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Abstract
Silica fibre thermoluminescence (TL) dosimeters have demonstrated versatility in medical and industrial, offering high 
spatial resolution, sensitivity, water resistance, and insensitivity to electromagnetic fields. A systematic review focusing on 
the medical applications of silica fibre TLDs is conducted, highlighting the potential of these materials in medical radiation 
dosimetry. Despite some limitations, such as non-linearity at low energies and relatively high signal fading, silica fibre TL 
dosimeters have shown excellent TL performance. However, their application in clinical practice is yet to be established 
since the TL responses for a wide range of doses and energies are not accurately certified yet.

Keywords  Silica glass fibre · Thermoluminescence dosimeter (TLD) · Glow curve · Dose–response · Signal fading

Introduction

Radiation dosimetry plays a crucial role in the diagnosis 
and treatment of a wide range of medical conditions, from 
cancer and cardiovascular diseases to neurological and 
metabolic disorders [1]. Accurate measurement and moni-
toring the radiation exposure are essential for ensuring the 
radiation safety of patients and healthcare professionals, as 
well as their well-being. However, radiation dosimetry in 
medicine is not without its challenges, particularly due to 
the fast-growing technologies in radiation medicine. Accu-
rate measurement (with high spatial resolution), dose and 
radiation variations, tissue heterogeneity, patient size, and 
patient shape are the most challenging aspects of dosimetry, 
requiring highly accurate and reliable techniques to over-
come. A schematic illustration of the typical amounts of skin 
dose at different medical applications of ionizing radiation is 

presented in Fig. 1. Due to the higher doses in radiotherapy, 
the applied dosimeters are required to be more stable, repeat-
able, and immune to environmental interferences such as 
humidity and temperature.

Due to their hands-on characteristics, thermolumines-
cence dosimeters (TLDs) are now broadly used in medical 
radiation for personal dosimetry, environmental monitor-
ing, and dose distribution [2]. Thermoluminescence hap-
pens when an insulator or a semiconductor material emits 
light when heating after being exposed to ionizing radiation. 
During the exposure, the absorbed energy in TL material 
could excite the atomic electrons to higher energy levels, and 
when the material is subsequently heated with specific con-
ditions, the exited electrons can return to their ground state 
while emitting visible light [3]. A broad range of TL mate-
rials are commercialized; for instance, TLD-100 (LiF:Mg, 
Ti) is a highly sensitive dosimeter that can measure a wide 
range of radiation doses, TLD-600 (CaSO4:Dy) and TLD-
500 (Al2O3:C) dosimeters which are efficient in the high-
dose and high-energy environment (such as radiotherapy 
and nuclear power plants), and Li2B4O7 dosimeters, which 
can be employed for radiation monitoring in medical and 
industrial sites. Despite their substantial advantages, conven-
tional TLDs suffer from several restrictions. These include 
the costly production and readout procedures, as well as 
their relatively large sizes, which could limit their spatial 
resolution. In addition, the accuracy and sensitivity of con-
ventional TLDs can generally be affected by environmental 
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factors (such as moisture, temperature, and magnetic fields), 
so they hardly can be employed in intracavitary and image-
guided modalities [4].

Numerous efforts have been conducted to find alternative 
materials for TL dosimetry. Patented by Amouzad and Rafiq 
[5], the silica optical fibres (basically developed for tele-
communication purposes) have revealed potential in passive 
radiation dosimetry due to their TL sensitivity [6]. In com-
parison with the conventional commercially produced TLDs, 
silica-based optical fibres can provide a higher spatial resolu-
tion down to several tens of micrometres with a low produc-
tion cost. These materials possess a non-hygroscopic nature 
and are not sensitive to electromagnetic interferences, thus 
showing high flexibility in radiation detection and promis-
ing capability for in vivo applications [7]. Throughout the 
last two decades, many researchers have performed detailed 
characterization of doped silica fibres and their applications 
in radiation detection [7–10]. Figure 2 presents the fre-
quency of published articles over the last seven years. Silica 
fibre dosimeters have a wide range of applications, from 
radiation-based industries like environmental monitoring, 

food irradiation, and quality dose audits, to medical radia-
tion disciplines such as radiotherapy, radiology, and nuclear 
medicine. The dependence of TL response on various factors 
is studied widely in the literature, including the impact of 
dosimeter size [11, 12], dopant material and concentration 
[13, 14], radiation type, dose and energy [15–18], radiation 
angle and source-to-detector distance [17, 19], and annealing 
procedure and dose history [20]. These factors have a sig-
nificant influence on the TLD’s accuracy, spatial resolution, 
dose/dose-rate dependency, linearity, reproducibility, signal 
fading, and energy response [11, 12, 21].

Given the widespread interest in the medical applications 
of doped silica fibre dosimeters, the authors were motivated 
to perform a study on the materials and methods, characteri-
zation results, and proposed applications mentioned in the 
literature with a statistical approach. While several review 
articles are already published in this field, to the best of our 
knowledge, a thorough systematic review containing a statis-
tical analysis of the results and also potential applications of 
these TL dosimeters has not been reported. This paper sum-
marizes the most recently published literature concerning 

Fig. 1   Typical dose levels 
received in medical radiation

Fig. 2   Frequency of literature 
over the assessed time period
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the structure of silica fibres and their characterization. We 
discuss the behaviour of different silica-based dosimeters 
while interacting with various radiation types, and also their 
potential applications in medicine. Furthermore, the research 
gaps and challenges, saturated topics, as well as proposed 
solutions in the literature are emphasized.

Methodology

This systematic review is performed by conducting a broad 
literature search on the studies that investigated glass fibre 
TLDs and their applications in medical science, specifically 
medical imaging, and radiotherapy. The search strategies 
and the number of results for each database are summarized 
in Table 1. Since our focus was on TL dosimeters, the stud-
ies on radioluminescence (RL), photoluminescence (PL), 
optically stimulated luminescence (OSL), and Cherenkov 
radiation features of silica-based dosimeters are excluded. In 
addition, the studies on non-medical applications, non-fibre 
dosimeters (including bead, powder, and gel dosimeters), 
and also plastic fibres are not included in this review. Since 
we intended to review the most recent articles that studied 
medical applications of this specific type of dosimeters, a 
seven-year time period is imposed and all the publications 
from 2017 are collected. The original articles from schol-
arly journals are assessed, and the conference proceedings/
posters, editorials, and review articles are excluded. The lit-
erature search was performed on February 17th, 2023 using 
Scopus, ScienceDirect, and Sunway University library (Tun 
Hussein Onn Sunway Library) websites.

Results and discussion

A total of 1451 records were retrieved by the literature 
search, and 4 additional records were added through cita-
tion searching. After the duplicate removal, and screening 
of the title, abstract, and full-texts, 25 original articles 

were included in this systematic review. The flow diagram 
of the literature selection process is depicted in Fig. 3.

Table 2 summarizes all the reviewed publications along 
with their key characteristics and major findings. A glance 
at this table reveals that the majority of reviewed articles 
are concentrated on the therapeutic aspects of silica fibre 
dosimetry, while the functionality of these dosimeters in 
diagnostic radiation applications has also been confirmed 
to be comparable with conventional TLD materials.

