertebrae until it reaches the 

base of the skull. This ligament is crucial in preventing excessive forward 
movement of the neck and provides essential support to the vertebral 
column [33]. As a stabilizing structure, the posterior longitudinal liga-
ment resists hyperflexion of the cervical spine, helping to maintain the 
natural curvature of the neck and preventing potential injuries that 
could result from excessive forward bending or hypermobility. 

1.1.3. Ligamentum flava 
These ligaments line the posterior surface of the inside opening of 

each vertebra, which is where our spinal cord travels through our body. 
These ligaments wrap around and shield our spinal cord to protect it 
from the back. 

Fig. 1 illustrates the human spine structure and the name of the spine 
according to region. Disks are one of the most essential elements in the 
structure of the cervical spine. The “shock absorber cushions” between 
each vertebra are called cervical disks. There is a total of six disks 
located between the seven vertebrae that make up the cervical region. 
During physical activity, the disks protect our neck from the forces 
exerted on it and make it easier for us to flex and swivel our head. 

The nerves of the cervical spine are one of the important elements 
which are reasonable for communication and proper body functioning. 

Fig. A.1. Muscles of the cervical spine.   
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From Fig. 2, in the cervical region of our spine, there are eight pairs of 
spinal nerves that leave the body via tiny holes (foramen) between every 
pair of vertebrae. Their designations range from C1 to C8 [35,36]. 

1.2. Cervical nerves C1, C2 and C3 

It regulates the rotation of the head and neck in all directions. The C2 
nerve transmits sensory information from the brain to the top of our 
heads. The feeling from C3 might be felt on the side of our face and the 
top of our head. 

1.3. Cervical nerve 4 

As one of the nerves responsible for diaphragmatic function, it reg-
ulates the movement of our upper shoulders. A portion of our neck, 
shoulders, and upper arms receive sensation from C4. 

1.4. Cervical nerve 5 

It has control over the deltoids in our shoulders as well as the biceps 
in our arms. The C5 nerve gives us feeling from the top of our upper arm 
all the way down to our elbow. 

1.5. Cervical nerve 6 

It regulates the flexor muscles of the forearm and contributes to the 
control of the biceps. C6 is responsible for providing feeling to the side of 

our thumb, both in our forearm and in our hand. 

1.6. Cervical nerve 7 

It has control over our triceps as well as the muscles that extend the 
wrist. The C7 nerve gives us sensation all the way down the back of our 
arms into our middle fingers. 

1.7. Cervical nerve 8 

Our forearm and pinky side of our hands get sensations from it, and it 
also controls our hands. 

The classification of the cervical spine fracture in an image is a 
challenging issue to solve, recurring specialist medical knowledge. In 
addition, information that is readily accessible to the public spine data is 
quite restricted, which makes it much more challenging to make ad-
vancements toward automated cervical spine fracture classification. The 
following is the key contribution that our research has contributed.  

I. The studies implement a state-of-the-art cervical fracture C.T. 
image dataset, obtained from the RSNA cervical spine fracture 
detection challenge.  

II. Various TL-based deep learning models consisting of custom 
layers have been applied in the study. 

III. An ablation study has been conducted to improve the perfor-
mance of the models, and numerous techniques of data 
augmentation have been identified.  

IV. To aid medical professionals, the most effective model’s has been 
implemented into the Android application. 

The following are the remaining portions of this research: related 
research on the topic of classifying cervical spine fractures is included in 
section 2. The modified transfer learning-based models’ architecture is 
discussed in section 3 for classifying the cervical spine fracture, as well 
as dataset and prepressing of dataset. Section 4 showcases the study’s 
experimental evaluation results and analysis, along with the outcomes 
derived from the implemented models. Furthermore, the deployment 
procedure of Android-based application and discussion is described. The 
study’s conclusion and the future perspective are highlighted in section 
5. 

2. Related work 

Cervical spine fractures are one of the most significant concerns in 
healthcare due to their potential to be linked with a high morbidity and 
death rate, their impact on neurologic function, and the patient’s well- 
being. In this context, ML and DL models have emerged as promising 
methods to assist healthcare professionals in detecting those fractures 
accurately. This section will analyze prior, varied studies on this subject, 
critically analyzing and synthesizing existing research work to provide 
context and insights. 

