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Abstract: mRNA vaccines are a new class of vaccine that can induce potent and specific immune
responses against various pathogens. However, the design of mRNA vaccines requires the identifica-
tion and optimization of suitable antigens, which can be challenging and time consuming. Reverse
vaccinology is a computational approach that can accelerate the discovery and development of mRNA
vaccines by using genomic and proteomic data of the target pathogen. In this article, we review the
advances of reverse vaccinology for mRNA vaccine design against SARS-CoV-2, the causative agent
of COVID-19. We describe the steps of reverse vaccinology and compare the in silico tools used by
different studies to design mRNA vaccines against SARS-CoV-2. We also discuss the challenges and
limitations of reverse vaccinology and suggest future directions for its improvement. We conclude
that reverse vaccinology is a promising and powerful approach to designing mRNA vaccines against
SARS-CoV-2 and other emerging pathogens.

Keywords: SARS-CoV-2; mRNA vaccine; reverse vaccinology

1. Introduction

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) caused a global
health and socioeconomic emergency as a result of the unprecedented coronavirus disease
2019 (COVID-19) pandemic. The virus emerged in China in late 2019 and quickly spread
across the globe, infecting over 770 million people and killing over 6 million by September
2023 [1]. The COVID-19 pandemic has challenged public health systems and disrupted
social and economic activities worldwide, especially with the appearance of new variants
that are more contagious and resilient [2–4]. Therefore, the pandemic has created an urgent
need to develop safe and effective vaccines against SARS-CoV-2 to prevent severe outcomes
of the disease and enable social and economic recovery. Vaccines are the best way to protect
people and reduce virus transmission, as they stimulate the immune system to recognize
and fight SARS-CoV-2 [3,4].

Vaccines are biologics that elicit a specific immune response against a pathogen,
providing protection to the vaccinated person. Conventional vaccines rely on the use
of either the whole weakened or killed pathogen, or parts thereof (such as proteins or
polysaccharides) isolated or recombinant [1,5]. These vaccines have proven effective
and safe for many infectious diseases, but they have some drawbacks, such as requiring
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cultivation of the pathogen under appropriate conditions, posing a risk of reactivation or
contamination of the final product, having low immunogenicity for some antigens, and
being unable to adapt quickly to new emerging pathogens [6,7].

Introduced in 1989 as a novel class of therapeutic agents, messenger RNA (mRNA)
vaccines work by encoding specific antigens derived from an mRNA sequence [8]. Once
administered, these mRNAs instruct cells to synthesize the desired proteins within the
cytoplasm. These proteins are then displayed on the cell’s surface, initiating immune
responses. This process involves antigen-presenting cells (APCs) or the production of anti-
bodies/immunoglobulins, ultimately conferring immunity against particular diseases [6,7].

Reverse vaccinology (RV) is an approach that relies on computational tools to analyze
a region of genome, usually encoding a protein, that can generate an immune response to a
pathogen in order to identify potential vaccine candidates [9]. These computational tools
serve to anticipate antigens that are likely to induce protective responses, as well as the pre-
cise regions of antigens, epitopes, recognized by the immune system [10]. Thus, RV allows
researchers to identify potential vaccine targets more quickly and efficiently; furthermore,
it can be particularly useful for pathogens that are difficult to grow in the laboratory.

In this review, we offer a comprehensive and up-to-date perspective on the use of
reverse vaccinology in the design of mRNA vaccines against SARS-CoV-2. Specifically,
we emphasize the critical role of computational tools and algorithmic complexities that
played an instrumental role in the accelerated development of vaccines for COVID-19. We
delve deeply into the steps of reverse vaccinology and compare the in silico tools employed
in pertinent studies. Additionally, we summarize and reference significant works that
have provided valuable insights into the applications of bioinformatics in addressing the
biological challenges posed by COVID-19.