Fibre structure

Initially intended for telecommunication, silica fibres 
have also drawn attention for their thermoluminescent 
responses to ionizing radiation, as mentioned before. This 
feature has led to many studies exploring various types 
of these fibres for dosimetric applications. Silica fibres 
are generally manufactured through the Modified Chemi-
cal Vapor Deposition (MCVD) process, which is the pre-
ferred method for high-performance optical fibres [38]. 
This involves the preparation of a preform (made of SiO2), 
deposition of a soot layer (a fine powder made of a mix-
ture of gases such as germanium tetrachloride, GeCl4, and 
silicon tetrachloride, SiCl4), heating to a high temperature 
to consolidate the soot and finally core and cladding depo-
sition by a similar procedure [39]. Despite the satisfac-
tory TL response of un-doped fibres, the introduction of a 
dopant material to the fibre’s core creates extrinsic defects 
that increase the generation of electron–hole pairs after 
exposure to ionizing radiation, and in turn, the sensitivity 
of the dosimeter. The fibre’s cladding can also be made of 
either pure silica or a doped material [40]. The frequency 
of different structures used in the reviewed articles are 
summarized in Table 3, as well as the radiation sources 
and clinical applications of silica fibres. In this context, the 
term 'structure' involves the geometrical form of the fibre, 
the dopant material used, and the dopant concentration.

Table 1   Summary of the search strategy

Database Search Query Period of study Document Type Source Type Language Num-
ber of 
records

Scopus (Silica OR glass) AND (fibre OR fibre) AND 
dosimet* AND (medic* OR radiotherapy)

2017–2023 Article Journal English 132

ScienceDirect (Silica OR glass) AND (fibre OR fibre) AND 
(dosimeter OR dosimetry) AND (medical OR 
medicine OR radiotherapy)

2017–2023 Research Articles Journal English 402

Sunway 
University 
Library

(Silica OR glass) AND (fibre OR fibre) AND 
(dosimet*) AND (medic* OR radiotherapy)

2017–2023 Article Academic Journal English 917
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Fibre forms

The dosimetric performance of silica fibres can be signifi-
cantly influenced by their geometrical form [41]. The ini-
tial studies by Mahdiraji et al. [42] and Girard et al. [43] 
focused on the irradiation responses of commercially avail-
able cylindrical Ge-doped single-mode telecommunication 
fibres (SMF) and multi-mode telecommunication fibres 
(MMF) for TL dosimetry. Encouraged by promising results, 
these fibres received extensive interest, with various research 
groups aiming to characterize and evaluate their potential 
in medical dosimetry. Subsequently, fabricated cylindrical 
fibres (CF) and capillary optical fibres (COF) were examined 
for their medical applications, both were made using the 
aforementioned MCVD process. Afterwards, the flat fibres 
(FF) were developed as a collapsed version of COF through 
low vacuum pressure application during the drawing proce-
dure [44]. The collapsing lead to the fusion of capillary walls 

and the creation of more defects, potentially enhancing the 
TL yield. Another innovative micro-structured fibre, known 
as photonic crystal fibre (PCF), was also explored and identi-
fied as a more efficient TL dosimeter compared to ordinary 
CF [45]. The PCF can be produced of silica or polymer 
using a “stack-and-draw” method [46], which includes the 
fusion of the outer surfaces of a bundle of capillary fibres 
together. A random or regular distribution of longitudinal 
holes can be observed in the cross-section of the PCFs. 
Further improvement in the TL performance of these fibres 
was achieved by collapsing the PCF holes through the fibre 
drawing procedure, which is referred to as collapsed PCF or 
PCFc. Figure 4 shows the cross-sectional SEM images of 4 
different silica fibre forms.

Many researchers have compared these various forms in 
terms of their TL performance. In an early study, Bradley 
et al. [45] drew a comparison between the TL response of 
three un-doped fibres (COP, FF, and PCF) and two forms 

Fig. 3   Flow diagram of the 
literature selection process
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of Ge-doped fibres (COP, FF) under 0.5–8 Gy dose from 
6 and 20 MV photons. The results of this study showed 
a significantly higher response from FF other than COP. 
This could highlight the impact of generating new defects 
through the fusion of the capillary fibre’s inner surface. 
The study also showed an even greater response from PCF, 
which was also claimed to be attributed to the effect of 
surface fusion. The dose responses for these three fibre 

forms extracted from this study are presented in Fig. 5. 
The authors also examined the impact of Ge-dopant for 
capillary and flat fibres exposed to 6 MeV electron irra-
diation, revealing that the addition of the dopant could 
enhance the TL response by almost 10 times. However, 
the results were still lower than that of TLD-100 as the 
gold standard.

Another investigation was conducted by Mahdiraji et al. 
[41] on several types of silica fibres exposed to 6 MeV elec-
trons. They compared the F300 ultra-pure fused silica fibres, 
relatively pure fused (PS), Ge-doped, and GeB-doped fibres 
in terms of the TL response and glow curves. The results 
obtained from the TL responses across a range of doses, 
from 0.5 to 8 Gy, further confirmed the superior perfor-
mance of flat fibres compared to capillary fibres. Moreover, 
the inclusion of dopants was found to enhance efficiency, as 
the GeB-doped fibres exhibited higher TL responses com-
pared to the Ge-doped fibres. The glow curves acquired by 
these researchers also showed a second peak for FFs com-
pared to COFs, likely due to the contribution of additional 
defects in the structure of collapsed FF dosimeters (Fig. 6).

Bradley et al. [39] discussed the production techniques 
of silica-based media and their challenges, as well as their 
potential for TL dosimetry. The first attempts for char-
acterization of collapsed PCF with Ge and GeB dopants 
are also discussed, presenting and comparing the dose 
responses with TLD-100 and TLD-200. Using 80 kVp 
X-ray irradiation, the authors stated that PCFs could offer 
a higher TL response than that of TLD-100, however, 
TLD-200 could outperform these fibres.

Table 4 summarizes the benefits and drawbacks of the 
four main silica fibre forms, making a clear comparison 
based on the literature. It is important to note that accord-
ing to the characteristics of different forms of silica fibres, 
the choice of dosimeter will depend on the specific appli-
cations and dosimetry conditions. Thus said, a careful bal-
ance between the TL sensitivity, spatial resolution, stabil-
ity, and cost must be considered.

Table 3   Frequency of different fibre properties and radiation sources 
in the literature

Item Frequency in 
literature (%)

Fibre form
Cylindrical Fibre 63
Flat Fibre 54
Capillary Optical Fibre 43
Photonic Crystal Fibre 21
Dopant material
Ge 88
Ge–B 21
Other 8
Dopant concentration
2.3 mol% 21
4 mol% 8
6 mol% 38
8 mol% 8
Other/not specified 46
Radiation source
Photon 75
Electron 33
Gamma (60Co) 21
Proton 8
Clinical application
Therapeutic 88
Diagnostic 25

Fig. 4   Different silica fibre forms: a cylindrical fibre (CF), b capillary optical fibre (COF), c flat fibre (FF) (Ghomeishi et al. [47]), and d pho-
tonic crystal fibre (PCF) (Bradley et al. [45])
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Dopant material and concentration

The response of silica fibre TLDs to ionizing radiation 
strictly depends on the material and concentration of the 
dopants, as well as the type of radiation. One of the main 
roles of the dopant material is to increase the sensitivity of 
the TL dosimeter to radiation by increasing the number of 
electron traps and the ability to detect lower doses. Moreo-
ver, the dopants can enhance the stability of dosimeters by 
reducing the signal fading, which is the loss of the TL signal 
over time. The dopant can also improve other dosimetric 
properties as well, such as linearity and energy response 
[48]. In practice, a limited number of elements are proposed 
as dopant material for silica fibres TL dosimeters. So far, 
germanium (Ge), boron (B), thulium (Tm), phosphorus (P), 
aluminium (Al), and silver (Ag) are investigated in the lit-
erature and have shown promise [13, 39, 49]. As shown in 
Table 3, Ge-doped silica fibres are the most frequent types. 
The cost-effective manufacturing process of Ge-doped opti-
cal fibres has proven germanium as the most commercially 
favourable element for both telecommunication and dosim-
etry purposes. Comparing the Ge-doped and Ge–B-doped 
silica fibres in terms of their TL yield, several studies have 
also stated the superiority of the Ge–B dopant [36, 41, 49, 
50]. However, while the presence of boron would also add 
the extra capability of neutron detection to the silica fibre, 
the costly fabrication procedure of boron-doped fibres 
remains a major challenge [49].

