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Abstract: This review summarized the current breakthroughs in the chemistry of acridines as anti-
cancer agents, including new structural and biologically active acridine attributes. Acridine deriva-
tives are a class of compounds that are being extensively researched as potential anti-cancer drugs.
Acridines are well-known for their high cytotoxic activity; however, their clinical application is
restricted or even excluded as a result of side effects. The photocytotoxicity of propyl acridine
acts against leukaemia cell lines, with C1748 being a promising anti-tumour drug against UDP-
UGT’s. CK0403 is reported in breast cancer treatment and is more potent than CK0402 against
estrogen receptor-negative HER2. Acridine platinum (Pt) complexes have shown specificity on the
evaluated DNA sequences; 9-anilinoacridine core, which intercalates DNA, and a methyl triazene
DNA-methylating moiety were also studied. Acridine thiourea gold and acridinone derivatives act
against cell lines such as MDA-MB-231, SK-BR-3, and MCF-7. Benzimidazole acridine compounds
demonstrated cytotoxic activity against Dual Topo and PARP-1. Quinacrine, thiazacridine, and
azacridine are reported as anti-cancer agents, which have been reported in the previous decade and
were addressed in this review article.

Keywords: acridine; anti-cancer; cancer cell lines; DNA-intercalation; topoisomerase; in vitro assay

1. Introduction

Malignant tumours are commonly referred to as cancer. Malignant tumours are the
world’s most serious threat to human health. Cancer is derived from the Latin word for
crab. Although this is a common term, the scientific term for cancer is neoplasia, which
means “new formation” in Greek. The term “malignant neoplasm” refers to a new growth
that contains pathogenic or harmful features that can be seen in the body. It can destroy
vital organs, as well as, in some cases, create life-threatening disruptions in the functioning
of the body.

In 1870, Graebe and Caro discovered a solid, crystalline, and base compound as a
type of raw, impure anthracene extracted from coal tar. The chemical was given the name
acridine because of its irritating impact on the skin. Acridine is also known by the names
dibenzo[b,e]pyridine,benzo[b]quinolone, 2,3,5,6-dibenzopyridine, and 10-azaanthracene.
Acridine analogues have been investigated as potential cancer therapy agents, with a
focus on DNA and DNA-related enzymes such as topoisomerases, telomerase, and others.
Amsacrine, the most well-known anti-cancer acridine medication, applied against acute
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leukaemia and its derivatives can affect topoisomerase 2 and other intracellular targets in a
variety of ways. One of the milestones in the history of the acridines was the development
of the antitumour agents Ledakrin and Acriflavine in 1912. Quinacrine, used for apoptotic
and anti-apoptotic genes, was evaluated. Several 9-aminoacridine derivatives cleave the
acridine ring in the presence of primary aliphatic amines, especially in the course of solid-
phase synthesis; investigations have shown that the α-amino group in peptides is a weak
acridine acceptor, whereas the ε-amino group of lysine is a moderate acridine acceptor. The
biological activity of acridines is mostly due to their aromatic structure planarity, which
allows them to interact with the DNA structure via intercalation.

This study outlined recent breakthroughs in acridine chemical properties, with a
focus on the last decade. The reactivity of the acridine ring as well as the synthesis of
9-substituted acridines as anti-cancer agents and the mechanisms of the reaction occurring
at the position of 9 or 10 of 9-substituted acridines were reviewed. The potential of acridine
carboxamide platinum complexes as anti-cancer agents was also addressed. As acridines
constitute a class of compounds of considerable pharmaceutical interest, their biological
activities were summarised.

As mentioned, this critical review discussed the current progress in the novel 9-
substituted acridine heterocyclic compounds. Acridine shows various biological activities
(anti-bacterial, anti-parasitic, anti-viral etc.), whereas in this review, acridine’s anti-tumour
activity is particularly discussed. Additionally, to address the cytotoxicity of various
acridine derivatives, IC50 values are given in a table.

This overview is not exhaustive; instead, it highlights some recent examples of
acridines, which are biologically active chemicals, and certain applications of technically or
biotechnologically interesting acridines as well as various reactions on the acridine ring
(Figure 1).
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2. Acridine as an Anti-Tumour Agent
2.1. Acridine

The photocytotoxicity of propyl-AcrDTU against the murine leukaemia L1210 cell
line has been reported. Previously, electron paramagnetic resonance (EPR) spectroscopy
has been used to assess the formation of ROS by propyl-AcrDTU after irradiation. After
confirming the production of ROS when UV-A light (>300 nm) was used to irradiate propyl-
AcrDTU in the sight of molecular oxygen, to elucidate the mechanism of this chemical’s
photocytotoxic effect, researchers focused on its intracellular location [1]. UV-Vis and
fluorescence spectroscopy were used to synthesise and characterise two new tetrandrine-
based receptors, as well as their bonding properties towards a range of nucleotides and
ds-DNA, in water at pH = 7.2. In an intercalation-binding mode, two receptors had
a strong affinity (K 105 M-1) and specificity of sequence for ds-DNA. This research in-
cluded molecular modelling and single-crystal X-ray diffraction analysis. Furthermore,
anti-proliferative investigations based on the derivatives of several cell lines for cancer
show that the compounds have potential anti-cancer properties [2]. A promising anti-
tumour drug, 9-(2′-hydroxyethylamino)-4-methyl-1-nitroacridine (C1748), was discovered
to move through phase I metabolic pathways in a laboratory setting (Figure 2). The current
research aimed to learn more about its metabolisation by phase II enzymes called UDP-
glucuronosyltransferases (UGTs) as well as its potential for being involved in drug–drug
interactions caused by UGT regulation [3].
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Compound-induced cell-cycle arrest and cell death in human lung adenocarcinoma
cells, Ataxia telangiectasia kinase, was initiated by all compounds, and histone H2A.X
was phosphorylated at Ser139, indicating damage to DNA. The compounds enhanced the
phosphorylation and accumulation of p53, which regulates the cell cycle and cell death [4].

In human colorectal HCT116 cells, oxidative stress plays a role in the anti-proliferative effect
of acridine chalcone 1C ((2 E)-3-(acridin-9-yl)-1-(2,6-dimethoxyphenyl)prop-2-en-1-one) [5]. The
anti-tumour effects of the new spiro-acridine (E)-50-oxo-10-((3,4,5-trimethoxybenzylidene)amino)-
10,50-dihydro-10H-spiro[acridine-9,20-pyrrole]40-carbonitrile (AMTAC-17) were investigated.
After an acute dose (2000 mg/kg, intraperitoneally, i.p.) in mice, the toxicity was assessed.
The anti-tumour activity of AMTAC-17 (12.5, 25, or 50 mg/kg, i.p.) following seven days of
treatment was studied using the Ehrlich ascites carcinoma model [6]. For 2-((6-chloro-2-methoxy-
acridin-9-yl)amino)-5,6,7,8-tetrahydro-4H-cyclohepta [b], the toxicity and anti-tumour activity of
-thiophene-3-carbonitrile (ACS03), a hybrid thiophene–acridine molecule with anti-leishmanial
activity, was investigated. In vitro (on HaCat and peripheral blood mono nuclear cells) and in vivo
(on zebra fish embryos and acute toxicity in mice) tests were performed. The anti-tumour activity
of HCT-116 (human colon carcinoma cell line), K562 (chronic myeloid leukaemia cell line), HL-60
(human promyelocytic leukaemia cell line), HeLa (human cervical cancer cell line), and MCF-7
(breast cancer cell line) was also investigated in vitro and in vivo (Ehrlich ascites carcinoma model).
HCT-116 cells were selectively inhibited by ACS03 (IC50 = 23.111.03 M, half-maximum inhibitory
concentration) [7].

The acridine derivative dimethyl 2-[(acridin-9-yl) methylidene]-malonate (LPSF/IP-
81) has optical characteristics. This molecule was attached to the ConcanavalinA (ConA)
lectin and it is used as a sugar probe in lectin histochemistry according to the article.
After conjugation, the hemagglutinating activity and LPSF/IP81 photoluminescence re-
mained unchanged. The ConA structure was maintained via circular dichroism of ConA-
LPSF/IP81conjugate. Normal, fibroadenoma, and invasive ductal carcinoma of the human
breast were studied using Lectin histochemistry with the ConA-LPSF/IP81conjugate [8].
The novel synthetic lanthanum compound bis (acridine-9-carboxylate)-nitro-europium (III)
dehydrate had anti-angiogenic and apoptotic effects in an animal model of carcinogene-
sis [9].

The anti-cancer drug 9-amino-1-nitroacridine (C-1748), developed in a laboratory
setting, is a treatment option for pancreatic cancer. It involves the P450 3A4 isoenzyme
and cytochrome P450 reductase (CPR), and the response’s modulation was investigated in
the Panc-1, MiaPaCa-2, BxPC-3, and AsPC-1 cell lines of pancreatic cancer, which differed
in terms of their expression levels and typically altered this cancer type’s genes. C-1748
had the strongest cytotoxic action against MiaPaCa-2 cells, but AsPC-1 cells, on the other
hand, were the most resistant (IC50: 0.015, 0.075 M, respectively) [10]. Allosteric regulation
of the a1Aand a1B-adrenergic receptors was demonstrated by a variety of 9-aminoacridine
compounds. The 9-aminoacridines accelerate [3H] prazosin segregation from a1A- and
a1B-adrenergic receptors and block receptor stimulation by the endogenous agonist nore-
pinephrine in a non-competitive manner [11]. AT11-L0, which is generated from the AT11
DNA sequence, creates a single main parallel G-quadruplex (G4) conformation, and has
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anti-proliferative properties comparable to AT11 and AS1411 aptamers. Acridine orange
derivatives, on the other hand, are a useful class of G4 ligands. Researchers tested AT11-L0
G4 as a supramolecular transporter for delivering acridine ligands C3, C5, and C8 to HeLa
carcinoma cells in ref. [12].