The human spine, comprising the cervical, thoracic, and lumbar re-
gions, is crucial in supporting the body’s structure and protecting the 
spinal cord. The cervical spine, consisting of seven vertebrae, is partic-
ularly susceptible to fractures and injuries. In recent years, a surge in 
research has leveraged the power of DL in medical imaging and di-
agnostics for the cervical spine and the overall human spine. Small et al. 
[37] led this charge by pioneering the use of convolutional neural net-
works (CNNs) for detecting cervical spine fractures in C.T. scans, 
demonstrating DL versatility. Simultaneously, Chłąd and Ogiela [38] 
explored cloud-based computation to enhance cervical spine fracture 
detection, highlighting the synergy between DL and cloud resources. 
Boonrod et al. [39] conducted a comprehensive investigation into using 
DL for C-spine injury evaluation from lateral neck radiographs. 
Concurrently, Naguib et al. [40] classified cervical spine fractures and 
dislocations, employing refined, pre-trained deep models and saliency 

Fig. 1. Cervical spine in human body [34].  
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maps for improved fracture detection. Salehinejad et al. [41] advanced 
the field with deep sequential learning for cervical spine fracture 
detection in C.T. imaging, while Jakubicek et al. [42] enriched spine 
imaging with a deep-learning-based automatic spine centerline detec-
tion method tailored for C.T. data. Weng et al. [43] employed DL to 
recognize whole-spine sagittal alignment, while Karanam et al. [44] 
supervised musculoskeletal imaging through DL algorithms for fracture 
detection and classification. Furthermore, Kassem et al. [45] introduced 
an explainable transfer learning-based deep model for pelvis fracture 
detection, enhancing interpretability. 

In addressing the challenge of cervical spine fracture detection, 
medical research has witnessed the customization and training of ML 
and DL models tailored to specific datasets. These models encompass a 
spectrum of cutting-edge architectures, including CNN, vision 

transformers (ViT), YOLO network models, and deep neural networks 
like AlexNet, GoogleNet, and ResNet [37–40]. These sophisticated 
frameworks are meticulously crafted to scrutinize and interpret a 
diverse range of medical imaging modalities, such as C.T. scans, X-rays, 
and radiographs, with the primary objective of precise and automated 
fracture identification [38,39,41]. 

Custom models are specifically designed to tackle unique and 

Table 1 
The cervical spine fracture dataset.  

Class id Class name Count Training Testing 

0 fracture 2100 1900 200 
1 normal 2100 1900 200  

Fig. 2. Anatomical overview of cervical nerves and their structural organization [35].  
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complex challenges, such as the detection of cervical spine fractures, 
bone cancer identification, and vertebral compression fractures. These 
models offer several advantages, including optimized performance, 
enhanced accuracy, and interpretability, all tailored to the specific 
medical context. However, a noticeable gap exists in some studies that 
rely solely on traditional or pre-trained models, potentially missing out 
on the benefits that custom models can provide. Yi et al. [46] applied DL 
techniques but did not utilize custom models, while others, like the 
study by Boonrod et al. [39], employed traditional methods without 
incorporating custom models. The absence of custom models in these 
studies represents an opportunity to investigate the role of custom 
models in achieving even higher accuracy and efficiency in diagnosing 
medical conditions [39,46]. 