The concentration of dopant in silica fibre could also 
affect the TL performance depending on the radiation prop-
erties. In general, a certain level of dopant concentration can 
improve the TL sensitivity, while exceeding this amount will 

Fig. 5   The TL response for three fibre forms (COF, FF, and PCF).  
Reproduced from Bradley et al. [45] with permission

Fig. 6   The glow curves for COF and FF dosimeters. Reprinted from 
Mahdiraji et al. [41] with permission

Table 4   Advantages and disadvantages of different forms of silica fibres

Fibre form Advantages Disadvantages

Capillary Optical Fibre (COF) Potential for high-dose radiation measurements due to 
high saturation dose (100 Gy) [13]

Limited sensitivity compared to CF and FF [41]
Difficult to handle and read because of the delicate 

geometry
Cylindrical Fibre (CF) High peak intensity (PI) of glow peaks [35]

Relatively low signal fading, with 8% after 30 days [36]
Sensitivity is about 5 times lower than PCF [36]
Angular dependence up to 35% in the air [34]
Limited spatial resolution due to the cylindrical 

geometry
Flat Fibre (FF) Up to 31 times higher sensitivity than COF, depending 

on the dopant material [41]
Higher sensitivity than CF [26]
Better stability over time and lower signal fading than 

CF (20% versus 26% after 120 days) [18]
Higher spatial resolution due to the obtainable smaller 

sizes
More convenient to handle and read than CF

Asymmetric geometry
Additional stage in its production procedure [44]

Photonic Crystal Fibre (PCF) Superior TL performance compared to other fibre 
forms [31]

Higher signal fading than CF [36]
Limited availability due to the complex fabrication 

procedure and higher costs compared to other forms
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result in quenching effects, where the dopant absorbs some 
of the emitted light and reduces the TL signal. Therefore, it 
is important to carefully optimize the dopant concentration 
based on the experimental condition to achieve the desired 
level of sensitivity. Different techniques could be applied to 
evaluate the dopant concentration in silica fibre, including 
refractive index profiling (RIP), scanning electron micro-
scope energy-dispersive x-ray analysis (SEM–EDX), and 
proton-induced x-ray emission or proton-induced gamma 
emission (PIXE/PIGE) [39].

The effect of dopant concentration is studied by Noor 
et al. [51], where 6, 8, and 10 mol% Ge-doped silica fibres 
were compared in terms of their TL characteristics under 
6 and 10 MV photon irradiation. Among these three, the 
6 mol% concentration showed the highest TL signal with the 
least amount of signal fading. This result was then confirmed 
by Begum et al. [14], which examined the dosimetric prop-
erties of 4, 5, 7, and 25 mol% concentrations of Ge-doped 
silica fibres subjected to 6 and 10 MV photons. Their results 
also indicated a TL yield of 37% of the standard TLD-100 
for 4 mol% concentration as opposed to a mere 2% for 
20 mol%. Figure 7 shows the acquired glow curves presented 
by this study, clearly indicating the impact of dopant concen-
tration. Using different dopant materials, Moradi et al. [13] 
have also compared three concentrations of phosphorus (1.3, 
3.6, and 7.8 mol%) in a P-doped silica fibre and two con-
centrations of aluminium (2, 4, and 5.1 mol%) in Al-doped 
silica fibre. According to their study, the silica fibres with 
higher concentrations of dopant were saturated earlier (at 
lower doses), indicating the greater potential of low concen-
trations for high-dose detection. However, as Table 3 dem-
onstrates, a large proportion (38%) of the reviewed literature 
have conducted their studies using a 6 mol% concentration 

of dopant material, highlighting the need for future studies 
on an optimal dopant concentration.

Fibre size

The size of silica fibre plays an important role in determin-
ing its TL properties. The effect of fibre diameter and core-
to-cladding ratio is extensively studied by Mahdiraji et al. 
[12], where the TL performance of Ge-doped cylindrical 
silica fibres is measured for different fibre diameters and 
core-to-cladding ratios. The authors assessed the glow curve, 
linearity, and sensitivity of 6 and 8 mol% fibres with five dif-
ferent diameters. To modify the core-to-cladding ratio, the 
samples were etched using HF (hydrofluoric) acid solution 
to reduce the diameter of their cladding. After normalizing 
the TL yield to the fibre core mass or cross-sectional area, 
the authors concluded that smaller core diameters result in 
more sensitive dosimeters due to a higher concentration of 
defects in the core. However, this can also lead to a non-
linear response at high doses due to the saturation of defects. 
Conversely, larger core-to-cladding ratios result in a more 
linear response at high doses but may reduce sensitivity as 
defects are dispersed over a larger area. Additionally, the 
larger cladding layer can provide more mechanical stability 
to the fibre, making it more durable and resistant to dam-
age. It is concluded that the optimal size and core-to-clad-
ding ratio in glass fibre dosimetry depends on the specific 
application and the desired sensitivity and linearity of the 
dosimeter. The impact of fiber size on the structure of the 
glow curve is depicted in Fig. 8 from Mahdiraji et al. [12], 
comparing five different Ge-doped CFs.

Radiation sources

The irradiation response of TLDs is directly dependent on 
the type and energy of the radiation, as well as the speci-
fication of the dosimeter itself. The selection of a suitable 

Fig. 7   The glow curves and TL intensity for typical tailor-made 
Ge-doped silica fibres with four different dopant concentrations. 
Reprinted from Begum et al. [14] with permission

Fig. 8   The glow curves for various silica fibre sizes with 8 mol% Ge-
dopant. Reprinted from Mahdiraji et al. [12] with permission

AQ4

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345



UNCORRECTED PROOF

Journal : Large 10967 Article No : 9109 Pages : 24 MS Code : 9109 Dispatch : 14-8-2023

	 Journal of Radioanalytical and Nuclear Chemistry

1 3

dosimeter for each particular medical application plays a 
crucial role in dose assessment. In radiotherapy, for instance, 
the durability and constancy of the performance of a dosim-
eter in high-dose rates are of great importance, as well as the 
stability in harsh environmental conditions such as humidity, 
temperature, and pressure variation [52]. In brachytherapy, 
providing high dynamic range and high spatial resolution 
are crucial aspects of the dosimeter owing to the existence 
of very high dose gradients [53]. In the case of low-energy 
X-rays, on the other hand, adequate sensitivity to low-dose 
radiation (in the range of mGy) would be in demand, since 
these energy ranges are now used in both radiation therapy 
and medical diagnostics. As demonstrated in Table 3, a sig-
nificant percentage of the literature had focused on photon 
radiation, while proton and neutron dosimetry have not been 
extensively studied. This is likely due to limited access to 
hadronic irradiation facilities. In addition, the majority of 
studies are dedicated to the performance of silica fibres in 
high-energy therapeutic radiation. The extracted data could 
show a clear need for further research on proton, neutron, 
electron, and low-energy X-ray therapies.