The inhibitory activity of new acridine-based N-acyl-homoserine lactone (AHL) analogues
has been examined in SAS (human oral squamous carcinoma cell line). At 5.3–10.6 M, one
analogue caused G2/M phase arrest, while at a higher dose (21.2 M), it caused polyploidy [13].
A new class of acridine hydroxamic acid compounds was developed and produced as a
potential new dual Topo and HDAC inhibitor. MTT studies revealed that each and every
hybrid compound had substantial anti-proliferative effects with IC50 values in the low
micromolar range, with compound 8c showing particularly strong action against U937
(IC50 = 0.90 M). It was also discovered that compound 8c had the best HDAC inhibitory ac-
tion, being several times more effective than the HDAC inhibitor SAHA. At 50 micrograms,
all of the substances inhibited Topo II according to subsequent tests. Furthermore, com-
pound 8c had the potential to interact with DNA, resulting in apoptosis in U937 cells [14].
The authors designed and synthesised a unique small-molecule library with numerous
modifications and replacements based on the CQ structure and an acridine skeleton, and
then evaluated the molecules for efficient autophagy inhibition. They discovered that
9-chloro-2-(3-(dimethylamino) propyl) pyrrolo [2,3,4-kl] acridin-1(2H)-one (LS-1-10) was
the most efficient inhibitor of autophagic-mediated degradation from their database, and
that it could reduce the viability of various colon cancer cells [15]. DNA-intercalating agents
are novel hetero-aromatic compounds with a cytotoxic moiety. Two iodinated acridine
derivatives have been found to have a favourable in vivo kinetic profile for use in targeted
radionuclide therapy. The goal of this research was to evaluate these drugs in a preclinical
setting. Finally, an acridine derivative with increased nuclear localisation was shown to be
a better option for 125I-targeted radionuclide therapy [16].

Based on the pharmacological characteristics of B16F0 tumours in mice, for melanoma-
targeted 125I radionuclide therapy, two melanin-targeting radioligands were developed:
[125I] ICF01035 and [125I] ICF01040. Researchers demonstrated in vitro that these com-
pounds have different radiotoxicities in connection with melanin and the acidic vesicle
contents in B16F0, B16F0 PTU, and A375 cell lines. ICF01040 was detected in the cytoplas-
mic vesicles of both types of melanomas, whereas ICF01035 was located in the nuclei of
achromic (A375) and the melanosomes of melanised (B16F0) melanoma cells. In all cell
lines, [125I] ICF01035 caused a similar survival fraction (A50) and a considerable drop in
S-phase cells in amelanotic cell lines. In vivo, [125I] ICF01035 dramatically decreased the
amount of B16F0 lung colonies, allowing the treated mice to live longer. Melanosomes or
acidic vesicles could possibly be used to treat melanoma in the future [17]. An anti-cancer
agent, 9-phenyl acridine (ACPH), was used. Normal cells, such as human lymphocytes
and Chinese hamster V79 cells, were more susceptible to ACPH than A375 and HeLa, two
human cancer cell lines. ACPH has been found to be a promising cancer chemotherapeutic
agent. Through a mitochondria-mediated caspase-dependent route, ACPH administra-
tion caused cells to die apoptotically [18]. Nine different tetrahydroacridine derivatives
containing an iodobenzoic moiety were produced and cancer cell lines were examined
for cytotoxicity A549 (human lung adenocarcinoma), HT-29 (human colorectal adenocar-
cinoma), and EA.hy926 (human somatic cell line) (human umbilical vein cell line). All
substances were more cytotoxic than the control agent etoposide, and 5-fluorouracil against
A 549 (IC50 59.12–14.87 M) and HT-29 (IC50 17.32–5.90 M) cell lines [19].

The biological activities of 9-(2-(1-arylethylidene) hydrazinyl) acridine and its synthetic
derivatives were designed, synthesised, and analysed. The free radical scavenging capacity
of the produced compounds (4a–4j) was determined using a variety of biochemical tests.
These chemicals were tested for anti-cancer efficacy in comparison with two human cancer
cell lines, cervical cancer cells (HeLa) and liver cancer cells (HepG2), as well as a normal
human embryonic kidney cell line (HEK 293) [20]. 9-phenylacridine (ACPH), an acridine
derivative, was discovered to have anti-cancer action in both cell lines and an in vivo model.
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Researchers used photo-cleavage experiment to look at the effects of ACPH on in vitro DNA
before UVA exposure. In cultivated A375 melanoma cells, the effect of such treatment was
also investigated. ACPH could sensitise UVA-induced DNA damage in vitro and in cells,
according to their findings [21]. A family of acridine derivatives as effective and selective
inhibitors of the IRE1-XBP1 branch of the UPR with substantial cytotoxicity on MM cells as
well as in vivo MM tumour growth using TDA analysis on HTS was discovered [22]. N0-(2-
chloro-6-methoxy-acridin-9-yl)-2-cyano-3-(4-dimethylaminophenyl)-acrilohidrazida was
synthesised and its toxicity and anti-cancer efficacy were assessed (ACS-AZ10). In vivo,
ACS-AZ10 shows a significant anti-cancer effect and is quite safe [23].

EGFR and PKCs are inhibited by acridine yellow G, as a result of which cell develop-
ment is inhibited, cell-cycle arrest occurs in the G1phase, brain tumours shrink. Acridine
yellow G has IC50 values of 7.5 and 5 M for EGFR and PKCs, respectively [24]. New promis-
ing unsymmetrical bisacridine derivatives (UAs) have been created. The condensation
of 4-nitro or 4-methylacridinone, imidazoacridinone, and triazoloacridinone derivatives
with 1-nitroacridine molecules connected with an aminoalkyl chain yielded three groups of
36 compounds. The great effectiveness of these compounds against many tumour cell lines
was discovered by cytotoxicity testing [25].

A one-pot four-component cyclo-condensation of dimedone for the synthesis of 9-
aryl-hexahydro-acridine-1,8-diones that is easy, efficient, and cost-effective against the
HepG2 and MCF-7 cell lines, and some of the acridine-diones synthesised were discovered
to have promising anti-cancer activity [26]. Four mesothelioma cell lines to assess the
anti-proliferative effect of a variety of acridine-based catalytic inhibitors of hTopo II (H513,
H2372, H2461, and H2596) were applied. The results showed that these compounds
inhibited malignant cell proliferation with EC50 values ranging from 6.9 to 32 M. The
Guava Nexin assay and PARP cleavage data showed that apoptosis is the primary reason
for cell apoptosis. The results support earlier research on pancreatic cancer and hTopo II
catalytic inhibitors, suggesting that substituted acridines may be effective in the treatment
of malignant mesothelioma [27].

The synthesis and pharmacological assessment of a set of bifunctional acridine-HSP90
(Cpd: 2.1.23) inhibitor ligands as telomerase inhibitors were reported. Using a click-
chemistry technique, four hybrid acridine-HSP90 inhibitor conjugates were created and
demonstrated to have comparable effects in the TRAP-LIG telomerase test to the well-
known telomerase inhibitor BRACO-19. The conjugates also showed significant cytotoxity
in the sub-M range against a variety of cancer cell lines [28]. The interaction of three novel
diphenyl-substituted spiro triazolidine- and thiazolidinone-acridines (Cpd: 2.1.24) with
calf thymus DNA was studied using UV-vis, fluorescence, circular dichroism spectroscopy,
and viscometry [29].

Early investigations were conducted on the amino acid-attached acridines as potential
anti-cancer medication leads. The chemicals have substantial anti-proliferative effect, as
evidenced by the MTT assay, phase contrast micrographs, and Confocal pictures of immune-
labelled C6 Glioma cells for markers such as a-tubulin, GFAP, mortalin, and HSP-70 cells.
Flow cytometry data revealed that the chemicals also stopped cells in the G0/G1 phase
of the cell cycle [30]. A novel family of tri-substituted acridines that would imitate the
actions of BRACO19 was described. These compounds were made by adding heteroacyclic
moieties to the BRACO19 molecular structure at positions 3 and 6. The human telomeric
DNA quadruplex was stabilised by all of the studied derivatives. The novel derivatives
were all capable of folding single-stranded DNA sequences into anti-parallel G-quadruplex
structures according to the findings. When compared with the HT 29 cancer cell line, the
studied compounds were less harmful to human fibroblast cells [31].

When a non-covalent contact such as intercalation is used, the synthesis of DNA–
polymer hybrids is simple. The exact structure and characteristics of the polymer play a
significant role in the strength of the connection. The production of discrete, well-defined
nanoparticles can be carried out by simply combing the components together in an aqueous
solution and utilising a DNA sequence of specific length [32]. CuGGHK-Acr, a novel



Molecules 2023, 28, 193 6 of 42

DNA-cleaving agent that uses a catalytic metallo drug to target G4 telomeric DNA, was
reported. CuGGHK-Acr can selectively bind to G4 telomeric DNA in comparison with CT-
DNA and facilitate an effective irreversible cleavage of G4 telomeric DNA in comparison
with telomeric DNA in other structural states, according to these findings [33]. The anti-
proliferative properties of a series of 9-benzyl acridine derivatives were investigated. At
100 M, each and every compound mentioned had substantial Topo II inhibitory action.
Through a caspase-dependent intrinsic mechanism, the usual chemical 8p demonstrated
significant DNA-binding capacity, generated DNA double-strand breaks, and promoted
death in A549 cells (Table 1 and Figure 3) [34].
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Table 1. Cont.