To perform cervical and other types of spine-related work, a wide 
range of dataset sizes is utilized, reflecting the variability in data 
availability and utilization in the field of medical image analysis using 
DL. For instance, Small et al. [37] employed a dataset consisting of 665 
images for their cervical spine fracture detection study. This dataset size, 
while relatively small, yielded an accuracy of 92.00%. In contrast, Chład 
and Ogiela [38] leveraged the extensive RSNA 2022 cervical spine 
fracture detection challenge dataset, which likely encompassed a much 
larger number of cases. With this dataset, they achieved an impressive 
accuracy of 98.00% using ViT models. However, the study did not 
provide a direct comparison of ViT models with traditional CNN 
methods. Boonrod et al. [39] encountered the challenge of a small 
dataset of 229 radiographs by employing objected detection-based 
YOLO network models for cervical spine injury detection, achieving 
accuracy and sensitivity rates of 75.00% and 80.00%, respectively. In 
contrast, Naguib et al. [40] demonstrated exceptional accuracy and 
sensitivity rates of 99.56% and 99.33%, respectively, for cervical spine 
injuries. The authors trained the model on a dataset containing 2009 
X-ray images (530 CS dislocation, 772 CS fractures, and 707 normal 
images). Salehinejad et al. [41] incorporated natural language pro-
cessing elements into their deep CNN model for cervical spine fracture 
detection but achieved a comparatively lower accuracy of 79.18% on 
the balanced (104 positive and 104 negative cases) and imbalanced (104 
positive and 419 negative cases) test datasets, respectively. Jakubicek 
et al. [42] achieved a remarkable accuracy of 90.00% for spinal 
centerline detection, but their study relied on a relatively small dataset 
of 130 CT images, which could potentially affect the generalization of 
the models. Maras et al. [47] worked with a dataset comprising 161 
normal lateral cervical radiographs and 170 lateral cervical radiographs 
with osteoarthritis and cervical degenerative disc disease. Their 
pre-trained VGG-16 network achieved accuracy, sensitivity, specificity, 
and precision rates of 93.9%, 95.8%, 92.0%, and 92.0%, respectively. A 
recurring challenge in the realm of cervical spine fracture detection, 
evident across these studies [37,47–50], is the limited size of the 
available datasets. While larger datasets like the RSNA 2022 dataset 
have enabled impressive achievements [38], many investigations have 
been hampered by their relatively small sample sizes [37,39,41]. This 
constraint poses a significant hurdle to the field as it can impact the 
robustness and generalization of developed ML and DL models. 

Despite being an important issue in human medical science, very few 
studies have been conducted to detect cervical spine-based fractures. 
Furthermore, among the studies, only a limited number have achieved 

higher accuracy, and to the best of our knowledge, none has analyzed 
the impact of data augmentation techniques and DL models with custom 
layers for cervical spine fractures and developed a real-time application 
that can aid health professionals. In addressing this critical gap, our 
study embarked on an ambitious endeavour, employing a substantial 
dataset comprising 4200 cervical spine C.T. images, comprising both 
fracture and normal cases. Leveraging DL techniques by proposing and 
implementing modified transfer-learning-based models. Our research 
also delved into an ablation study, meticulously examining and fine- 
tuning the custom layers of these models while implementing 
advanced data augmentation techniques to enhance their robustness. 
Subsequently, we meticulously evaluated and compared the perfor-
mance of these models, utilizing a spectrum of rigorous evaluation 
metrics. To enhance the practical utility of our findings, we have suc-
cessfully deployed the most proficient model within a smartphone-based 
Android application. This innovative approach bridges a critical 
research gap in the timely and accessible detection of cervical spine 
fractures and also holds the promise of mitigating the severe conse-
quences associated with cervical spine features medical emergencies. 

3. Proposed methodology and system architecture 

3.1. Dataset 

The research has been conducted using the “spine fracture prediction 
from C.T″ dataset, which consists of cervical spine fracture C.T. images 
[51]. The dataset is divided into two sections: a “train” folder and a 
“Val” (validation) folder, which consists of two classes: normal cervical 
spine images and fractured cervical spine images. The dataset consists of 
4200 images, whereas the train folder has 1900 fracture images and 
1900 normal images (see Table 1). From the training image, 10.00% of 
the image is randomly chosen for validation purposes using the Image-
DataGenerator library. The test dataset contains 400 images, 200 for 
each class. 

3.2. Preprocessing 

Prepossessing the data enhances the performance and reduces the 
time for computation. During the data preprocessing stage, dataset im-
ages were resized to a resolution of 224 × 224 pixels. The decision to 
adopt image dimensions of 224 × 224 in the dataset was based on the 
fact that a significant proportion of the images in the dataset already 
possessed these dimensions. Additionally, it is worth noting that utilized 
deep learning classification models frequently employ this particular 

Fig. 3. Cervical sample image after applying augmentation techniques.  

Table 2 
Hyperparameter for image data augmentation.  

Techniques Parameter 

Shear range 0.2 or 20.00% 
Zoom range 0.2 or 20.00% 
Horizontal flip True 
Fill mode Nearest 
Width shift range 0.1 or 10% 
Height shift range 0.1 or 10% 
Rotation range 15 or 15◦
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size as the default input. This image rescaling helps models facilitate 
faster training time and requires less computational time. The validation 
dataset has been obtained from the training dataset (10.00%). Various 
data processing techniques, such as data augmentation and segmenta-
tion, can be utilized for effective cervical fracture detection. Although 
segmentation can aid in isolating individual regions within an image, 
enabling accurate fracture recognition and localization, segmentation 
can be computationally intensive and time-consuming, and over- 
segmentation may cause the image to be noisy, have intensity varia-
tions, and not properly distinguish the fracture from real images [52]. 