X‑ray and gamma‑ray

According to our literature assessment, the performance of 
silica-based fibre dosimeters upon irradiation with photons 
is broadly investigated. As for low-energy diagnostic X-rays 
radiation, Alyahyawi et al. [33] investigated the GeB-doped 
FF and Ge-doped discs for dosimetry of dental radiography 
and mammography. The TL sensitivity, linearity, energy 
response, and fading of the glass fibres in low radiation lev-
els were examined in this work. The delivered dose from 
dental radiographic irradiation was from 5 µGy to 1.3 mGy, 
and for mammography was from 0.4 to 28 mGy. Despite 
the reported high sensitivity, especially for Ge–B FF, sub-
linearity behaviour for doses less than 1 mGy is noticeable 
for this dosimeter. The signal fading is also reported as 22% 
for Ge–B FF and 14% for Ge-doped discs over a period of 
15 days after irradiation, which is respectively three and two 
times higher than that of the TLD-100. The TL response 
for the examined dosimeters in this work demonstrated the 
high performance of silica fibres and their superiority over 
TLD-100 for medical low-dose detection.

The TL performance of silica fibres in the diagnostic 
radiation energy range was also investigated by Alyahyawi 
et  al. [36]. They used an X-ray tube to deliver 0.1- to 
10  mGy doses into PCFc-Ge, PCFc-Ge–B, SMF, and 
TLD-100 dosimeters. According to their results, a rela-
tively high energy dependence for the PCFc was reported, 
with the lowest response contributed to 120 kVp x-rays. 
However, the measured sensitivities for PCFc-Ge–B, 
PCFc-Ge, and SMF dosimeters were substantially high, 
approximately 15, 10, and 2 times greater than that of 

TLD-100. Due to the acceptable TL performance and also 
the low fading (0.4–0.5% per day), these fibres are claimed 
to be capable candidates for medical diagnostic dosimetry.

As we noted earlier, most of the studies on silica fibres 
rely on high-energy therapeutic photons, which are typi-
cally generated using clinical linear accelerators (LINAC). 
Noor et al. [54] applied Ge-doped silica fibres for postal 
radiotherapy dose audits. High-energy photon beams with 
6, 10, and 15 MV energy were used to deliver a range of 
doses from 5 cGy to 10 Gy to the fibre dosimeters, which 
proved a linear response over the whole energy range. 
The TL response of the fibres was independent of dose 
rate, angular, and temperature. However, the response was 
energy-dependent for photon energies from 6 to 15 MV. 
In another work, Begum et al. also examined the dose rate 
dependency [32] for Ge-doped FF after photon exposure. 
The dose rates used in this work were 100, 200, 300, 400, 
and 500 MU/min, and a fixed amount of the dose was 
delivered by adjusting the irradiation time. In this con-
text, a monitor unit (MU) is equivalent to 1 cGy dose. The 
TL response acquired in their study remained rather con-
stant by changing the dose rate, which approved the dose 
rate dependency of these silica fibres. The authors also 
highlighted the necessity of more comprehensive work 
in lower dose rates for accurate dosimetry. However, the 
overall acceptable performance of silica-based fibres could 
demonstrate their capability for therapeutic dosimetry at 
routinely applied dose rates and energies in radiotherapy 
modalities [49].

The widespread applications of 60Co gamma rays in 
radiotherapy have also drawn attention to utilizing silica 
fibres for dose evaluation in this field. Due to the emis-
sion of relatively high-energy photons during the decay 
of the 60Co isotope into 60Ni (1.17 MeV and 1.33 MeV, 
Emean = 1.25 MeV), this radioisotope is an ideal radiation 
source for the treatment of various types of cancer by spar-
ing of the skin (e.g. for head and neck, lung, brain, and 
prostate cancers) [55]. The characterization of 6 mol% 
Ge-doped FF under 60Co gamma-ray irradiation was per-
formed by Nawi et al. [56], comparing the key features of 
this TL dosimeter against TLD-100. The glow curves for 
four different dimensions of flat fibres were acquired, as 
well as the dose–response, sensitivity, fading, and repro-
ducibility. The glow curves have a simple peak within the 
range of 320–370 °C, presenting a simple trap distribu-
tion. Moreover, considering the linearity with a correlation 
coefficient larger than 0.94 for all the sizes, and repro-
ducibility with a coefficient of variation (CV) lower than 
4%, it is claimed that the Ge-doped FF could be suitable 
dosimeters for gamma-ray detection. It is further stated 
that the fibres with the smallest size have shown the high-
est TL yield, which is consistent with the previously men-
tioned studies.
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Electron

Due to the limited range of electrons in soft tissue, elec-
tron radiotherapy can offer several advantages over pho-
tons, including targeted radiation delivery, lower radiation 
exposure to healthy tissue, and shorter treatment duration. 
Several studies have conducted experiments on the utili-
zation of silica fibre dosimeters for electron radiotherapy 
dosimetry. Nawi et al. [28] used tailor-made silica fibres 
with 6 and 8 mol% Ge-doped to compare different forms 
and sizes in terms of TL yield in electron dosimetry. All the 
fibres had acceptable linearity in the 1–4 Gy dose range, and 
the reproducibility test showed a standard deviation of less 
than 2% for 6 mol% and less than 4% for 8 mol% cylindri-
cal and flat fibres. Overall, they concluded that the smallest 
size FF (85 μm × 270 μm) with 6 mol% concentration shows 
the highest TL response, as well as the lowest signal fading 
(around 26.9% at 120 days after irradiation). These results 
are partially consistent with the study of Zakaria et al. [26], 
where CF and FF optical fibres with 2.3 and 6 mol% Ge-
doped were studied under the influence of electron beams. 
Electrons with 6, 9, and 12 MeV energy were used to deliver 
a 1 to 5 Gy dose to the medium, acquiring excellent linearity 
and TL yield. They also showed that the smaller size 6 mol% 
FF (620 μm × 165 μm) has better dose dependency than 
other forms, and the larger 2.3 mol% FF (643 μm × 356 μm) 
has higher performance in signal fading.

Moreover, Zakaria et  al. suggested the rather stable 
behaviour of 6 mol% FF in dose rate response could reveal 
its potential in FLASH radiotherapy, which is a class of radi-
ation therapy that delivers an ultra-high dose of radiation in 
a very short period of time, with the dose rates of 40 Gy/s 
or higher. However, accurate correction factors for higher 
dose rates are needed to be established in future research. 
The behaviour of Ge-doped FF under ultra-high electron 
doses (1 Gy to 1 MGy) is also investigated by Alawiah et al. 
[16]. The TL sensitivity of FF dosimeters was shown to be 
lost with the increase in dose, though it is 4.8 times higher 
than TLD-100 in the studied dose range. The authors sug-
gested that this sensitivity reduction could be related to the 
interaction of external electron radiation with inner shell 
atomic electrons.

Proton

Proton therapy is a precise form of radiation treatment that 
can target cancer cells while sparing healthy tissues. This 
can result in a lower risk of radiation damage to tissues, 
fewer side effects, and higher treatment success. The com-
plexity of radiation-tissue interactions and the beam scatter-
ing in this method has raised the demand for highly accu-
rate dosimetry and treatment planning system. The potential 
applications of silica fibre TLDs in proton therapy have been 

of interest mainly due to providing high spatial resolution 
and TL sensitivity [57–59]. Hassan et al. [15, 37] performed 
extensive research on 2.3 and 6 mol% Ge-doped FF and CF 
dosimeters subjected to proton, gamma, photon, and elec-
tron irradiations. Using 150 and 210 MeV protons, a wide 
range of doses (up to 10 Gy) was delivered to the dosimeter, 
and the TL characteristics were investigated. Their experi-
ments on CF dosimeters showed a higher TL response for 
higher concentrations. In contrast, the 2.3 mol% Ge-doped 
FF had a greater dose response, better reproducibility, and 
the least signal loss than the other examined fibres. Never-
theless, similar to other radiations, the sublinear response of 
the silica fibres at lower radiation doses is again observed 
for proton dosimetry.