2. The Advent of Reverse Vaccinology

RV is a broad term used to describe an approach that employs computational tools to
analyze a pathogen’s proteome, identifying potential vaccine candidates [9–11]. The term
“reverse” in vaccinology highlights the innovative approach of initiating vaccine discovery
using computer-analyzed genomic data instead of a live organism, selectively targeting
proteins that could serve as potential antigens [12]. This approach took flight in the late
1990s following the complete genome sequencing of the bacterium Neisseria meningitidis.

This breakthrough led to the creation and approval of Bexsero, the first-ever vaccine
against B strains of Meningococcal meningitis (meningococci). Building on this momentum,
RV has since been employed to identify antigen candidates for a slew of pathogens, includ-
ing the hepatitis C virus, influenza, and Zika [5,10]. Furthermore, numerous studies are
currently being conducted in experimental trials to investigate the potential of bioinformat-
ics platform-tested multi-epitope vaccines [13–17]. Notably, the principles of RV have also
paved the way for the development of mRNA vaccines, showcasing the adaptability and
potential of this approach in modern vaccine design.

RV offers a modern approach to vaccine design, presenting several advantages over
traditional methods, such as (i) being a more economical choice, reducing the financial
burden associated with conventional drug design; (ii) it streamlines the drug design process,
cutting down the time traditionally required; (iii) it narrows down the number of proteins
under study, ensuring a more focused approach; (iv) it can detect antigens that are present
in minute quantities or those expressed during specific phases of an organism’s life cycle;
and (v) it is especially beneficial for researching pathogens that cannot be grown using in
vitro methods [18,19].

3. mRNA Vaccines: A New Era in Immunization

The mRNA vaccines, which include both conventional and self-amplifying mRNA
forms, represent a groundbreaking alternative to conventional vaccines. Conventional
mRNA-based vaccines encode only the antigen of interest and are characterized by 5′ and 3′

untranslated regions (UTRs). On the other hand, self-amplifying RNAs not only encode the
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antigen but also the viral replication machinery, facilitating intracellular RNA amplification
and abundant protein expression. Upon entering the host cell, the mRNA undergoes
processing and translation, culminating in protein synthesis [20]. These proteins are
subsequently presented to the immune system, as depicted in Figure 1. This sophisticated
mechanism assists the immune system in recognizing and battling the pathogen. It offers
several advantages over traditional vaccines, such as (i) rapid and scalable production;
(ii) the ability to modulate antigen expression and stability; (iii) potent activation of both
humoral and cellular immune responses; and (iv) the flexibility to quickly adapt to new
pathogen variants [6,20–22].

Building on this technology, the genetic sequence of the S protein from the SARS-CoV-2
virus serves as a blueprint for the design of mRNA vaccines. These vaccines express either
the entire protein or specific segments, such as the receptor-binding domain (RBD), the S1
and S2 subunits, or a sequence of epitopes (Figure 1). The latter approach is not a common
design for mRNA vaccines, and represents a novel method of presenting antigens, show-
casing the flexibility of mRNA vaccines [6,11,21,23]. The development and distribution of
mRNA vaccines comes with challenges. These include the necessity for cold storage and
transportation, potential toxicity from lipid nanoparticles, suboptimal mRNA delivery into
cells, and concerns regarding adverse reactions or potential autoimmunity [6,7,20].

Figure 1. This illustration showcases the mechanism by which mRNA vaccines trigger immune
responses. (a) The mRNA vaccines elicit an immune response through a multi-step mechanism. Upon
administration, the mRNA molecules are taken up by antigen-presenting cells (APCs) at the injection
site, such as dendritic cells. The mRNA is then translated by the cellular machinery, leading to the
expression of the viral antigen on the surface of the APCs. (b) The design of most mRNA vaccines for
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SARS-CoV-2, notably the BNT162B2, revolves around encoding the spike protein. This crucial
protein is located within the open reading frame (ORF) and is entirely encapsulated by LNP. (c) A
less traditional approach in mRNA vaccine design involves directly encoding epitopes. Unlike the
conventional method that incorporates genes or proteins, this design embeds a sequence of epitopes
within the ORF. This pioneering method of antigen presentation highlights the adaptability and
versatility of mRNA vaccines. Adapted from Cai et al. [24].