Compound Structure Biological Activity Reference
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2.2. 9-Amino Acridine

Four NSCLC cell lines were used to test the anti-proliferative effect of a range of
acridine-based catalytic inhibitors of TOPOII (H460, A549, H2009, and H2030) [35]. The
current findings in the treatment of breast cancer showed that CK0403 was more potent
and effective than CK0402 against estrogen receptor-negative and HER2-overexpressing
breast cancer cell lines, implying that it could be used as a breast cancer chemotherapy in
the future [36].

Interactions between specific distinct moieties of 9-amino acridines and DNA were
investigated and demonstrated to be important in determining the overall stabilities of
DNA G-quadruplex complexes. Both 9-amino acridines were found to produce varying
levels of structural stability through intercalation, although having equal binding affinities
to the G-quadruplex. This distinctive trait of modifying structural stability is most likely a
factor in influencing telomerase function and, as a result, the reported anti-cancer activity
varied between the two 9-amino acridines [37].

The anti-malarial activity of 9-aminoacridine and artemisinin–acridine hybrid com-
pounds against both the chloroquine sensitive but also gametocytocidal strain (NF54) and
the chloroquine resistant (Dd2) Plasmodium falciparum strains was determined in vitro. CHO
cell cytotoxicity, HepG2 and SH-SY5Y apoptosis, and anti-cancer efficacy against HeLa
cell lines were all tested in vitro (Figure 4) [38]. 9-aminoacridine (9AA) showed specific
toxicity for infectious leukemic cells regardless of their p53 status due to p53 reactivation
and NF-B inhibition. It was also shown that 9AA stimulates caspase-3/7, which results in
PARP cleavage. The effectiveness of 9AA in the MET-1 ATL model was also studied [39].
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DNA binding. Using cisplatin, the results of their binding to methylated and unmethylated
50-CpG sequences were compared [40].

An identified series of 21 compounds of 9-aminoacridine derivatives with an acri-
dine scaffold were synthesised and examined for their anti-proliferative activity against
K562, HepG-2, and MCF-7 cells as potentially interesting novel dual VEGFR-2 and Src
inhibitors [41]. Four acridine Pt complexes’ specificity in DNA sequences was evaluated
and compared to that of cisplatin [42]. A small library of 9-aminoacridine derivatives that
were substituted with topoII catalytic inhibitory characteristics was identified. In this study,
the capacity of the compounds and derivatives to decrease proliferation and trigger cellular
apoptosis in SCLC was investigated (Table 2) [43].

Table 2. 9-aminoacridine as an anti-tumour agent.

Compound Structure Biological Activity Reference

Acridine-based catalytic
inhibitors
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Table 2. Cont.

Compound Structure Biological Activity Reference
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2.3. 9-Anilino Acridines

Nucleophilic substitution of 2-methyl-9-chloroacridine (AS) with aromatic amines
yielded numerous 2-methyl-9 substituted (AS 0–8) acridines. The MTT assay was used
to test three substances for anti-proliferative activity against A-549 (human small-cell
lung carcinoma) and MCF-7 (human breast cancer) cell lines. The cytotoxicity of acridines
against cancer cells was shown to be more active in the A-549 cell line than in the MCF-7 cell
line [44]. The synthesis of molecular hybrids with high efficiency with a 9-anilinoacridine
(9-AnA) core that intercalates DNA and a methyl triazene DNA-methylating moiety has
been reported [45]. The anti-tumour activity of the chimeras was tested. In anti-proliferative
experiments with multiple cancer cell lines, Chimera 7b showed the best anti-cancer activity
at low micromolar IC50 values [45].

Researchers have developed and synthesised a new series of 9-anilinoacridines in-
corporating phenyl-urea moieties as possible new dual Src and MEK inhibitors. In vitro
anti-proliferative studies on K562 and HepG-2 tumour cells revealed that the majority of
the compounds were cytotoxic. According to their findings, the acridine scaffold, notably
compound 8m, could be helpful in the creation of novel multi-target Src and MEK kinase
inhibitors [46]. BO-1051 decreased cell viability in oral cancer cells with a low IC50, but
not in normal gingival fibroblasts. BO-1051-induced tumour suppression was followed by
cell-cycle arrest and downregulation of stemness genes according to cell cycle analyses.
It was shown that BO-1051 had cytotoxic activity by causing the induction of autophagy
and cell-cycle arrest. It was proposed that combining BO-1051 with radiation could be a
viable option for oral cancer in the future [47]. In silico designs were used to create several
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novel isoxazole substituted 9–anilinoacridines (1a–z) with HER2 inhibitory activity. Using
Schrodinger suit 2016-2, docking studies of compounds 1a–z were conducted on HER2
(PDB id-3PP0). This work adds to the evidence that isoxazole substituted 9-aminoacridine
compounds could be used as HER2 inhibitors (Table 3 and Figure 5) [48].
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Table 3. 9-anilinoacridine as an anti-tumour agent.

Compound Structure Biological Activity Reference

2-methyl-9 substituted (AS
0–8) acridines
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2.4. Acridine Thiourea Gold

Two novel 1-acridin-9-yl-3-methylthiourea Au(I) DNA intercalators have been devel-
oped: [Au (ACRTU)2]Cl (2) and [Au(ACRTU)(PPh3)]PF6. Both complexes were extremely
active in the cisplatin-sensitive A2780 human ovarian cancer cell line, with IC50 values in
the sub-micromolar range. MDA-MB-231 (triple negative), SK-BR-3 (HER2+, ERα-, and
ERβ-), and MCF-7 (ER+) are all cytotoxic to different phenotypes of breast cancer cell
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lines [49]. The synthesis of seven new cyclometalated Au(III) complexes, five of which
contain an acridine moiety linked via (NO) or (NN) chelates, acyclic amino carbenes (AAC),
and N-heterocyclic carbenes (NHC), was reported [50]. The anti-proliferative properties
of the various complexes were investigated in vitro on a panel of cancer cells, including
leukaemia, lung, and breast cancer cells. In some of the series representative substances,
researchers observed a relationship between cytotoxicity and intracellular gold uptake.
Some of the acridine-decorated compounds were shown to interact with ds-DNA using
FRET-melting techniques (Table 4) [50].

Table 4. Acridine Thiourea gold as an anti-tumour agent.

Compound Structure Biological Activity Reference

Two new 1-acridin-9-
yl-3-methylthiourea
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2.5. Acridine-Thiazolidinone

The interactions of three novel acridine–thiazolidinone compounds (2a–2c) using calf
thymus DNA and a variety of cell lines (leukaemic cells HL-60 and L1210, and human
epithelial ovarian cancer cell lines A2780) were investigated. Compounds 2a–2c had a high
affinity for calf thymus DNA, with regard to binding constants ranging from 1.37 ×10−6

to 5.89 × 106 M_1 as determined by spectrofluorimetry. After 72 h of incubation, all
of the investigated compounds showed substantial cytotoxic activity in vitro, with IC50
values of 1.3 ± 0.2 M (HL-60), 3.1 ± 0.4 M (L1210), and 7.7 ± 0.5 M (A2780). Acridine
compounds were rapidly accumulated by cancer cells, and alterations in glutathione levels
were confirmed. Cell proliferation was suppressed by the chemicals and resulted in cell-
cycle arrest and cell death. Their ability to have an effect on cells was connected to thiol
reactivity and DNA-binding activity [51]. N-alkylation and the Michael reaction were
used to create a series of unique hybrid 5-acridin-9-ylmethylene-3-benzyl-thiazolidine-2,4-
diones. A 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay was
employed to assess cell viability, and DNA interaction experiments were carried out using
electrochemical methods (Table 5) [52].
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Table 5. Acridine-thiazolidinone as an anti-tumour agent.

Compound Structure Biological Activity Reference

Three new acridine–
thiazolidinone

derivatives
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2.6. Acridinone

A class of acridinones derived from the structure of podophyllo toxin were discovered
as a result of a lead discovery effort aimed at less structurally complex synthetic chemicals.
Wound-healing experiments using the metastatic and triple-negative breast cancer cell line
MDA-MB-231 were used to test the drugs in vitro. Four compounds were discovered with
IC50 values ranging from 0.294 to 1.7 µM [53]. The cytotoxic activity of a new series of
9 (10H)-acridinone-1,2,3 triazole derivatives against human breast cancer cell lines was
developed, synthesised, and assessed, 2-methoxy-10-((1-(4-methoxybenzyl). The most
potent compound against MCF7 cells was 1H-1,2,3-triazol-4-yl)methyl)acridin-9(10H)-one
8c (IC50 = 11.0 ± 4.8 µM), which was more potent than toposide (IC50 = 12.4 ± 4.7 µM) [54].
The designed UGT1A10’s capacity and selectivity in the glucuronidation of acridinone
anticancer drugs in a cellular setting was tested. These results imply that extrahepatic
UGT1A10 is involved in the metabolism and bioactivation of C-1305, and they provide a
foundation for more mechanistic research into the drug’s mode of action. A translational
study into the involvement of this enzyme in the regulation of C-1305 toxicity in cancer
was also conducted (Table 6) [55].

Table 6. Acridinone as an anti-tumour agent.