Neutron

Neutron dosimetry faces many challenges because of the 
complex nature of neutrons as uncharged particles, such as 
the diversity and energy dependence of neutron interactions. 
Additionally, the lack of proper cross-section data and the 
difficulty of providing adequate shielding are other obstacles 
to accurate neutron dosimetry. Few studies have evaluated 
the TL performance of silica fibres in response to neutron 
irradiation. In an early study, Hashim et al. [21] studied com-
mercial Al- and Ge-doped silica fibres exposed to fast neu-
trons from a 241Am–Be neutron source with 10.6 GBq activ-
ity, and for periods of 1, 2, 3, 5, and 7 days. The experiment 
showed a sensitive linear response for Ge-doped fibre, while 
the Al-doped fibre did not show a notable TL response. Veri-
fied by the Monte Carlo simulations using MCNP5 code, the 
TL response is shown to be increasing for longer irradiation 
times, as it is displayed in Fig. 9.

Characterization of silica fibres

A broad range of output parameters are reported in the litera-
ture concerning the characterization of fibres and their TL 
performance. These include the glow curve, dose response, 
sensitivity, reproducibility, and signal fading. In this section, 
a more detailed discussion of the characterization of silica 
fibres and the related output parameters is provided.

Glow curve

The glow curve is a graphical representation of the TL 
response of a material, showing the emitted light as a func-
tion of temperature after exposure to ionizing radiation. The 
glow curve is of great importance in TL dosimetry as it can 
provide information about the energy and dose of the radia-
tion received, allowing accurate and precise determination 
of radiation exposure for various applications. The impacts 
of different parameters such as fibre form, fibre size, and 

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546



UNCORRECTED PROOF

Journal : Large 10967 Article No : 9109 Pages : 24 MS Code : 9109 Dispatch : 14-8-2023

	 Journal of Radioanalytical and Nuclear Chemistry

1 3

the dopant concentration on the intensity and shape of the 
glow curve are elaborated in previous sections. The inten-
sity of the glow curve is recognized to be affected by the 
radiation type, energy, and also the readout heating rate 
due to the changes in trapping parameters [2]. The kinetic 
parameters of glow curves are investigated by Lam et al. 
[35] for 6 mol% Ge-doped flat and cylindrical silica fibres 
under 6 MV photons. In their study, the WinGCF software 
was used to acquire the deconvolution of glow peaks and the 
kinetic parameters such as maximum temperature (Tmax), 
activation energy (Ea), and peak integral (PI). The decon-
voluted glow curves included 5 glow peaks, with the first 
peak attributed to the electrons from the lowest temperature 
trap, and the fifth peak from the highest temperature trap 
(Fig. 10). Their results showed that the peak integral (PI) 
for CF dosimeters were higher than that of the FF and com-
mercial fibres. The peak integral (PI) is a measure of the 
total amount of light emitted from a TLD during the thermal 
stimulation measurement, calculated by integrating the area 
under the glow peak of the TL glow curve. The authors also 
evidenced the consistency of Tmax for different heating rates 
for the same radiation exposure type.

Rais et al. [27] also studied the structure of glow curves 
for 2.3 mol% and 6 mol% Ge-doped CF and FF, under 
different doses of kilo-voltage X-ray irradiations typi-
cally used in CT scan modalities. The kinetic parameters 
are also investigated using the glow curve deconvolution 
analysis. According to their results, the shape of glow 
curves was highly dependent on the fibre structure, as can 
be observed in Fig. 11a. Additionally, their deconvolution 
analysis also revealed 5 curves (P1–P5), consistent with 
the previously mentioned study of Lam et al. [35]. The 
deconvolution of the double-peaked glow curve is shown 

in Fig. 11b, demonstrating the dominance of P3 which pro-
vided the greatest PI among all the examined beam types. 
The authors consequently concluded that the high peak 
temperatures and acceptable dose dependency could prove 
these silica fibres as suitable candidates for CT dosimetry. 
However, more extensive research on the characteristics of 
glow peaks from various types of silica fibres and radiation 
sources is recommended [31].

Fig. 9   The TL response of Ge-doped and Al-doped fibres irradiated 
by fast neutrons. Reprinted from Hashim et al. [21] with permission

Fig. 10   The de-convoluted glow curves for a 6  mol% Ge-doped CF 
irradiated by a 6  MV photon beam with 600  MU/min dose rate. 
Reprinted from Lam et al. [35] with permission

Fig. 11   The TL glow curves for four different silica fibres (a), and 
the deconvoluted glow curves for 6 mol% Ge-FF (b). Reprinted from 
Rais et al. [27] with permission
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Dose response

The dose response of a TL dosimeter refers to the relation-
ship between the absorbed dose of radiation and the corre-
sponding TL signal emitted by the dosimeter. This response 
is crucial in medical dosimetry as it allows for accurate 
measurement and assessment of radiation doses delivered 
to patients during medical procedures, ensuring the safety 
and effectiveness of radiation therapy treatments. The lin-
earity index, f(D), is a measure of the linearity of the dose 
response of a radiation detector, defined as the ratio of the 
detector response at a high dose to the response at a low 
dose. An f(D) value of 1 indicates the perfect linearity, how-
ever, the dose response of TL dosimeters is typically non-
linear (f(D) > 1) [15]. This nonlinearity must be taken into 
account when calibrating TL dosimeters for use in medical 
dosimetry.

The f(D) is calculated by Rais et al. [29] for 2.3 and 
6 mol% Ge-doped FF and CF dosimeters exposed by diag-
nostic 120 kVp X-ray, delivering doses from 2 to 40 mGy. 
The results are compared against commercial fibres and 
TLD-100, as it is shown in Fig. 12. Based on their outcomes, 
the fabricated and commercial fibres showed supralinear 
behaviours at doses less than 2 mGy, however, the f(D) 
was inclined to 1, and for all these dosimeters for the above 
4 mGy and up to 40 mGy.

work of Alyahyawi et al. [33], where Ge–B-doped FF 
and Ge-doped discs are utilized for radiation dosimetry in 
low-energy photons of dental radiography and mammogra-
phy systems. According to their results, the Ge–B-doped FF 
showed greater TL response over the Ge-doped discs and 
TLD-100, revealing its capability to linearly measure the 
diagnostic doses down to 2 mGy with a coefficient correla-
tion higher than 98%.

In the therapeutic domain, the dose response linearity of 
Ge-doped FF with various sizes was calculated by Abdul 

Rahim et al. [60] for 6 MV photons at 400 cGy/min and 
with a dose range of 1–10 Gy. They showed that all the 
flat fibre sizes expressed linear responses in this dose range 
with correlation coefficients higher than 99.4%. Based on 
their results, both TL responses and correlation coefficients 
were higher for flat fibres with smaller sizes. However, a 
different behaviour was observed for these flat fibres under 
ultra-high radiation doses according to Alawiah et al. [16] 
study. As a part of their comprehensive work, the authors of 
this study calculated the linearity index for Ge-doped FF and 
compared it to TLD-100. A 2.5 MeV electron beam is used 
to deliver a range of doses (from 1 Gy to MGy) to the fibres. 
A supralinear behaviour was observed for Ge-doped FF with 
a rapid increase in f(D), from around 5 at 1 kGy to about 9 
at 10 kGy. Future research may need to establish appropriate 
correction factors due to the non-linear response of silica 
fibres at very low and ultra-high doses. This highlights the 
importance of further investigating the behaviour of silica 
fibres within this dose range.

Sensitivity

The TL sensitivity refers to the ability of a thermolumines-
cent material to detect and accurately measure the absorbed 
radiation doses. It is defined as the ratio of the change in the 
TL signal to the change in the absorbed dose and is influ-
enced by factors such as the type of material, dopant concen-
tration, and the method of preparation. The TL sensitivity 
can typically be presented as the TL yield per unit dose, 
normalized by the unit mass of the TLD. As a commonly 
used parameter in TL dosimetry, many have included sensi-
tivity in their reports, presenting a credible tool for making 
comparisons between various types of silica fibres.