Moreover, to enhance the speed and effectiveness of the user expe-
rience in real-time applications, it may be beneficial to omit segmenta-
tion operations and instead rely on data augmentation techniques to 

enhance accuracy. As data augmentation can increase the model’s 
ability to generalize, add variability to the data, and minimize data 
overfitting [53]. Thus, various data augmentation techniques have been 
applied, selected by performing ablation studies. Fig. 3 illustrates the 
effect of augmentation techniques on a random dataset sample image. 
The data augmentation techniques make the models robust and more 
capable by complexing and enriching the dataset. Additionally, 
augmentation techniques introduced various transformations in the 
images and generated fictional data points from pre-existing data. 
Table 2 presents the augmentation techniques applied in the study. 

3.3. Methodology 

This study has been conducted in various steps. The dataset, which 
includes C.T. scan images, has been collected. The preprocessing of the 
dataset has been done in the follow-up step, which includes resizing the 
images and applying augmentation techniques in Fig. 4. The studies 
used a variety of data augmentation techniques that were chosen based 
on the results of the ablation study. Image quantity and diversity have 
been increased by performing the data augmentation techniques. Data 
augmentation techniques help to make models robust and also increase 
performance. In the following steps, various transfer learning-based al-
gorithms such as MobileNetV2, InceptionV3, and ResNet50V2 have 
been applied, as among the DL models MobileNetV2, ResNet50V2, and 
InceptionV3 achieved promising results in detecting various issues and 
those are some of the most utilized DL models [54,55]. The 
transfer-learning-based DL models have been implemented using the 
pre-trained ImageNet weight. The transfer learning-based models have 
been implemented in two phases. In the transfer learning-based models, 
the unaugmented dataset was applied first, followed by the augmented 
dataset in the second phase. The applied models’ performance con-
cerning the dataset is evaluated in the following phase. To evaluate the 
performance, various evaluation metrics such as accuracy, sensitivity, 
precision, and F1-score have been analyzed and presented. In addition, 
confusion matrices, accuracy, and validation graphs have been plotted 
to interpret the behavior of the model. In the final steps, the finest 
model’s has been implemented in the Android-based system, which can 
assist the medical professional in properly classifying the cervical 

Fig. 4. Diagram of the implementation step.  

Fig. 5. Applied models architecture.  

Table 3 
Environmental setup.  

Name of the process S. 
N. 

Performed action 

Input 1. Obtained a dataset consisting of binary class C.T. 
scans depicting cervical fractures. 

Environment 2. Anaconda, Jupyter Notebook. 
Configuration 3. 

4. 
Import all libraries and necessary packages. 
Images load. 

Configuration of 
directories 

5. Load directories for testing, training, and generate 
validation (10.00% of training data). 

Training and testing 6. 
7. 

Build transfer learning model using ImsageNet 
dataset weight. 
Fine tune the models by adding various layers and 
sigmoid activation function into output layer. 

Model compilation 8. 
9. 
10. 
11. 

Compile the model using the Adam optimizer and a 
learning rate of 0.001. 
Set epochs 100 for model fitting. 
Use validation loss monitor as model checkpoint. 
Save the model. 

Performance 
evaluation 

12. 
13. 
14. 

Generate confusion matrix and classification report. 
Generate model loss and accuracy reports. 
Generate ROC-AUC curve. 

Prediction 15. 
16. 
17. 

Load best model. 
Load random images. 
Predict disease classes.  
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feature scan sample images. 

3.4. MobileNetV2 

MobileNetV2 is an updated form of MobileNet. It relies on a back-
ward residual structure, where the bottleneck layers connect the resid-
ual layers. Lightweight depth-wise convolutions are used in the 
intermediate expansion layer to filter features and introduce non- 
linearity. MobileNetV2’s overall structure consists of a 32-filter fully 
convolutional initial layer, followed by 19 residual bottleneck layers. 