Compound Structure Biological Activity Reference
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death pathways in a time- and concentration-dependent way according to the study. Further
research into the ROS-JNK1 pathway’s mode of action revealed that it was critical in
initiating 8m-induced apoptosis. Researchers also showed that 8m can upregulate DR5,
which is characteristic for potent anticancer drugs [56]. Dual Topo and PARP-1 inhibitors, a
series of 4-amidobenzimidazole acridines, were designed and synthesised. Compound 11l
had powerful inhibiting effects on Topo and PARP-1 as well as a considerable inhibitory
effect on cancer cell proliferation. According to their findings, single drugs that inhibit
Topo and PARP simultaneously could be used as an alternative to cancer treatment, and 11l
could be a possible lead chemical for anticancer drug discovery [57]. A series of new DNA-
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2.8. Benzoacridine

Potential anti-cancer drugs and tubulin polymerisation inhibitors were designed and
synthesised. The anti-cancer activity of the synthesised compounds was assessed using the
3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyl tetrazolium bromide (MTT) assay against eight
cancer cell lines, including MCF7, A2780, HeLa, HepG2, DU145, A549, PC3, and LNCAP
cancer cells, as well as normal human umbilical vein endothelial cells (HUVEC), with
lapachone. With IC50 values ranging from 5.23 to 24.32 µM, some of the compounds (4c
and 4g) displayed substantial cytotoxic effects on cancer cells [59]. Novel 7-substituted-5,
6-dihydrobenzo[c]acridine derivatives were designed and synthesised. According to recent
biophysical research, the substitutes may effectively attach to and stabilise the c-KIT G-
quadruplex with significant selectivity towards duplex DNA. The biological examination of
compound 2b revealed that it might induce apoptosis by activating the caspase-3 cascade
pathway [60].

A rapid one-pot microwave-assisted synthesis of novel deadly phenanthrene fused-
tetra hydrodibenzo-acridinones was reported [61]. This protocol provides a broad substrate
range, catalyst-free synthesis, atom-economy, simple recrystallisation, good yields, and the
use of ethanol as a green solvent. The in vitro cytotoxicity of these novel compounds was
tested against cervical (HeLa), prostate (PC-3), fibrosarcoma (HT-1080), and ovarian (SKOV-
3) cancer cells, and they were found to be safer than the normal (Hek-293T) kidney cell
line [61]. The development of a 12-arylbenzoacridine library using an approach centered
on diversity resulted in non-toxic estrogenic and anti-estrogenic compounds. The estrogen
receptors (ER alpha) and ER beta (IC50 lM) have a strong binding affinity for derivatives
with a hydroxy group at the molecular edge, but binding to the estrogen-related receptor c
(ERRc), an orphan nuclear receptor on which estrogens frequently trigger unfavourable
events, was not observed. According to the findings, 12-arylbenzoacridines can be used
as a new platform for the creation of selective estrogen-receptor modulators (SERMs)
(Table 8) [62].
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Table 8. Benzoacridine as an anti-tumour agent.
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2.9. Imidazoacridinone

C-1311 is an anti-tumour imidazoacridinone that inhibits DNA-reactive topoisomerase
II and the FLT3 receptor tyrosine kinase. Researchers showed that C-1311 inhibits new
targets such as hypoxia-inducible factor-1α (hIF1), vascular-endothelial growth factor
(VeGF), and angiogenesis in this study. C-1311 is a potent inhibitor of hIF-1 α, VeGF, and
angiogenesis, according to the findings, which offer fresh insights into the mechanism
underlying its anti-cancer activity [63]. Photo-rupture of IA-loaded lysosomes and tumour
cell lysis via production of reactive oxygen species were used in a novel photo activation-
based pharmacological Trojan horse method to target and destroy MDR cancer cells. It
was discovered that MDR cells’ Achilles heel is lysosomal sequestration of IAs, which may
be exploited to destroy MDR tumour cells by lysosomal photo death [64]. In hepatoma
cells, the effect of CYP3A4 overexpression on the cellular response was generated by the
anti-tumour drug C-1311. The effect of CYP3A4 overexpression on C-1311 metabolism
and the modification of CYP3A4 activity by C-1311 were also investigated. It was stated
that when evaluating the possible therapeutic effects of C-1311, inter-patient variability in
CYP3A4 levels should be taken into account (Figure 7) [65].
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A credible QSAR was constructed using computational molecular modelling, and
the linking potency of inhibition was used to calculate binding affinity. In addition, the
crystal structures of NQO2 with two imidazoacridin-6-ones was solved. Finally, one of the
N-oxides inhibited the enzymatic action of NQO2 in cells, suggesting that it might be used
as a pharmacological probe to explore the enzyme’s characteristics in vitro and in vivo [66].
UDP-glucuronosyltransferases (UGTs) are human enzymes that can glucuronidate these
two molecules. The activities of human recombinant UGT1A and UGT2B isoforms and
microsomes from the human liver (human liver microsomes (HLM)), the entire human
intestinal mucosa (human intestinal microsomes (HIM)), and seven isolated segments of
the human gastrointestinal tract were investigated using high-performance liquid chro-
matography. It was discovered that in vivo glucuronidation of imidazoacridinone and
triazoloacridinone medications occurs in the human liver and gut, which may open the
door for future translational research into the role of UGTs in drug resistance [67].

A549 and H460, human non-small-cell lung cancer (NSCLC) cell lines, were used
to study the distinct sequence of cellular responses to C-1311. C-1311 (IC80 5 0.08 mM)
triggered G1 and G2/Marrests in A549 cells, although H460 cells (IC80 5 0.051 mM) ac-
cumulated primarily in G1. According to the studies, autophagy induction precedes and
confirms a C-1311-induced senescence pathway in NSCLC, although it is not the sole deter-
minant [68]. That function of certain liver enzymes affects the metabolism of C-1311 and its
less-active 8-methyl derivative, 5-diethylaminoethylamino-8-methoxyimidazoacridinone
(C-1330). C-1311 and C-1330 were digested by live human microsomal enzymes but not by
any of the human recombinant cytochromes P450 enzymes examined (P450s). Both drugs
inhibited two of these enzymes, CYP1A2 and CYP3A4 [69]. The DNA-reactive inhibitor of
topoisomerase II imidazoacridinone C-1311 has previously been proven to be a strong and
selective inhibitor of recombinant FLT3. Researchers investigated the effect on leukaemia
cells with wild-type FLT3, FLT3-ITD mutant, and no FLT3 receptor to add to their findings.
It was reported that more preclinical and clinical research into its potency against the
FLT3-ITD kinase is warranted (Table 9) [70].



Molecules 2023, 28, 193 23 of 42

Table 9. Imidazoacridinone as an anti-tumour agent.

Compound Structure Biological Activity Reference
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2.10. Nitroacridine

The differential in toxicity between C-1748, 9-(20-hydroxyethylamino)-4-methyl-1-
nitroacridine, and its 4-demethyl counterpart, C-857, was shown to be due to changes in
metabolic routes for the two chemicals; the effect of decreasing and/or hypoxic circum-
stances on metabolism was also examined. Finally, the importance of hypoxic circumstances
and POR’s direct involvement in the metabolism of both substances was established. C-
1748’s low reactivity and the stability of its metabolites, compared with C-857, are thought
to have a substantial role in the compound’s reduced toxicity in animals [71]. DNA damage
is caused by interactions with DNA and interference with regulatory mechanisms. The
structure–activity connection revealed that substituents on position 9 of 3-nitroacridine
derivatives were crucial for DNA-binding and anti-proliferative effects. Compounds 1,
2, and 3 were reported to have a high affinity for DNA and a favourable inhibitory effect
on tumour cell proliferation, and could be established as viable candidates for additional
chemical optimisation [72]. By changing the substituted group on position 9 of 1,3-dimethyl-
6-nitroacridine, a new series of 1,3-dimethyl-6-nitroacridine derivatives were synthesised.
Researchers tested four cancer cells for antitumour efficacy. They stopped breast cancer cells
from growing by inducing apoptosis by targeting DNA and stopping cell-cycle progression
in the G2/M phage. The structure–activity connection suggested that 9-amines were crucial
in DNA-binding and anti-proliferative properties (Table 10 and Figure 8) [73].
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2.11. Oxazine

A series of 9-anilinoacridines substituted with oxazine derivatives were synthesised
and tested in vitro for antioxidant and anti-cancer activity against Daltons Lymphoma
Ascites (DLA) cell growth. These compounds were found to have significant antioxi-
dant and anti-cancer activity (inhibition of DLA cell proliferation). Compounds 5a, 5h,
5i, and 5j were the most cytotoxic, with CTC50 values ranging from 140 to 250 mg/mL.
Using the Schrodinger Maestro 9.2 version, the docking studies of the synthesised deriva-
tives were performed towards the key Topoisomerase II (1QZR). The oxazine-substituted
9-anilinoacridine derivatives 5a, 5h, 5i, and 5j have been reported to have significant
anti-cancer activity as topoisomerase II inhibitors [74]. Docking investigations against
topoisomerase II were conducted using new oxazine-substituted 9-anilinoacridines. Com-
pounds 1c, 1f, and 1g had a high Glide rating. In addition, in silico ADMET screening
was carried out [75]. Series of oxazine-substituted 9-anilinoacridines were synthesized,
characterized, and tested for anti-cancer efficacy against Dalton’s lymphoma ascites cells
utilising in vitro and in vivo methodologies. On Dalton’s lymphoma ascites cells, these
conjugates showed strong antitumour activity according to the findings. Compounds 4b,
4c, 4e, and 4j were the most cytotoxic, with CTC50 values ranging from 96.5 to 190 g/mL
(0.125 to 0.352 µM). The PHASE module of the Schrodinger suite was used to conduct 3D
QSAR research (Table 11 and Figure 9) [76].