Zakaria et al. [26] examined the TL response of different 
structures of fabricated Ge-doped silica fibres and commer-
cial fibres receiving megavoltage electron irradiation. Along 

Fig. 12   The linearity index vs 
delivered dose. Reprinted from 
Rais et al. [29] with permission
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with the other main characteristics, the TL sensitivity is also 
measured for all the samples. Figure 13 shows the sensitivity 
of silica fibres for 6 MeV electrons across the doses range 
of 1–5 Gy extracted from Zakaria et al. [26]. The figure 
illustrated an overall rising trend in TL yield for all the fibres 
by increasing the radiation dose. It is also observable that 
the TL yield for flat fibres with different sizes and dopant 
concentrations was significantly higher than that of other 
types. For application in diagnostic X-ray imaging, the pre-
viously mentioned study by Alyahyawi et al. [36] have also 
reported the TL sensitivity for PCFc-Ge, PCFc-Ge–B, SMF, 
and TLD-100. Utilizing an X-ray tube with 80 kVp potential, 
their measurements showed that the PCFc-Ge–B dosimeters 
had the highest performance with the TL sensitivity of 39 
times more than TLD-100.

Reproducibility

The sensitivity of a TL material might experience variations 
after being repeatedly used. The reproducibility factor refers 
to the ability of these devices to consistently produce similar 
results when exposed to the same radiation dose under iden-
tical conditions. It is a critical characteristic that ensures the 
reliability and accuracy of TL dosimetry measurements. To 
assess reproducibility, repeated measurements are performed 
using multiple dosimeters, and statistical analysis techniques 
such as standard deviation are employed. The acceptable TL 
reproducibility for medical applications is a CV of less than 
5% [2]. According to the literature, silica fibre TLDs have 
generally shown excellent reproducibility through different 
investigations [48, 49, 61].

Entezam et al. [62] used 6 and 10 mol% tailor-made 
Ge-doped silica fibres to measure the dose from electron, 
megavoltage photon, and 60Co gamma irradiations. The 
characterization of silica fibres resulted in a linear dose 
response, with reproducibility from 1 to 5%. However, the 
TL response of these fibres was rather dependent on energy, 

radiation field size, and irradiation angle. The cylindrical 
Ge-doped fibres with 2.3 and 6.0 mol%, and commercial CF 
with 4.0 mol% concentration are used by Hassan et al. [15] 
to examine their behavior for proton radiation dosimetry. A 
considerable dose–response was observed in this work for 
Ge-CFs which surpassed the dose response for TLD-100. As 
for the linearity index, f(D), the maximum deviation from 
1 for 2.3 mol% Ge-CF was 9% at 1 Gy, and for 6.0 mol% 
Ge-CF was 4% at 7 Gy. Nevertheless, the reproducibility test 
showed a maximum CV of 9%, which was higher than the 
medically acceptable threshold. The authors then stated that 
this value could be decreased by performing a screening pro-
cess on the fibres before using them in the final experiment.

In a recent study, Begum et al. [63] used collapsed PCF to 
obtain the percentage depth doses (PDD) for 6 and 10 MV 
photons. The PDD from their experiments were validated by 
the standard ionization chamber with a maximum of 5% dis-
agreement. They also established a threshold dose for PCFs 
as 28 mGy for 6 MV and 27 mGy for 10 MV. These are the 
minimum amount of doses that can induce a TL response 
distinguishable from the background. The reproducibility 
of these fibres after five cycles of irradiation and readout 
using a 4 Gy dose was reported to have a CV of less than 
2.5%. According to our literature assessment, most studies 
have reported CV values between 2 and 4% for the reproduc-
ibility of different types of silica fibres. This is lower than 
the maximum acceptable level in medical dosimetry (5%), 
which confirms the appropriate performance of silica fibre 
dosimeters in terms of reproducibility.

Signal fading

Signal fading refers to the phenomenon where the TL signal 
of a dosimeter decreases with time after irradiation. Several 
reasons can be contributing, including thermal fading, opti-
cal fading, and radiation-induced fading. The radiation qual-
ity, fibre structure, and storage conditions of the dosimeters 

Fig. 13   A comparison of TL 
sensitivity of various silica 
fibre structures. Reprinted from 
Zakaria et al. [26] with permis-
sion
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can play a role in determining signal fading. In general, the 
less fading a dosimeter has over time, the more accurate and 
reliable the readout results will be. The TL signal of silica 
fibre dosimeters typically experiences a faster loss during 
the first 7–10 after irradiation, while it remains more stable 
afterwards [51].

The signal fading for Ge-doped FF dosimeters subjected 
to 150 MeV protons was calculated by Hassan et al. [37]. 
From their experiments, 96 days after the irradiation, the 
signal loss of 18%, 24%, and 58% for TLD-100 chips, 
2.3 mol%, and 6.0 mol% fibres, respectively (Fig. 14). 
These percentages were the normalized values to day three 
post-irradiation, suggesting that silica fibres performed less 
effectively than TLD-100. The fading percentages for Ge–B 
FF, Ge-doped disc, and TLD-100 subjected to low-energy 
X-ray irradiation were reported by Alyahyawi et al. [33] to 
be 22%, 14%, and 7%, respectively. A comparison between 
different sizes of cylindrical and flat Ge-doped silica fibres 
was conducted by Nawi et al. [28] in terms of their TL per-
formance. According to their results related to signal fading, 
the signal loss was less than 50% for 6 mol% Ge–doped 
fibres at 120 days after irradiation. For both the fibre forms, 
the smallest ones had the least signal fading with around 
29.7% for cylindrical and 26.9% for flat fibre. Comparing 
CF and FF under a 2 Gy dose from a 9 MeV electron beam, 
Abdullah et al. [18] reported a loss of 26% and 20% for CF 
and FF, respectively. The TL yields in their calculation were 
measured 120 days post-irradiation and were normalized to 
the 15th day after irradiation. This study also reaffirmed the 
lower signal loss for smaller fibre sizes.

A relatively better performance was observed by using 
PCF dosimeters according to the previously discussed study 
by Alyahyawi et al. [36]. They reported signal fading of 20%, 
13%, and 7% for PCFc-Ge and PCFc-Ge–B over 30 days 
after 80 kVp X-ray irradiation. These results were consist-
ent with the former study conducted by Rozaila et al. [50], 
where the signal loss was measured over 35 days after 80 
kVp X-ray irradiation delivering 1 Gy dose. They reported a 

fading of 21% for PCFc-Ge, and 15% for PCFc-Ge–B, while 
the loss was 7% for TLD-100.

Overall, despite the satisfactory results for some fibre 
types (such as PCF and small-size FF), the signal fading 
for silica fibre TLDs reported in the literature is still not 
comparable with the well-established TLD-100. Therefore, 
more improvements seem to be needed in this regard, such 
as exploring other dopant materials or evaluating the effect 
of post-irradiation annealing.

Other fibre characteristics

Effective atomic number (Zeff) Zeff represents the tissue 
equivalence of the TL dosimeter, which is essential for accu-
rate measurement of absorbed dose in different tissues and 
organs of the human body. Different tissues in the human 
body have varying Zeff values, with soft tissue having a value 
of 7.42 and bones ranging from 11.6 to 13.8 [64]. There-
fore, the dosimeter material should have a Zeff value close 
to that of the irradiated tissue to ensure accurate dose meas-
urement. While the dopant material primarily determines 
the Zeff [65], the values for silica fibres in the literature are 
generally within the range of 12–15 [49, 50]. This could 
closely approximate the Zeff of human bone, making these 
silica fibres suitable candidates for medical dosimetry appli-
cations. However, further research is necessary to establish 
accurate correction factors for estimating the dose delivered 
to soft tissue.