After using the MobileNetV2 pre-train model layer, some custom layers 
are added to increase performance. The Mobilenetv2 model consists of a 
total parameter 2,587,201 and a trainable parameter 328,705. Fig. 5 
illustrates the custom layers that have been incorporated with the 
architectural designs of all the models. The sigmoid activation function 
with one neuron has been used in the output layer for binary 
classification. 

Fig. 6. Confusion matrix for MobileNetV2, InceptionV3, and the ResNet50V2 model (without and with augmentation).  
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3.5. InceptionV3 

The InceptionV3 architecture is a convolutional neural network and 
an updated form of the Inception model. Various changes have been 
made to the InceptionV3 architecture. In InceptionV3, label smoothing 
has been used. InceptionV3 was developed to accommodate more 
complex networks without requiring an overwhelming amount of 
training parameters. InceptionV3 model utilized factorized 7 × 7 con-
volutions and an auxiliary classifier to propagate label information and 
batch normalization. In addition to the existing InceptionV3 architec-
ture, various other custom layers have been added. The InceptionV3 
model consists of a total parameter of 22,328,609 and trainable 
parameter 525,313. 

3.6. ResNet50V2 

ResNet50V2 is an updated version of ResNet50 based on the ResNet 
architecture and consists of five stages. The ResNet CNN model uses a 
residual module to overcome the vanishing gradient problem. In 
ResNet50V2, separate convolution and identity blocks are present, each 
having three convolution layers. In addition to the ResNet50V2 archi-
tecture, some custom layer has been added to the architecture to in-
crease the performance. RestNet50V2 model consists of a total 
parameter of 24,090,625 and trainable parameters of 525,313. 

4. Analysis of experimental evaluation 

4.1. Specification of environment 

The environmental specification is an important aspect of the study 

Fig. 7. Accuracy and loss graph for MobileNetV2, InceptionV3 and ResNet50V2 model (without augmentation and with augmentation).  
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since it describes the experiment’s methodology and setup [56]. Table 3 
presents the experimental setup used to perform the research work. This 
study was conducted using the 1.80 GHz processing power of the Core 
i7-10510U CPU. The system consists of 24 G B. of RAM as well as an 
NVIDIA graphics card. The system contains a GeForce MX250 NVIDIA 
graphic card with 4 G B. of dedicated RAM. The applied models were 
built using Python libraries like Keras and TensorFlow. 

4.2. Evaluation metrics 

Evaluation metrics are used to determine if a statistical, ML, or DL 
model is successful. It is essential to apply several assessment criteria to 
evaluate the best model that research has to offer. Evaluation metrics are 
essential to guarantee the performance of models. The effectiveness of a 
model’s prediction or classification may be evaluated based on its ac-
curacy, precision, F1-score, and recall value [57]. 

4.3. Analysis of result and deployment 

4.3.1. Analysis of result 
The applied model’s performance has been analyzed and described 

in this subsection. The models’ confusion matrix, training, validation 
accuracy, and loss graph have been illustrated. The evaluation metrics’ 
value and the final models’ accuracy and loss of training and validation 
have been computed to compare the models’ performances. Finally, 
other related studies have compared with final models’ performance. 

The confusion matrix is a popular measure representing predicted 
and actual values counts. It is applied to measure the performance of 
binary and multiclass classification. For the classification models, a 
confusion matrix composed of N × N-shaped matrices is used, which 
indicates the model’s performance or accurately predicted value 
compared to the actual value. 

From Fig. 6, it can be observed that by applying data augmentation 
techniques to the state-of-the-art models, the performance of the model 
has increased significantly. Among the models without applying the 
data augmentation techniques, MobileNetV2 has performed best. By 
applying the augmentation techniques, the MobileNetV2 model’s per-
formance has been significantly increased and has been able to predict 
approximately all the test samples accurately. 

The accuracy and loss graph, also known as the learning curve, is an 
important element in assessing the performance of DL models. In the 
learning curve, epochs are plotted in the X-axis and values are plotted in 
the Y-axis. Dual learning curves were constructed for the DL model 
during the training process by employing them in both the training and 
validation dataset. The accuracy graph indicates the training and vali-
dation accuracy in terms of the epoch. On the other hand, the loss graph 

Fig. 7. (continued). 

Table 4 
Models performance based on evaluation metrics.  