mRNA Vaccines Currently Designed against SARS-CoV-2

Numerous mRNA vaccines have been developed in response to the COVID-19 pan-
demic, and several have received global approval due to their commendable safety profiles
and demonstrated effectiveness in clinical trials. Leading the charge, mRNA vaccines
targeting the S protein of SARS-CoV-2 were among the pioneers in clinical testing and
quickly secured emergency use approvals in various nations.

Prominent among these are BNT162b2 (Pfizer-BioNTech) and mRNA-1273 (Moderna),
both of which advanced swiftly to phase 3 clinical trials. These vaccines reported an
impressive efficacy rate of around 95% [25,26]. ARCoV (Walvax Biotechnology) is an
mRNA vaccine that remains stable at room temperature for at least a week, underscoring
its advantages in distribution and storage [21]. On the other hand, CVnCoV (CureVac)
recorded a modest efficacy of 48% against COVID-19.

4. Overview of Reverse Vaccinology in mRNA Vaccine Design

While the instability and potential immunogenicity of mRNA initially raised concerns
about its use in vaccine development, advancements in research and technology have
addressed these challenges. Consequently, established techniques, such as reverse vacci-
nology, integrated with bioinformatics, have stabilized and streamlined the production
process of mRNA vaccines. In relation to SARS-CoV-2, this approach holds promise in
identifying conserved and immunogenic epitopes, which is essential for the creation of
next-generation multi-epitope or subunit vaccines. The evolving landscape underscores
the significance of advanced computational models that effectively integrate epitope data,
optimizing vaccine formulations and broadening their applicability.

By focusing on encoding only the vital epitopes in mRNA vaccines, their design
becomes more efficient, which in turn improves the stability of the mRNA vaccine. In the
context of COVID-19, various studies, as cited by Ahammad and Lira [27], ELKHOLY [28],
Bhattacharya et al. [29], Oluwagbemi et al. [30], Khan et al. [31], Oladipo et al. [32],
have advocated for a reverse vaccinology approach. This technique starts with obtaining
the SARS-CoV-2 spike glycoprotein sequence, and then uses computational predictions
to pinpoint epitopes for cytotoxic T lymphocytes, helper T lymphocytes, and linear B
lymphocytes, while also evaluating epitope antigenicity.

Addressing the growing concern of SARS-CoV-2 variants, Hussain et al. [33] unveiled
DOW-21, a restructured mRNA vaccine construct. This design emphasizes the N-terminal
domain (NTD) and the receptor-binding domain (RBD) of the spike protein, integrating vari-
ations from both variants of concern (VOCs) and variants of interest (VOIs). The innovative
structure merges hypothetical versions of NTD and RBD, combined with a 10-mer gly–ala
repeat, and is surrounded by regulatory sequences to enhance intracellular transport and
expression. The resulting protein reflects the structural characteristics of SARS-CoV-2
immune escape variants, with the nucleotide sequence optimized for translation efficiency.

Similarly, Durojaye et al. [34] employed a reverse vaccinology approach for an mRNA-
based vaccine candidate, focusing on the “YLQPRTFLL” peptide sequence (position
269–277). Identified as a potential B cell epitope with a high affinity for HLA*A-0201,
this sequence was selected post antigenicity assessments. The nucleotide design was then
customized for the human toll-like receptor 7 (TLR7) after codon optimization.