Minimum detectable dose (Threshold dose) Minimum 
detectable dose (MDD) refers to the lowest dose of radiation 
that can be reliably detected and measured by a TL dosim-
eter. It represents the minimum amount of radiation required 
to produce a measurable TL signal above the background 
noise level. It is calculated from the following formula [66]:

where BGmean is the mean TL background signal and 
PMTmean is the photo-multiplier noise signal, both obtained 
from five unirradiated but annealed fibres, σ is the stand-
ard deviation of background signals, and α is the slope of 
the TL response. In the early study of Mahdiraji et al. [42], 
the MDD is calculated using the above-mentioned equation 
for SMF-1 with 4.9 wt% and SMF-2 with 4.3 wt% Ge con-
centrations, as well as the TLD-100. Three electron beams 
with 6, 9, and 20 MeV energies were used to irradiate the 
samples, and the average MDD values for SMF-1, SMF-2, 
and TLD-100 were about 6, 39, and 19 mGy, respectively. 
Their results indicated the impact of dopant concentration 
on MDD, where higher concentrations could detect lower 
doses.

Using low-energy beta irradiation from 90Sr, Bajuri et al. 
[67] calculated the MDD for Ge-doped cylindrical fibres 

(1)MDD = (BG
mean

+ PMT
mean

+ 2�)∕�

Fig. 14   A comparison between the signal fading of Ge-doped FF and 
TLD-100 chips. Reprinted from Hassan et al. [37]
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and stated that these fibres can detect low-energy electrons 
down to 0.026 and 0.029 mGy for 604 µm and 483 µm diam-
eter CFs. The behaviour of these fibres when subjected to 
an Am–Be neutron source (4.5 MeV) and a proton beam 
(150 MeV) is also investigated in this work. The MDD for 
neutron detection using the 604 µm CF was determined 
to be 0.55 mGy, while for the 483 µm CF, it was found to 
be 0.38 mGy. The same values for proton radiation were 
19.16 mGy for 604 µm and 31.81 mGy for 483 µm diam-
eter. Their findings showed the ability of silica fibres to 
linearly (R2 = 0.97) measure the low-dose radiations, with 
lower MDD for beta and neutron radiation using the larger 
CF. This superiority of larger CF in terms of MDD was 
also affirmed by Noor et al. [51] for high-energy photon 
irradiations. Two sizes of cylindrical fibres with 6, 8, and 
10 mol% concentrations of Ge were examined in their work. 
In addition to observing lower MDDs for larger sizes, it was 
found that a lower concentration of dopant could lead to the 
least MDD. Specifically, the minimum doses of 27 mGy and 
126 mGy were detected using 604 µm and 241 µm diameter 
fibres, respectively.

Angular (directional) dependency The angular depend-
ency of a TL dosimeter is an important characteristic to con-
sider when using dosimeters for medical radiation, as the 
angle of incident radiations can affect the accuracy of the 
dose measurements. To ensure accurate in vivo dose meas-
urements regardless of the angle of incidence, it is generally 
desirable for the dosimeters to have the least angular depend-
ency [61]. In their work, Entezam et al. [62] examined the 
angular dependency of a 270 µm Ge-doped CF using 60Co 
irradiations. The fibres were positioned at the isocentre of 
a Perspex phantom and irradiated with 9 different gantry 
angles. The results of their study indicated that the TL yield 
of the examined fibres was found to be independent of the 
irradiation angle. The authors also emphasized this charac-
teristic as an advantage of silica fibres compared to diode, 
diamond, and MOSFET detectors.

Moradi et al. [34] conducted a comprehensive study on 
the angular dependency of silica fibre TL dosimeters using 
SMF dosimeters exposed to 30 kVp X-rays and 6 MV pho-
tons. The study assessed the response of the fibres in three 
placements, including free-in-air, on-surface, and in-depth, 
and also Monte Carlo simulations were performed to vali-
date the experimental results. In contrast to Entezam et al., 
the findings of this experiment revealed a 35% angular 
dependency for 30 kVp photons when the dosimeters were 
placed in free air. The angular dependencies were lower for 
6 MV, with values of 20%, 10%, and 3% for free-in-air, on-
surface, and in-depth placements, respectively. The authors 
attributed these results to the secondary electron equilib-
rium inside the dosimeters. They concluded that these fibres 
could potentially be used for in-depth dosimetry in radiation 
therapy, suggesting that the use of tailor-made silica fibres 

instead of commercial SMFs may increase the core diameter 
of the fibres and improve their angular dependency.

Potential applications of silica fibres

The previous sections have discussed the potential appli-
cations of silica fibre TLDs in therapeutic and diagnostic 
radiation dosimetry. However, the remarkable dosimetric 
characteristics exhibited by these fibres may show additional 
prospects for their implementation in both medical and 
non-medical fields. This section will explore some practical 
applications of these dosimeters, focusing on their utilization 
in clinical trials and environmental dosimetry.

In vivo patient dosimetry

As previously noted, the primary objective of fabricating 
and characterizing silica fibre TLDs was to develop a novel 
category of TL dosimeters that could serve as an alterna-
tive to conventional TLDs, with improved performance. 
In addition to their excellent laboratory TL performance, 
several studies have also investigated the potential of these 
dosimeters in clinical trials. In a pioneering study, Moradi 
et al. [19] explored the potential of Ge-doped silica fibre 
TL dosimeters for measuring skin dose during intraopera-
tive radiotherapy (IORT) for patients with breast cancer. 
The dosimeters were first characterized to evaluate their 
response to different beam qualities and dose rates, using 
an INTRABEAM® X-ray source with a nominal peak volt-
age of 50 kVp and a water phantom. The results were then 
validated using Gafchromic EBT3 film measurements and 
MCNPX Monte Carlo simulations. Regarding the clini-
cal trial, the silica fibre TLDs were placed at four distinct 
locations on the skin of three patients' breasts to measure 
the dose during breast-conserving surgery and IORT. The 
authors reported that the skin dose in all three patients did 
not exceed the standard 6 Gy. Consequently, they con-
cluded that with accurate consideration of correction factors 
(related to the applicator size) and the combined uncertainty 
(9.5–12.4%), these types of dosimeters can be utilized for 
in vivo dosimetry in the energy range of X-ray IORT.

In a study by Alyahyawi et al. [24], the performance 
of GeB-FF and TLD-100 dosimeters were compared in 
stereotactic radiosurgery (SRS) using a Gamma Knife 
as part of a safety audit. The dosimeters were placed 
on the skin of 20 different patients to calculate the scat-
tered doses to the thyroid, chest, and pelvis during a brain 
radiosurgery treatment. The results showed acceptable 
consistency between the two dosimeters, with the uncor-
rected absorbed doses for GeB-FF being 1.4, 1.2, and 
1.5 times higher than TLD-100 for the pelvis, chest, and 
neck, respectively. The differences were attributed to the 
energy-dependence TL response of silica-based media, 
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which needs to be considered for calibrations. The authors 
concluded that silica fibre dosimeters were a possible can-
didate for in vivo skin dose calculations.