Models  Recall Precision F1-score 

MobileNetV2 Without augmentation 0.9500 0.9511 0.9499  
With augmentation 0.9975 0.9975 0.9975 

InceptionV3 Without augmentation 0.9250 0.9347 0.9245  
With augmentation 0.9850 0.9854 0.9849 

ResNet50V2 Without augmentation 0.9275 0.9366 0.9271  
With augmentation 0.9925 0.9926 0.9925  

Table 5 
Models accuracy and loss.   

Model  
Accuracy  Loss  

Accuracy Training Validation Training Validation 

MobileNetV2 0.950 0.9988 0.9211 0.0043 0.2402 
MobileNetV2 

with 
augmentation 

0.9975 0.9991 0.9605 0.0028 0.1024 

InceptionV3 0.925 0.9874 0.9289 0.0330 0.1637 
InceptionV3 

with 
augmentation 

0.985 0.9833 0.9526 0.0473 0.1389 

ResNet50V2 0.9275 0.9950 0.9368 0.0132 0.1457 
ResNet50V2 

with 
augmentation 

0.9925 0.9982 0.9711 0.0064 0.0815  
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indicates the model losses it faces during the training process in terms of 
the epoch. 

From Fig. 7, it can be observed that augmentation-based models have 
achieved better accuracy and face fewer losses compared to models 
trained without applying augmentation techniques. From Fig. 7(b), it 
can be observed that MobileNetV2 with augmentation has achieved the 

most optimal accuracy compared to other model’s accuracy graph. 
Furthermore, MobileNetV2 with augmentation has faced less loss 
compared to other models. 

Accuracy, sensitivity, precision, and F1-score evaluation metrics are 
employed to evaluate the performance of the applied model. Table 4 
describes the performance of the applied model measured via evaluation 

Fig. 8. ROC-AUC curve of applied model.  

Table 6 
Comparisons of result with related studies.  

Reference Year Sample size Used models Best model (accuracy) Limitation 

Small et al. [37] 2021 665 CNN CNN (92.00%) Lower accuracy, no deployment 
Boonrod et al. [39] 2022 229 YOLO V2, YOLO V3, YOLO V4 YOLO V4(75.00%) Lower accuracy, no deployment 
Salehinejad et al. [41] 2021 3666 ResNet50 with BLSTM ResNet50 with BLSTM (79.18%) Lower accuracy, no deployment 
Kim et al. [49] 2021 339 U-Net, R2, SegNet, E-Net, Proposed Proposed (93.7%) Lower sample size, no deployment 
Our research work – 4200 MobileNetV2, InceptionV3, ResNet50V2 MobileNetV2 with Augmentation (99.75%) No web-based deployment  

Fig. 9. Cervical spine fracture disease classification applications.  
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metrics. InceptionV3 without augmentation achieved the lowest recall 
value, and ResNet50V2 obtained the higher value. However, after 
applying augmentation, ResNet50V2 surpasses the InceptionV3. From 
the table, it can be observed that by applying the augmentation tech-
niques to our state-of-the-art models, the performance of the models has 
been significantly increased. The importance of evaluation metrics score 
after applying the augmentation techniques highlights the robustness 
and effectiveness of selected augmentation techniques. Among the 
models, MobileNetV2 with augmentation has achieved the highest 
recall, precision, and F1-score value of 0.9975. 

Table 5 describes the models obtained final test accuracy, training 
and validation accuracy, and loss. Among the models, it can be observed 
that by employing data augmentation techniques accuracy of the models 
has been significantly increased. Furthermore, the training and valida-
tion accuracy of the model increased by applying augmentation tech-
niques. In addition, the training and validation loss gap has been 
reduced significantly. Among the models, MobileNetV2 with augmen-
tation has obtained the highest accuracy and faces minimum loss. 

Fig. 8 illustrates the applied model’s ROC-AUC curve, and it can be 
observed that the model with augmentation has achieved the most 
optimal graph with a better AUC score. Among all the models, Mobile-
NetV2 with augmentation has achieved the highest AUC score with the 
most optimal ROC curve. 

Due to diverse challenges and difficulties, a limited number of 
studies have been conducted to detect cervical spine features. Table 6 
describes the related study and compares their result with our research 
work. The table shows that previously conducted study has obtained 
lower accuracy, and no instances of real-life implementation have been 
observed. Our research achieved the highest accuracy and deployed the 
best model in the Android app to assist medical professionals. 