Beyond the strategies using reverse vaccinology that target the SARS-CoV-2 spike
glycoprotein, Pourseif et al. [35] took a unique route. They explored two mRNA vaccine
formulations: the domain-based protein vaccine construct (DPVC) and the self-amplifying
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mRNA vaccine (SAMV). The effectiveness of these designs was confirmed through in silico
analyses, which predicted B cell epitopes using various algorithms. They also investigated
MHC class I- and II-associated peptide binders, considering factors like allergenicity,
autoimmunity, and physicochemical properties. Molecular docking between the vaccine
and TLRs 4 and 5 was conducted, and the stability of these complexes was further evaluated
using molecular dynamics simulations.

While these studies have yet to be conducted on animals or humans, they provide
a compelling demonstration of the potential of computational tools in the development
of mRNA vaccines. One of the most promising applications of reverse vaccinology in
mRNA vaccine design is the identification of neoantigens [36,37]. Tumor cells produce
these novel antigens due to various tumor-specific alterations. These alterations include
genomic mutation, dysregulated RNA splicing, disordered post-translational modification,
and integrated viral open reading frames [38,39]. A recent clinical trial explored the efficacy
of an mRNA vaccine in combating pancreatic cancer [40]. These studies demonstrate the
potential of bioinformatics tools in designing mRNA vaccines against various pathogens,
including cancer.

5. Online Tools and Their Applications for Vaccine Design

This section provides a comparison of in silico tools applied to reverse vaccinology
that have been utilized or have the potential to aid in the design of mRNA vaccines against
SARS-CoV-2 [11] (Figure 2).

5.1. Vaccine Construction
5.1.1. Retrieval of Sequence

The initial phase preceding vaccine development entails the acquisition of the viral
sequence, which serves as the principal focus for immunization strategies. This can be
accomplished by querying publicly accessible repositories replete with extensive data on
viral genomic sequences, which are continually augmented with novel information. The
National Center for Biotechnology Information (NCBI) emerges as a preeminent database,
offering an exhaustive compendium of both genomic and proteomic sequences. The FASTA
format is a text-based format used to represent amino acid sequences of the target protein.
Notably, it is the most frequently utilized resource, with approximately 66.7% of the
articles examined in this review relying on NCBI for sequence extraction and subsequent
bioinformatic investigations.

The Virus Pathogen Database and Analysis Resource (ViPR) serves as another
specialized repository with a focus on viral pathogens. Studies cited as Ahammad
and Lira [27], ELKHOLY [28] leveraged ViPR for the purpose of sequence acquisition,
whereas the Global Initiative for Sharing All Influenza Data (GISAID) was utilized in
Oluwagbemi et al. [30], Oladipo et al. [32], Hussain et al. [33] for the procurement of com-
plete genomic sequences of SARS-CoV-2 and its associated variants. GISAID is partic-
ularly renowned for its expeditious data dissemination capabilities, rendering it indis-
pensable for research endeavors necessitating real-time genomic data. The study cited
as Khan et al. [31] employed Uniprot, an exhaustive compendium of protein-related data.
Additionally, the Protein Data Bank (PDB) was cited as the data source in studies Bhat-
tacharya et al. [29], Durojaye et al. [34].
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Figure 2. Heat maps for the vaccine construction and post-vaccine construction phases, the values
of which correspond to the reviewed articles by mRNA steps from each phase of mRNA vaccine
design [27–35]. The bar chart shows which articles carried out each step, where blue corresponds to
“YES” and red corresponds to “NO”.

5.1.2. T Cell Epitope Prediction

Generally, The Immune Epitope Database (IEDB) stands as a premier source of im-
munomic and host tools, offering crucial insights for epitope prediction and analysis [41].
Notably, tools like NetMHCpan (4.0) and NetCTL are distinguished for their foundation on
artificial neural networks (ANNs) [42,43]. Furthermore, ProPred1 deserves mention as an
online tool tailored for MHC I epitope prediction, incorporating matrices for 47 MHC Class



Viruses 2023, 15, 2130 7 of 18

I alleles, along with proteasomal and immunoproteasomal models [44]. Some studies indi-
cate that using a combination of two servers enhances the reliability of the results [45,46].