Table 11. Oxazine as an anti-tumour agent.

Compound Structure Biological Activity Reference

A series of
9-anilinoacridines
substituted with

oxazine derivatives
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2.12. Platinum-Acridine Anti-Cancer Agents

A validated genome-wide screening approach was used to examine the spectrum of
activity of a library of non-classical platinum-acridine hybrid substances in Saccharomyces
cerevisiae and the distantly related yeast Schizo saccharomyces pombe. Chemo-genomic
profiles of S. cerevisiae and S. pombe revealed that many platinum-acridines cause DNA
damage that differs from cisplatin even though they require different DNA-repair mod-
ules [77]. Carbamate-coupling chemistry was used to synthesise a new pharmacophore
containing a DNA-targeted platinum–acridine hybrid agent and estrogen receptor-targeted
4-hydroxy-N-desmethyl tamoxifen (endoxifen) and perform its analysis in breast cancer
cell lines [78].

MWCNTs coated with a non-classical platinum chemotherapeutic agent ([PtCl(NH3)2(L)]
Cl (P3A1; L = N-(2-(acridin-9-ylamino)ethyl)-N-methylproprionimidamide) and 1,2-distearoyl-
sn-glycero-3-phosphoethanolamine-N-[amino(sn-glycero-3-phosphoethanolamine-N-[amino(sn-
glycero-3-phosphoethanolamine-N-[amino(sn-g (DSPE-mPEG) were reported. This finding
suggests that employing MWCNTs as a medication carrier to deliver P3A1 to cancer cells could
be advantageous for cancer chemotherapy and photothermal therapy [79].

The configuration of unique seven-membered, sterically overloaded chelates [Pt(en)(L/
L0)](NO3)2 (4a/4b) from effective hybrid anti-tumour compounds [PtCl(en)(LH/L0H)](NO3)2
(3a/3b), where en is ethane-1,2-diamine and L(H) and L0(H) are (protonated) N-(2-(Compounds
3a and 3b have IC50 values of 12 (2 and 2.8(0.3 nM, respectively)))), and inhibit H460 lung
cancer cell proliferation [80]. Carboxylic acid ester-group-containing platinum–acridine hybrid
agents (Cpd: 2.12.5) were created. In the cell lines for ovarian cancer (OVCAR-3) and breast



Molecules 2023, 28, 193 27 of 42

cancer (MCF-7, MDA-MB231), the most effective derivatives and parent chemicals that had
not been modified were demonstrated as having up to 6-fold greater action than cisplatin. Cell
proliferation was inhibited 80- and 150-fold at nanomolar doses in pancreatic (PANC1) and
non-small-cell lung (NSCLC, NCI-H460) cancer cells, respectively [80].

A platinum–acridine hybrid agent [PtCl(en)(L)](NO3)2 (complex 1, en = ethane-1,2-
diamine, L = 1-[2-(acridin-9-ylamino)ethyl]-1,3-dimethylthiourea was studied using a
combination of biophysical, biochemical, and computational techniques to determine mech-
anistic distinctions between it and a much more effective second-generation analogue.
N-methylpropionamidine is a specific type of N-methylpropionamidine [81]. Five NSCLC
cell lines were resynthesised and assessed, indicating big cell, squamous cell, and adeno-
carcinomas. 7-Aminobenz[c] acridine was identified as a promising scaffold in a hybrid
drug (P1–B1) and showed 32-fold enhanced tolerability in mice compared with the par-
ent platinum–acridine (P1–A1) while maintaining sub-micromolar activity in numerous
DNA-repair-proficient and p53-mutant cancer models [82].

Binds generated by the platinum–acridine agent [Pt Cl(en)(N-(2-(acridin-9-ylamino)ethyl)-
N-methylpropionimidamide)] were structurally characterised using high-performance liquid
chromatography (HPLC) in combination with electrospray mass spectrometry (LC-ESMS).
In cell-free DNA, (NO3)2 (compound 1) was present [83]. [PtCl(en)(LH)], a platinum-
acridine anti-cancer agent, [en = ethane-1,2-diamine, LH = N-(2-(acridin-9-ylamino)ethyl)-N-
methylpropion imidamide], an acridinium cation, and (NO3)2 (1) [en = ethane-1,2-diamine,
LH = N-(2-(acridin-9-ylamino)ethyl)-N-methylpropion imidamide], acridinium, were studied.
The cytotoxic potency and cell-kill mechanisms of and the therapeutic medication cisplatin
were investigated in chemo-resistant cell lines such as non-small-cell lung cancer (NSCLC).
Compound 1 revealed a 40200-fold cytotoxic increase compared with cisplatin in the three
studied cell lines (NCI-H460, NCI-H522, and NCI-H1435) at inhibitory doses approaching the
low-nano molar range (Table 12 and Figure 10) [84].
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Platinum-acridine anti-cancer
agent [PtCl(en)(LH)](NO3)2

Molecules 2023, 28, x FOR PEER REVIEW 34 of 49 
 

 

 

 
 

Platinum–acri-

dine agent 

 

 
 

Structurally 

characterised 
[84] 

Platinum-acri-

dine anti-can-

cer agent 

[PtCl(en)(LH)](

NO3)2 

 

 
 

Chemo re-

sistant non-

small-cell 

lung cancer 

(NSCLC) cell 

lines 

[85] 

2.13. Quinacrine 

In human leukaemia K562 cells, the cytotoxic effect and mechanism of quinacrine 

activity were investigated. Quinacrine promoted apoptosis in K562 cells as well as ROS 

production, mitochondrial depolarisation, and BCL2L1 and BCL2 down-regulation. 

Quinacrine-induced cell death in K562 cells, according to the results, was mediated by 

mitochondrial changes caused by p38 MAPK-mediated BCL2 down-regulation and sup-

pression of ERK/c-Jun-mediated BCL2L1 expression (Figure 11) [85]. 

Chemo resistant
non-small-cell lung cancer

(NSCLC) cell lines
[85]

2.13. Quinacrine

In human leukaemia K562 cells, the cytotoxic effect and mechanism of quinacrine activ-
ity were investigated. Quinacrine promoted apoptosis in K562 cells as well as ROS produc-
tion, mitochondrial depolarisation, and BCL2L1 and BCL2 down-regulation. Quinacrine-
induced cell death in K562 cells, according to the results, was mediated by mitochondrial
changes caused by p38 MAPK-mediated BCL2 down-regulation and suppression of ERK/c-
Jun-mediated BCL2L1 expression (Figure 11) [85].
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Figure 11. Signalling pathway responsible for the qunacrine-induced apoptotic death of K562 cells.

Quinacrine’s cytotoxic effect on human leukaemia U937 cells was investigated. Quinacrine-
induced apoptosis in U937 cells was followed by the production of reactive oxygen species
(ROS), mitochondrial depolarisation, and the upregulation of BAX. Quinacrine-treated U937
cells displayed ROS-mediated p38 MAPK activation and ERK inactivation, which increased
FOXP3 transcription [86]. Curcumin (Cur) and quinacrine (QC) were tested in vitro for their
anti-proliferative efficacy against CSCs. Cur and QC reduced the proliferation, migration, and
invasion of CSCs enriched side population (SP) cells generated by cigarette smoke condensate
and induced breast epithelial transformed (MCF-10A-Tr) metastatic cells in a synergistic manner.
The findings showed that combining Cur and QC promotes CSC mortality by raising the
concentration of QC in the cells, inducing DNA damage and blocking DNA-repair pathways
through regulating ABCG2 activity [87]. The findings provide systematic experimental evidence
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for APC’s role in ABT-888-mediated suppression of PARP-1PARylation, which leads to BER
downregulation in response to QC-induced DNA damage [88]. The goal of this investigation
was to see if QC has any cytotoxic effects on DLBCL cells. In the DLBCL cell lines SU-DHL-8
and OCI-LY01, QC triggered G0/G1 cell-cycle arrest and apoptosis and inhibited the production
of the Myc proto-oncogene protein in a dose-dependent manner. According to the findings
of this investigation, QC could be a promising anti-DLBCL medication [89]. Combining the
9-aminoacridine scaffold and the [1,3] thiazinan-4-ones group, 23 novel quinacrine (QC) deriva-
tives were designed, synthesised, and tested. The majority of these hybrids demonstrated potent
anti-cancer properties [90]. As an effort to develop effective and selective anti-cancer agents, the
researchers designed, synthesised, and tested 23 novel quinacrine derivatives derived from the
hybridisation of the quinacrine core scaffold and thiazolidin-4-ones (Table 13) [91].

Table 13. Quinacrine as an anti-tumour agent.