A rather similar study was conducted by Alyahyawi 
et al. [30] to evaluate the dose to the eye lens during the 
treatment planning stage (CT scanning) and high-energy 
SRS treatment at 20 radiotherapy centres in the UK. The 
study utilized an anthropomorphic head phantom and 
in vitro measurements were performed using commercial 
Ge-doped silica fibres, silica glass beads, and TLD-100. 
The dosimeters were characterized based on their energy 
and dose response, linearity, fading, and readout. Results 
showed that the measured doses by silica fibres and silica 
beads were almost twice the dose measured by TLD-100 
for various imaging and therapeutic machines. This was 
stated to be attributed to the different spectrum of scat-
tered radiations than the incident beam, which might have 
enhanced the photoelectric interactions in silica-based 
media. The audit results showed that the dose to the eye 
lens for all the centres was lower than 0.5 Gy for SRS 
treatment and ranged from around 0.03 to 0.08 Gy for CT 
scans. According to the authors of this study, using silica 
fibres is possible for eye-lens dosimetry. However, prac-
tical applications would require energy to be calibrated 
since these silica materials are not tissue-equivalent.

Targeted radionuclide therapy dosimetry

Targeted radionuclide therapy (TRT) is a cancer treatment 
modality that involves using radioactive isotopes coupled 
with targeting agents to eliminate cancer cells [68]. The 
technique has been used historically to treat various cancer 
types, including prostate cancer, neuroendocrine tumours, 
and lymphomas, using a variety of beta and alpha-emitting 
radionuclides, such as 131I, 90Y, 177Lu, and 223Ra. As one of 
the possible applications of silica fibre dosimeters, Bradley 
et al. [31] investigated the TL performance of Ge-doped 
SiO2 optical fibres for in vitro measurement of alpha par-
ticles irradiated from 223Ra. Six different types of fibres 
(Ge-CF, Ge-FF, Ge-PCF, Ge-PCFc, Ge-B-PCFc, and Ge-
Br-PCFc) were irradiated by 60 kVp X-rays and also by 
6.7 MeV alpha particles from 223Ra. The TL responses 
were measured to evaluate the effectiveness of B and Br 
dopants in enhancing the sensitivity of silica fibres to 
X-ray and alpha radiations at a delivered dose of 50 Gy. 
The results showed that both dopants effectively increased 
the responses. Additionally, the TL responses for all the 
fibres were estimated to be approximately one order of 
magnitude higher than that of TLD-100. These findings 
further support the previously discussed outcomes and 
indicate the potential application of silica fibres in this 
field.

Dose mapping in 60Co gamma‑ray irradiator

Gamma irradiation facilities are broadly used for a variety of 
applications, including food irradiation, material examina-
tion, radiobiology and medical research, and sterilization. 
The type of radiation source and also the chamber geometry 
will determine the dose inhomogeneity inside the chamber 
[69]. Prior to sample irradiation and to ensure the delivery 
of accurate doses to the targets, it is important to evaluate the 
dose distribution inside the irradiation chamber. Using silica 
fibre dosimeters, Moradi et al. [70] performed experiments 
to study the dose distribution inside a Gammacell-220 (GC-
220) machine’s chamber. The device contains a 60Co source 
inside a cylindrical chamber and can be used for radiation 
research in different fields. In their study, a total number of 
100 SMF dosimeters were irradiated by gamma rays up to 
about 1 Gy dose. The fibres were carefully placed inside 
the chamber to verify the radial and axial deviations in the 
delivered dose, along with the dose rate on the chamber’s 
lowest surface. The results were then compared to Monte 
Carlo simulations, and a good agreement between the exper-
iment and simulation results was reported. The dose rates on 
the centre and along the vertical axis were compared to the 
maximum dose rate, exhibiting a reduction of 22% and 26% 
at the lower and upper points, respectively. The authors then 
concluded that the silica fibre TLDs could provide greater 
accuracy in comparison with previously reported results in 
the literature.

Environmental monitoring

Due to the adverse health-related effects of environmental 
radiation from natural sources, monitoring the dose levels 
is essential for protecting public health and ensuring that 
radiation exposure is within the safe limits recommended 
by various regulatory bodies. Whereas conventional TLDs 
are widely being used for environmental monitoring, some 
challenges such as limited sensitivity and also their hygro-
scopic nature may restrict their functionality. The capabil-
ity of two types of silica fibres (PCFc-Ge and PCFc-Ge–B, 
8 mol%) in environmental gamma-ray dose measurement 
was assessed by Rozaila et al. [71]. The results were com-
pared with two commercial TLDs (TLD-100 and TLD-200) 
and also bulk measurements by an HPGe gamma-ray spec-
trometer. Initially, the lab measurements were conducted 
using an X-ray source with Emean ~ 40 keV for doses from 0.5 
to 10 mGy, and glow curves and signal fading (up to 35 days 
post-irradiation) were measured. For the on-site measure-
ments, the samples were buried at 8 different locations of the 
Gebeng Industrial Estate (GIE) in Pahang state, Malaysia, 
for between 2 and 8 months. According to their findings, 
PCFc-Ge had the best performance among all four types, 
which was however different from their lab calibrations 

917

918

919

920

921

922

923

924

925

926

927

928

929

930

931

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

981

982

983

984

985

986

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016



UNCORRECTED PROOF

Journal : Large 10967 Article No : 9109 Pages : 24 MS Code : 9109 Dispatch : 14-8-2023

	 Journal of Radioanalytical and Nuclear Chemistry

1 3

where TLD-200 showed superiority. While the commercial 
TLDs suffered from degradation due to humidity, the TL 
response of all samples increased for 2–4 months of sample 
burial and diminished by increasing the burial duration to 
6–8 months. The doses measured by all the TLD materi-
als were significantly lower than those of gamma-ray spec-
troscopy (up to 50% for PCFc-Ge). However, the overall 
performance of silica-based dosimeters has shown promise 
for their application in environmental radiation monitoring.

Conclusion

Since the emergence of silica fibre dosimeters, extensive 
experimental and simulation studies have investigated their 
characteristics, capabilities, and limitations over the past two 
decades. In this review, we analyzed the data from recent 
literature, focusing on the TL performance and medical 
applications of silica fibre TL dosimeters.

Regarding fibre structure, different types of fibres have 
shown varied performance. Photonic crystal fibre (PCF) 
dosimeters have exhibited superior TL performance, and 
doped fibres have demonstrated higher sensitivity and more 
acceptable TL response than un-doped ones. While a major-
ity of the literature used germanium (Ge) as the dopant, fur-
ther research is needed to explore other dopant materials 
and optimize dopant concentrations for various applications. 
The substantial enhancement of TL performance through 
collapsing the capillary fibres is widely recognized. This 
technique can also be applied to PCFs, as collapsed PCF 
dosimeters have demonstrated significantly higher sensitivi-
ties compared to un-collapsed ones, as well as conventional 
TLD-100.

The majority of research has concentrated on the dosim-
etry of high-energy photons and electrons using silica fibres, 
but more extensive investigations are required to study their 
behaviour in a broader radiation energy and dose range, 
including ultra-high doses in FLASH radiotherapy and other 
radiotherapy techniques like hadron and heavy ion therapy. 
However, clinical trials and environmental monitoring 
experiments have indicated the potential capability of silica 
fibre dosimeters in these fields.

Silica fibre dosimeters offer many advantages, includ-
ing high spatial resolution, sensitivity, water resistance, and 
insensitivity to electromagnetic fields, making them ideal 
for medical applications and technically comparable to con-
ventional TLDs. However, challenges remain, such as the 
uncertified linearity in low-energy radiations and relatively 
high signal fading, which limits the time between irradiation 
and readout. Moreover, the high Zeff of silica fibres makes 
them non-soft-tissue equivalent, demanding accurate cor-
rection factors for different applications. Further research on 
the stability of fibres in harsh environments is also required 

for their clinical utilization. With future research addressing 
these limitations, the commercial production and application 
of silica fibre TL dosimeters in medical radiation dosimetry 
are expected in the near future.
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