Through computational algorithms designed to forecast cytotoxic T lymphocyte (CTL)
epitopes, researchers can design vaccines that are more likely to elicit a strong immune
response [22]. Among the reviewed works, eight cases studied these epitopes. The frequent
use of NetCTL is confirmed by its application in the reviewed papers. Although IEDB
was used three times, Ahammad and Lira [27] used it as a second layer of verification. It
is common for researchers, after identifying potential epitopes using NetCTL, to turn to
IEDB for a second layer of verification, thus ensuring the robustness and reliability of their
predictions. NetMHC 4.1, ProPed1, Epijen, and RankPep were used less frequently, with
each being utilized only in one of the reviewed studies.

Painter et al. [47] demonstrated that mRNA vaccines activate T cells specific to SARS-
CoV-2, playing a pivotal role in ensuring long-lasting immunity. Notably, the swift priming
of CD4+ T cells underscores their foundational role in preparing for a robust adaptive
immune response, particularly following a booster dose. As detailed in Table 1, the IEDB
software was exclusively employed for predicting MHC II-bound epitopes. This high-
lights the superior performance of machine learning models over other in silico prediction
methods, as emphasized by [48]. Of the studies reviewed, six explored these epitopes.
It is important to note that the percentile selection criterion might vary depending on the
specific objectives of the study. For instance, Ahammad and Lira [27], Oluwagbemi et al. [30]
focused on a percentile selection criterion of ≤0.25, while Bhattacharya et al. [29] used the
default settings.

Table 1. Comparison of various in silico tools used in vaccine construction studies. The table shows
the frequency of each tool’s usage in the revised articles.

Vaccine Construction

In Silico Software fi/N × 100 ∗ Reference

Retrieve Sequences Genbank 55.6% (159) [27–29,32,35]
Gisaid 33.3% (3/9) [30,32,33]
ViPR 22.2% (2/9) [27,28]
NCBI 77.8% (7/9) [28–30,33–35]

Uniprot 11.1% (1/9) [31]
PDB 22.2% (2/9) [29,34]

CTL epitope prediction NetCTL 66.7% (6/9) [27–32]
IEDB 33.3% (3/9) [27,34,35]

NetMHC 4.1 22.2% (2/9) [28,34]
ProPed1 11.1% (1/9) [34]
EpiJen 11.1% (1/9) [34]

Rankpep 11.1% (1/9) [28]
HTL epitopes

prediction IEDB 77.8% (7/9) [27–32,35]

Continuous and
Discontinuous B cell

epitope prediction
ABCpred 55.6% (5/9) [28,31,32,34,35]

BCpred 33.3% (3/9) [29,30,32]
iBCE-EL 22.2% (2/9) [27,30]
BcePred 33.3% (3/9) [29,30,34]
Bepipred 22.2% (2/9) [34,35]
Discotope 22.2% (2/9) [33,35]

Antigenicity VaxiJen 2.0 55.6% (5/9) [27,28,30,31,34]
Immunogenicity IEDB (CTL) 33.3% (3/9) [27,28,30]

Allergenicity AllerTop V 2.0 66.7% (6/9) [27–31,34]
Toxicity Toxinpred 33.3% (3/9) [27,28,30]

Interferon-γ (IFN-γ) IFNepitope 33.3% (3/9) [27,28,30]
Interleukin-4(IL-4) IL4pred 33.3% (3/9) [27,28,30]

Interleukin-10 (IL-10) IL10pred 22.2% (2/9) [27,30]
Population coverage IEDB 55.6% (5/9) [27,29,30,32,35]

* In the third column, the percentages of the regularity of each web tool in articles are shown.