Compound Structure Biological Activity Reference
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2.14. Thiazacridine

Three novel thiazacridine compounds were synthesised and their anti-proliferative
activities were evaluated. Three new thiazacridine compounds were produced and de-
scribed using a three-step synthetic reaction: (Z)-5-acridin-9-ylmethylene-3-(4-methyl-benzyl)-
4-thioxo-thiazolidin-2-one (LPSF/AC-99), (Z)-5-acridin-9-ylmethylene-3-(4-chloro-benzyl)-4-
thioxo-thiazolidin-2-one (LPSF/AC-119), and (Z)-5-acridin-9-ylmethylene-3-. Colorimetric
assays were used to test toxicity and selectivity. According to the findings, none of the
chemicals were toxic to normal human cells and caused neoplastic cell death primarily
through apoptosis [92]. A novel cytotoxic drug with acridine and thiazolidine nuclei the
cytotoxic activity of four ATZDs was examined in human colon cancer HCT-8 cells: (5Z)-
5-acridin-9-ylmethylene-3-(4-methylbenzyl)-thiazolidine-2,4-dione-AC-4; (5ZE)-5-acridin-9-
ylmethylene-3-(4-methylbenzyl)-thiazolidine-2,4-dione-AC-4 -3-(4-bromobenzyl)thiazolidine-
2,4-dione-AC-7;(5Z) -5-(acridin-9-ylmethylene) -3-(4-chlorobenzyl) -3-(4-chlorobenzyl)-1,3-
thiazolidine-2,4-dione-AC-10; and -1,3-thiazolidine-2,4-dione-AC-10 (5ZE) AC-23 is a -5-
(acridin-9-ylmethylene)-3-(4-fluoro-benzyl)-1,3-thiazolidine-2,4-dione. All of the ATZDs tested
inhibited HCT-8 cell proliferation in a concentration- and time-dependent manner. According
to the findings, ATZD inhibited the activity of DNA Topo isomerase I and affected tumour
cell apoptosis via apoptotic pathways [93]. A number of novel thiazacridine compounds
have been produced and tested as anti-cancer agents, both in terms of cytotoxicity and
selectivity. All compounds had cytotoxic activity and selectivity according to the cytotox-
icity assay. The most promising molecule was 3-acridin-9-ylmethyl-5-(5-bromo-1H-indol-
3ylmethylene)-thiazolidine-2,4-dione (LPSF/AA29—7a), with IC50 values ranging from 0.25 to
68.03 mM depending on cell lineage. In HepG2 cells, the IC50 value for -thiazolidine-2,4-dione
(LPSF/AA36—7b; 46.95 mM) was the lowest. None of the produced compounds were shown
to be harmful to normal cells (IC50 > 100 mM) [94].

In several cancer cell lines, thiazacridine and imidazacridine derivatives have shown promise
as tumour suppressors. That was the case in binding studies of 5-acridin-9-ylmethylidene-3-
amino-2thioxo-thiazolidin-4-one, 5-acridin-9-ylmethylidene-2-thioxo-thiazolidin-4-one, 5-acridin9-
ylmethylidene-2-thioxo-imidazolidin-4-one, and 3-acridin-9-ylmethylidene-2-thioxo-imid, except
for 5-acridin-9-ylmethylidene-2-thioxo-1,3-thiazolidin-4-one, which showed inhibitory activity
against human topoisomerase I. These findings shed light on the process by which imidazacridines
and thiazacridines bind to DNA (Table 14 and Figure 12) [95].

Table 14. Thiazacridine as an anti-tumour agent.

Compound Structure Biological Activity Reference

Three new
thiazacridine
derivatives
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Table 14. Cont.
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2.15. Azacridine

A new category of azaacridine compounds, (Figure 13), which are effective EGFR
and Src dual inhibitors, was designed and synthesised. According to the findings, the
majority of the azaacridine compounds synthesised had good anti-proliferative activity
against K562 and A549 cells. The representative 13b inhibited EGFR and Src activity, as
well as tumour-cell invasion and apoptosis [96]. A variety of novel azaacridine analogues
with a basic side chain were produced and their anti-proliferative efficacy was tested. The
compounds had minimal biological activity against three cancer cell lines when compared
with their acridine equivalents. This was thought to be due to the compounds’ hydrolytic
instability in aqueous conditions (Tables 15 and 16) [97].
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Table 16. Some of the most potent compounds and their IC50 (micromolar) values with cell lines.

Potent Compound Cancer Cell
Lines Control IC50 (µM) Reference

Propyl-AcrDTU HL-60 - 7.2–8 [1]

MAnT HeLa cervical
cancer cell line Tetrandrine 2.74 [2]

C-1748 HT29 Cell Sorafenib 39.7 [3]

Cmpd-1 A549 Cells Etoposide 15 [4]

Cmpd-2 A549 Cells “ 10

Cmpd-3 A549 Cells “ 15

Cmpd-4 A549 Cells “ 10

ACSO3 HCT-116 Cells Doxorubicin 23.11 ± 1.03 [7]

HeLa “

Molecules 2023, 28, x FOR PEER REVIEW 36 of 44 
 

 

Table 16. Some of the most potent compounds and their IC50 (micromolar) values with cell lines. 

Potent Compound 
Cancer Cell 

Lines 
Control IC50 (µM) Reference 

Propyl-AcrDTU HL-60 - 7.2–8 [1] 

MAnT 

HeLa 

cervical 

cancer cell 

line 

Tetrandrine 2.74 [2] 

C-1748 HT29 Cell Sorafenib 39.7 [3] 

Cmpd-1 A549 Cells Etoposide 15 [4] 

Cmpd-2 A549 Cells “ 10  

Cmpd-3 A549 Cells “ 15  

Cmpd-4 A549 Cells “ 10  

ACSO3 
HCT-116 

Cells 
Doxorubicin 23.11 ± 1.03 [7] 

 HeLa “ ˃50  

 MCF-7 “ ˃50  

 K562 “ ˃50  

 HL-60 “ ˃50  

 HaCat “ 62.18 ± 1.15  

 PBMC “ 115.2 ± 5.82  

Cisplatin MCF-7 - 12.7 ± 2.2 [9] 

9-Acridine carboxylic acid “ - 21.5 ± 3.1  

Eu(𝑰𝑰𝑰)-complex “ - 14.3 ± 2.6  

C-1748 MiaPaCa-2 - 0.015 [10] 

 AsPC-1 - 0.075  

B1 SAS Cells - 1.5 [13] 

B2 “ - 11.7  

B3 “ - 5.3  

B4 “ - 18.0  

B5 “ - 9.4  

80c 
U937 

HCT-116 
m-AMSA 0.90 [14] 

LS-1-10 DLD1 Cells Amsacrine 1.31 [15] 

ACPH A375 Camptothecin 20.74 [18] 

 

1i 

A549 

HT-29 
Etoposide 

59.12–14.87 

17.32–5.90 
[19] 

4b,4d.4e 

HeLa, 

HepG2, 

HEK 239 

Camptothecin 

18.89–52.64 

18.7–108.34 

31.38–277.13 

[20] 

C2 

malignant 

glioma and 

other human 

cancers. 

erlotinib 0.75–5 [24] 

C-1311 

DU-145 

HCT-116 

MBA-MB-23

1 

Gemcitabine 

Erlotinib 

0.01–0.03 

0.01–0.03 

0.01–0.03 

[25] 

4b HepG2 Doxorubicin 1.4 ± 0.11  [26] 

50

MCF-7 “

Molecules 2023, 28, x FOR PEER REVIEW 36 of 44 
 

 

Table 16. Some of the most potent compounds and their IC50 (micromolar) values with cell lines. 

Potent Compound 
Cancer Cell 

Lines 
Control IC50 (µM) Reference 

Propyl-AcrDTU HL-60 - 7.2–8 [1] 

MAnT 

HeLa 

cervical 

cancer cell 

line 

Tetrandrine 2.74 [2] 

C-1748 HT29 Cell Sorafenib 39.7 [3] 

Cmpd-1 A549 Cells Etoposide 15 [4] 

Cmpd-2 A549 Cells “ 10  

Cmpd-3 A549 Cells “ 15  

Cmpd-4 A549 Cells “ 10  

ACSO3 
HCT-116 

Cells 
Doxorubicin 23.11 ± 1.03 [7] 

 HeLa “ ˃50  

 MCF-7 “ ˃50  

 K562 “ ˃50  

 HL-60 “ ˃50  

 HaCat “ 62.18 ± 1.15  

 PBMC “ 115.2 ± 5.82  

Cisplatin MCF-7 - 12.7 ± 2.2 [9] 

9-Acridine carboxylic acid “ - 21.5 ± 3.1  

Eu(𝑰𝑰𝑰)-complex “ - 14.3 ± 2.6  

C-1748 MiaPaCa-2 - 0.015 [10] 

 AsPC-1 - 0.075  

B1 SAS Cells - 1.5 [13] 

B2 “ - 11.7  

B3 “ - 5.3  

B4 “ - 18.0  

B5 “ - 9.4  

80c 
U937 

HCT-116 
m-AMSA 0.90 [14] 

LS-1-10 DLD1 Cells Amsacrine 1.31 [15] 

ACPH A375 Camptothecin 20.74 [18] 

 

1i 

A549 

HT-29 
Etoposide 

59.12–14.87 

17.32–5.90 
[19] 

4b,4d.4e 

HeLa, 

HepG2, 

HEK 239 

Camptothecin 

18.89–52.64 

18.7–108.34 

31.38–277.13 

[20] 

C2 

malignant 

glioma and 

other human 

cancers. 

erlotinib 0.75–5 [24] 

C-1311 

DU-145 

HCT-116 

MBA-MB-23

1 

Gemcitabine 

Erlotinib 

0.01–0.03 

0.01–0.03 

0.01–0.03 

[25] 

4b HepG2 Doxorubicin 1.4 ± 0.11  [26] 

50



Molecules 2023, 28, 193 34 of 42

Table 16. Cont.

Potent Compound Cancer Cell
Lines Control IC50 (µM) Reference

K562 “

Molecules 2023, 28, x FOR PEER REVIEW 36 of 44 
 

 

Table 16. Some of the most potent compounds and their IC50 (micromolar) values with cell lines. 