4.3.2. Deployment 
Deployment is the process of deploying or implementing the model 

in an environment that the user can access and use for its intended 
purpose. Cervical fracture is a critical injury that requires a domain 
expert to detect. Late detection of fractures can cause blood loss and risk 
a person’s life. Due to a lack of expertise among doctors or medical 
professionals and a lack of domain specialists, it is critical to develop a 
system that can assist medical professionals in detecting injuries early 
and taking the necessary precautions. Therefore, in this cervical spine 
feature research, one of the major goals is to build an E2E system that 
can assist doctors and other medical professionals in detecting the cer-
vical spine feature. From Fig. 9, a smartphone application based on 
Android has been developed to detect cervical spine fractures. To build 
the Android application, the best-performing model has been saved into 
the “h5” format and later converted to the TensorFlow lite version file 
type “tflite” using TFLiteConverter. The application user interface has 
been created using extensible markup language. The lite TensorFlow 
model and the backend of the application have been developed using the 
Java programming language. To load the images into the application, 
two input method, direct capture and choice from gallery option, has 
been given. The constructed Android app is compatible with Android 
versions 12.0 to 5.0. The developed application can be accessed and 
downloaded from our GitHub repository [58]. As the deployed model 
has achieved promising accuracy, it can effectively detect cervical spine 
features. 

4.3.3. Discussion 
A cervical spine fracture is a serious medical condition involving a 

break in one or more of the vertebrae located in the neck region. This 
type of injury can result from severe trauma, leading to significant pain, 
restricted neck movement, and potential neurological deficits. There-
fore, detecting cervical spine fractures early and efficiently is crucial to 
avoid critical damage or negative effects on our bodies. Over the years, 
DL methods have played a leading role in the detection of critical 
medical conditions. Therefore, our study employed the DL methods for 

detecting cervical spine fractures in individuals. Our study has employed 
three distinct DL models: MobileNetV2, InceptionV3, and ResNet50V2, 
with robust custom layers and data augmentation techniques that have 
been selected by performing an ablation study. The study’s imple-
mentation results have yielded significant insights and advancements. 
MobileNetV2 with augmentation emerged as the top-performing model, 
achieving an impressive accuracy of 99.75%. This achievement repre-
sents a substantial advancement in the field, showcasing the effective-
ness of the DL model’s custom layer and highlighting the importance of 
data augmentation techniques. Comparing this study’s results with 
related studies, our study demonstrates a remarkable improvement in 
accuracy and potential deployment. Our models have surpassed the 
prior studies, which often faced limitations such as lower sample sizes, 
reduced accuracy, and a lack of deployment strategies. However, it is 
essential to acknowledge the limitations of our study. The absence of 
web-based deployment remains a constraint that warrants future 
exploration. The significance of our study lies in its potential to revo-
lutionize clinical practice by providing a highly accurate and efficient 
tool for cervical spine fracture diagnosis. Furthermore, this study’s 
methods can aid researchers in detecting various other medical condi-
tions. As cervical spine fractures are a medical emergency, this study’s 
outcomes can offer a vital lifeline, enabling faster, more accurate di-
agnoses that can ultimately save lives and enhance the quality of patient 
care. 

5. Conclusion 

The study uses the DL-based transfer learning model to detect cer-
vical spine fractures. The transfer learning-based MobileNetV2, Incep-
tionV3, and ResNet50V2 models have been utilized to classify cervical 
spine fractures. An ablation study has been conducted to identify 
optimal data augmentation techniques and models’ custom layers. The 
results of the applied models have been compared to identify the best- 
performing model. Among the models, MobileNetV2 has achieved the 
highest accuracy of 99.75%. Furthermore, the best-performing model 
has been deployed in an Android-based application to assist doctors and 
medical professionals. Thus, utilizing state-of-the-art DL technology and 
practical implementation in Andriod-based applications, this study can 
contribute to the early and accurate identification of cervical spine 
fractures and ease the management of critical medical injury. 

In the future, findings of the cervical fracture classification research 
work can serve as a base point for the researcher who wants to conduct 
research on related fields. Furthermore, real-time web-based applica-
tions can be developed that can be used by all types of devices, 
regardless of the operating system. This study particle implementation 
can be applied to classify other spine-related fractures. Furthermore, 
various other techniques and methods, such as segmentation-based 
classification, feature extraction-based ML model classification, etc., 
can be implemented to analyze the performance of those techniques. 
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