Potent Compound 
Cancer Cell 

Lines 
Control IC50 (µM) Reference 

Propyl-AcrDTU HL-60 - 7.2–8 [1] 

MAnT 

HeLa 

cervical 

cancer cell 

line 

Tetrandrine 2.74 [2] 

C-1748 HT29 Cell Sorafenib 39.7 [3] 

Cmpd-1 A549 Cells Etoposide 15 [4] 

Cmpd-2 A549 Cells “ 10  

Cmpd-3 A549 Cells “ 15  

Cmpd-4 A549 Cells “ 10  

ACSO3 
HCT-116 

Cells 
Doxorubicin 23.11 ± 1.03 [7] 

 HeLa “ ˃50  

 MCF-7 “ ˃50  

 K562 “ ˃50  

 HL-60 “ ˃50  

 HaCat “ 62.18 ± 1.15  

 PBMC “ 115.2 ± 5.82  

Cisplatin MCF-7 - 12.7 ± 2.2 [9] 

9-Acridine carboxylic acid “ - 21.5 ± 3.1  

Eu(𝑰𝑰𝑰)-complex “ - 14.3 ± 2.6  

C-1748 MiaPaCa-2 - 0.015 [10] 

 AsPC-1 - 0.075  

B1 SAS Cells - 1.5 [13] 

B2 “ - 11.7  

B3 “ - 5.3  

B4 “ - 18.0  

B5 “ - 9.4  

80c 
U937 

HCT-116 
m-AMSA 0.90 [14] 

LS-1-10 DLD1 Cells Amsacrine 1.31 [15] 

ACPH A375 Camptothecin 20.74 [18] 

 

1i 

A549 

HT-29 
Etoposide 

59.12–14.87 

17.32–5.90 
[19] 

4b,4d.4e 

HeLa, 

HepG2, 

HEK 239 

Camptothecin 

18.89–52.64 

18.7–108.34 

31.38–277.13 

[20] 

C2 

malignant 

glioma and 

other human 

cancers. 

erlotinib 0.75–5 [24] 

C-1311 

DU-145 

HCT-116 

MBA-MB-23

1 

Gemcitabine 

Erlotinib 

0.01–0.03 

0.01–0.03 

0.01–0.03 

[25] 

4b HepG2 Doxorubicin 1.4 ± 0.11  [26] 

50

HL-60 “

Molecules 2023, 28, x FOR PEER REVIEW 36 of 44 
 

 

Table 16. Some of the most potent compounds and their IC50 (micromolar) values with cell lines. 

Potent Compound 
Cancer Cell 

Lines 
Control IC50 (µM) Reference 

Propyl-AcrDTU HL-60 - 7.2–8 [1] 

MAnT 

HeLa 

cervical 

cancer cell 

line 

Tetrandrine 2.74 [2] 

C-1748 HT29 Cell Sorafenib 39.7 [3] 

Cmpd-1 A549 Cells Etoposide 15 [4] 

Cmpd-2 A549 Cells “ 10  

Cmpd-3 A549 Cells “ 15  

Cmpd-4 A549 Cells “ 10  

ACSO3 
HCT-116 

Cells 
Doxorubicin 23.11 ± 1.03 [7] 

 HeLa “ ˃50  

 MCF-7 “ ˃50  

 K562 “ ˃50  

 HL-60 “ ˃50  

 HaCat “ 62.18 ± 1.15  

 PBMC “ 115.2 ± 5.82  

Cisplatin MCF-7 - 12.7 ± 2.2 [9] 

9-Acridine carboxylic acid “ - 21.5 ± 3.1  

Eu(𝑰𝑰𝑰)-complex “ - 14.3 ± 2.6  

C-1748 MiaPaCa-2 - 0.015 [10] 

 AsPC-1 - 0.075  

B1 SAS Cells - 1.5 [13] 

B2 “ - 11.7  

B3 “ - 5.3  

B4 “ - 18.0  

B5 “ - 9.4  

80c 
U937 

HCT-116 
m-AMSA 0.90 [14] 

LS-1-10 DLD1 Cells Amsacrine 1.31 [15] 

ACPH A375 Camptothecin 20.74 [18] 

 

1i 

A549 

HT-29 
Etoposide 

59.12–14.87 

17.32–5.90 
[19] 

4b,4d.4e 

HeLa, 

HepG2, 

HEK 239 

Camptothecin 

18.89–52.64 

18.7–108.34 

31.38–277.13 

[20] 

C2 

malignant 

glioma and 

other human 

cancers. 

erlotinib 0.75–5 [24] 

C-1311 

DU-145 

HCT-116 

MBA-MB-23

1 

Gemcitabine 

Erlotinib 

0.01–0.03 

0.01–0.03 

0.01–0.03 

[25] 

4b HepG2 Doxorubicin 1.4 ± 0.11  [26] 

50

HaCat “ 62.18 ± 1.15

PBMC “ 115.2 ± 5.82

Cisplatin MCF-7 - 12.7 ± 2.2 [9]

9-Acridine
carboxylic acid “ - 21.5 ± 3.1

Eu(III)-complex “ - 14.3 ± 2.6

C-1748 MiaPaCa-2 - 0.015 [10]

AsPC-1 - 0.075

B1 SAS Cells - 1.5 [13]

B2 “ - 11.7

B3 “ - 5.3

B4 “ - 18.0

B5 “ - 9.4

80c U937
HCT-116 m-AMSA 0.90 [14]

LS-1-10 DLD1 Cells Amsacrine 1.31 [15]

ACPH A375 Camptothecin 20.74 [18]

1i A549
HT-29 Etoposide 59.12–14.87

17.32–5.90 [19]

4b,4d,4e
HeLa,

HepG2,
HEK 239

Camptothecin
18.89–52.64
18.7–108.34
31.38–277.13

[20]

C2
malignant

glioma and other
human cancers.

erlotinib 0.75–5 [24]

C-1311
DU-145

HCT-116
MBA-MB-231

Gemcitabine
Erlotinib

0.01–0.03
0.01–0.03
0.01–0.03

[25]

4b
4f
4g
4i
4j

HepG2
MCF-7 Doxorubicin

1.4 ± 0.11
4.7 ± 0.09
2.2 ± 0.09
5.3 ± 0.16
4.8 ± 0.12
4.4 ± 0.10
2.6 ± 0.11
5.9 ± 0.15
1.6 ± 0.14
5.0 ± 0.18

[26]

SR374
SR375
SR361
SR362

MCF7
A549

GIST48
WI38

-

1.6, 0.4, 2.9, <0.1
0.3, 0.1, 0.5, 0.1
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Table 16. Cont.

Potent Compound Cancer Cell
Lines Control IC50 (µM) Reference

Cmpd 13
Cmpd 15
Cmpd 16

Cmpd 17 Cmpd 18

HT-29 BRACO19

13.17–12.55
41.12–27.38
69.99–22.12
48.80–23.25
44.89–33.23

[31]

CuGGHK-Acr
GGHK-Acr

Ho-Acr

HuH-7
MCF-7
Caco2

-
9.8 ± 2.3

26.6 ± 2.2
16.7 ± 1.6

[33]

8p A549 Cells
Doxorubicin

Etoposide
Amsacrine

0.61 ± 0.06 [34]

9AmAcPtCl2 HeLa Cells Cisplatin 0.4 [40]

7r HepG-2
MCF-7 Colchicin 4.2

23.8 [41]

7b
H1299

WM264
HCT116

Cisplatin
2.9
0.8

15.4
[45]

8m K562
HepG-2 Imatinib 4.08 ± 0.14

9.41 ± 1.09 [46]

BO-1051 SAS Cells
OECM1 - 2.39

1.97 [47]

Cmpd 2

A2780
MDA-MB-231

SK-BR-3
MCF-7

CDDP
AuC1PPh3

0.88 ± 0.20
2.75 ± 0.40
3.62 ± 0.14
5.32 ± 0.65

[50]

Complex 11
A549

MCF-7
HL60

Cisplatin
7.6 ± 0.6
1.5 ± 0.1
1.1 ± 0.1

[50]

2C
HL-60
L1210
A2780

Cisplatin
1.3 ± 0.2
3.1 ± 0.4
7.7 ± 0.5

[51]

Cmpd-9 PC-3
COLO-205 Amsacrine 5.5–9.5

8.6–42.3 [52]

Cmpd-6
Cmpd-7
Cmpd-9
Cmpd-10

MDA-MB-231
DU-145 Colchicine

3 ± 1, 3.2 ± 0.7
0.190 ± 0.007

1.1 ± 0.2
1.0 ± 0.3

0.11 ± 0.02
0.12 ± 0.02

[53]

8c
MCF-7
T-47D

MDA-MB-231
etoposide

11 ± 4.8
14.5 ± 5.2
16.6 ± 5.9

[54]

C-1305
C-1311 KB-3 - 0.263 ± 0.016

0.106 ± 0.014 [55]

8m SW480
HCT116 - 6.77 ± 0.19

3.33 ± 0.02 [56]

11L PARP-1
MCF-7

Olaparib
m-AMSA

0.45 ± 0.03
2.14 ± 0.92 [57]
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Table 16. Cont.

Potent Compound Cancer Cell
Lines Control IC50 (µM) Reference

8I K562
HepG-2

Colchicine
Imatinib

2.68
8.11 [58]

4g HUVEC
LNCAP B-Lapachone 49.19 ± 2.3

18.54 ± 2.11 [59]

2b
HeLa
K562
A549

-
3.2
9.2
5.7

[60]

8m SKOV-3 Cisplatin 0.24 ± 0.05 [61]

Cmpd-1 MCF-7 Tamoxifen
citrate 0.951 [62]

6a1 HCT116 NQO2 14 ± 4 [66]

C-1311 MV4-11
MOLM13 - 0.03 ± 0.01

0.04 ± 0.02 [70]

Cmpd-2

MCF-7
MDA-MB-231

SGC7901
MGC803

-

6.79 ± 2.01
6.46 ± 2.19

17.25 ± 3.84
10.94 ± 2.26

[72]

Cmpd-1
Cmpd-6

MCF-7
MDA-MB-231

SGC7901
MGC803

-

8.83 ± 0.98
10.02 ± 0.78
41.47 ± 3.24
23.96 ± 1.54

[73]

5a DLA Cells ascorbic acid 20.03 ± 0.2583 [74]

8 MCF-7
MDA-MB-231 Tamoxifen 1.6 ± 0.4

13.2 ± 0.1 [78]

Cmpd-3
NCI-H460
OVCAR-3
PANC-1

Cisplatin
0.008 ± 0.002

1.1 ± 0.1
0.09 ± 0.01

[80]

3a
3b H460 - 12 ± 2

2.8 ± 0.3 [81]

P1-A1
P1-B1
P1-B2

NCI-H460 -
0.0052 ± 0.0001

0.24 ± 0.01
2.4 ± 0.5

[83]

Cmpd-1 NCI-H460
NCI-H522 Cisplatin 8 ± 2

18 ± 2 [85]

QC OCI-Ly01
SU-DHL-8 Quinacrine 1.8

2 [90]

Cmpd-25

MDA-MB-468
MDA-MB-231

MCF-7
184B5

Cisplatin
Quinacrine

1.73 ± 0.80
2.80 ± 1.30
0.69 ± 0.41
4.96 ± 0.24

[91]

Cmpd-11

MDA-MB-468
MDA-MB-231

MCF-7
184B5

Cisplatin
Quinacrine

2.40 ± 1.01
1.92 ± 0.20
1.24 ± 0.51

16.16 ± 0.81

[92]
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Table 16. Cont.

Potent Compound Cancer Cell
Lines Control IC50 (µM) Reference

LPSF/AC-119 Raji
Jurkat Amsacrine 0.6

1.53 [93]

AC-4
AC-7

AC-10
AC-23

HCT-8 Amsacrine

3.1
5.3
3.6
2.3

[94]

7a
7b HepG2 Amsacrine 68.03

48.63 [95]

13b K562
A549 Imatinib 0.22 ± 0.03

0.253 ± 0.16 [97]

3. Conclusions

Since the 1980s, several acridine derivatives have been synthesised and tested for
anti-cancer efficacy. In recent years, the effective synthesis and anti-cancer efficacy of
these nitrogen-containing heterocyclic moieties has been a point of interest. However,
it has failed to treat cancer and hence falls short of our expectations and needs. In the
coming years, a significant increase is feasible, but it will be contingent on the specialised
design of compounds that target a single receptor, enzyme, or protein, with a focus on
minimising side effects and toxicity. It is necessary to synthesise more of these heterocyclic
compounds that target enzymes in order to modulate illness conditions. To summarise, the
development of compounds containing an acridine nucleus is an attractive and promising
area of medicinal chemistry, and pharmacophores containing this heterocyclic ring have
the potential to contribute to the discovery of new biologically active drugs.
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hydrochlorides as new photosensitizers for photodynamic therapy of mouse leukaemia cells. Bioorg. Med. Chem. 2016, 24,
2011–2022. [CrossRef] [PubMed]

2. Calvillo-Páez, V.; Sotelo-Mundo, R.R.; Leyva-Peralta, M.; Gálvez-Ruiz, J.C.; Corona-Martínez, D.; Moreno-Corral, R.;
Escobar-Picos, R.; Höpfl, H.; Juárez-Sánchez, O.; Lara, K.O. Synthesis, spectroscopic, physicochemical and structural characteriza-
tion of tetrandrine-based macrocycles functionalized with acridine and anthracene groups: DNA binding and anti-proliferative
activity. Chem.-Biol. Interact. 2018, 286, 34–44. [CrossRef] [PubMed]

3. Mróz, A.; Ryska, I.; Sominko, H.; Bejrowska, A.; Mazerska, Z. Drug-drug interaction potential of antitumor acridine agent C-1748:
The substrate of UDP-glucuronosyltransferases 2B7, 2B17 and the inhibitor of 1A9 and 2B7. Pharmacol. Rep. 2018, 70, 972–980.
[CrossRef] [PubMed]

http://doi.org/10.1016/j.bmc.2016.03.029
http://www.ncbi.nlm.nih.gov/pubmed/27025564
http://doi.org/10.1016/j.cbi.2018.02.013
http://www.ncbi.nlm.nih.gov/pubmed/29476729
http://doi.org/10.1016/j.pharep.2018.03.007
http://www.ncbi.nlm.nih.gov/pubmed/30107347


Molecules 2023, 28, 193 38 of 42
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C-1311 inhibits hypoxia-inducible factor-1α (HIF-1α), vascular endothelial growth factor (VEGF) and angiogenesis. Cancer Biol.
Ther. 2011, 12, 586–597. [CrossRef] [PubMed]

64. Adar, Y.; Stark, M.; Bram, E.E.; Nowak-Sliwinska, P.; van den Bergh, H.; Szewczyk, G.; Sarna, T.; Skladanowski, A.; Griffioen,
A.W.; Assaraf, Y.G. Imidazoacridinone-dependent lysosomal photodestruction: A pharmacological Trojan horse approach to
eradicate multidrug-resistant cancers. Cell Death Dis. 2012, 3, e293. [CrossRef] [PubMed]

65. Augustin, E.; Paw\lowska, M.; Polewska, J.; Potega, A.; Mazerska, Z. Modulation of CYP3A4 activity and induction of apoptosis,
necrosis and senescence by the anti-tumour imidazoacridinone C-1311 in human hepatoma cells. Cell Biol. Int. 2013, 37, 109–120.
[CrossRef]

66. Dunstan, M.S.; Barnes, J.; Humphries, M.; Whitehead, R.C.; Bryce, R.A.; Leys, D.; Stratford, I.J.; Nolan, K.A. Novel inhibitors of
NRH: Quinone oxidoreductase 2 (NQO2): Crystal structures, biochemical activity, and intracellular effects of imidazoacridin-6-
ones. J. Med. Chem. 2011, 54, 6597–6611. [CrossRef]

67. Fedejko-Kap, B.; Bratton, S.M.; Finel, M.; Radominska-Pandya, A.; Mazerska, Z. Role of human UDP-glucuronosyltransferases in
the biotransformation of the triazoloacridinone and imidazoacridinone antitumor agents C-1305 and C-1311: Highly selective
substrates for UGT1A10. Drug Metab. Dispos. 2012, 40, 1736–1743. [CrossRef]

68. Polewska, J.; Skwarska, A.; Augustin, E.; Konopa, J. DNA-damaging imidazoacridinone C-1311 induces autophagy followed by
irreversible growth arrest and senescence in human lung cancer cells. J. Pharmacol. Exp. Ther. 2013, 346, 393–405. [CrossRef]

69. Potega, A.; Dabrowska, E.; Niemira, M.; Kot-Wasik, A.; Ronseaux, S.; Henderson, C.J.; Wolf, C.R.; Mazerska, Z. The imidazoacridi-
none antitumor drug, C-1311, is metabolized by flavin monooxygenases but not by cytochrome P450s. Drug Metab. Dispos. 2011,
39, 1423–1432. [CrossRef]

70. Skwarska, A.; Augustin, E.; Beffinger, M.; Wojtczyk, A.; Konicz, S.; Laskowska, K.; Polewska, J. Targeting of FLT3-ITD kinase
contributes to high selectivity of imidazoacridinone C-1311 against FLT3-activated leukemia cells. Biochem. Pharmacol. 2015, 95,
238–252. [CrossRef]

http://doi.org/10.1039/C8DT02507J
http://doi.org/10.1016/j.bmc.2012.09.068
http://www.ncbi.nlm.nih.gov/pubmed/23122936
http://doi.org/10.1016/j.bmc.2012.04.007
http://www.ncbi.nlm.nih.gov/pubmed/22546208
http://doi.org/10.1371/journal.pone.0160842
http://www.ncbi.nlm.nih.gov/pubmed/27508497
http://doi.org/10.1007/s11030-015-9616-0
http://www.ncbi.nlm.nih.gov/pubmed/26170096
http://doi.org/10.1124/dmd.112.047811
http://doi.org/10.1038/aps.2015.44
http://doi.org/10.1016/j.ejmech.2017.07.050
http://doi.org/10.1016/j.bmc.2015.02.036
http://doi.org/10.1002/ardp.201800307
http://doi.org/10.1016/j.ejmech.2017.02.051
http://doi.org/10.1016/j.ejmech.2018.03.069
http://www.ncbi.nlm.nih.gov/pubmed/29609122
http://doi.org/10.1016/j.bmc.2017.07.067
http://www.ncbi.nlm.nih.gov/pubmed/28882502
http://doi.org/10.4161/cbt.12.7.15980
http://www.ncbi.nlm.nih.gov/pubmed/21775820
http://doi.org/10.1038/cddis.2012.30
http://www.ncbi.nlm.nih.gov/pubmed/22476101
http://doi.org/10.1002/cbin.10018
http://doi.org/10.1021/jm200416e
http://doi.org/10.1124/dmd.112.045401
http://doi.org/10.1124/jpet.113.203851
http://doi.org/10.1124/dmd.111.038984
http://doi.org/10.1016/j.bcp.2015.04.006


Molecules 2023, 28, 193 41 of 42
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