Despite the significant progress made, the accuracy of peptide–MHC II binding algo-
rithms remains notably inferior to that of MHC class I binding predictors, underscoring the
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persistent challenges in the field. The MHC class II epitope prediction tools, particularly
those from IEDB, are showing promise [49]. However, NETMHCIIpan-2.0 stands out as the
best-performing method, with the capability to predict epitope binding with minimal or
even absent experimental data [50].

5.1.3. Continuous and Discontinuous B Cell Epitope Prediction

Several authors employed methodologies focused on the identification of linear epi-
topes. Ahammad and Lira [27] used the iBCE-EL server, while ELKHOLY [28] enhanced his
research with more tools such as Rankpep. Bhattacharya et al. [29] utilized the BCPREDS
server, while Oluwagbemi et al. [30], Oladipo et al. [32] combined BcePred with iBCE-EL
and ABCpred server predictions, respectively. Similarly, Durojaye et al. [34] integrated
ABCpred, iBCE-EL, and Bepipred web servers. For the prediction of discontinuous B
cell epitopes, Hussain et al. [33] exploited the capabilities of DiscoTope v2. The multi-
method approach, as shown by Pourseif et al. [35], represents an advancement in prediction
strategies, using Bepipred for continuous and Discotope for discontinuous epitopes.

5.1.4. Antigenicity

Vaxijen is a commonly used tool for predicting the antigenicity of T cell epitopes [51].
This software evaluates the antigenicity of a target organism, such as a virus, bacterium,
tumor, parasite, or fungus. For this analysis, a threshold of ≥0.5 was used because most
models had their highest accuracy at this threshold [11,52]. This tool was employed
in Ahammad and Lira [27], ELKHOLY [28], Oluwagbemi et al. [30], Durojaye et al.
[34], and Khan et al. [31] for epitope screening, considering only 55.6% of the total arti-
cles reviewed.

5.1.5. Immunogenicity

The IEDB Analysis Resource is a commonly used tool for predicting the
immunogenicity of CTL epitopes. It provides both negative and positive values, with
positive values indicating potential immunogenicity. This tool was employed in Ahammad
and Lira [27], ELKHOLY [28], and Oluwagbemi et al. [30] for initial epitope screening,
considering only 33% of the total articles reviewed.

The CD4episcore tool provides a strong framework for predicting CD4+ T cell immuno-
genicity, with its effectiveness validated across various techniques for epitope identification,
antigen sources, and ethnicities [53]. However, it is important to note that none of the
studies reviewed addressed this aspect, highlighting the need for further validation of the
predicted optimization of helper T lymphocyte (HTL) epitopes.

5.1.6. Allergenicity

Allergenicity prediction is a critical step in therapeutics due to its involvement in
predicting the cross-reactive potential of novel proteins from the sequence identities of
known allergens [54].

The AllerTop 2.0 server is an online tool that can be used to predict the allergic or
non-allergic nature of potential epitopes. The epitopes entered are evaluated individually,
and the server provides a result indicating whether the sequence is likely to be allergenic
or non-allergenic, along with a link to a protein with a similar sequence [45,55]. This
tool was employed in Ahammad and Lira [27], ELKHOLY [28], Bhattacharya et al. [29],
Oluwagbemi et al. [30], Durojaye et al. [34], and Khan et al. [31] for epitope screening,
considering only 66.7% of the total articles reviewed.

5.1.7. Toxicity

Toxicity profiles were assessed using ToxinPred, a specialized server that employs
support vector machine (SVM) models for the classification of epitopes as either toxic or non-
toxic. In this study, ToxinPred served as the exclusive tool for screening non-toxic epitopes.
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A review of nine related articles revealed that only Ahammad and Lira [27], ELKHOLY [28],
and Oluwagbemi et al. [30] conducted this particular type of analysis [56].

5.1.8. Inducibility of Interferon-γ (IFN-γ), Interleukin-4(IL-4), and Interleukin-10(IL-10)

In the quantitative analysis conducted in this study, it was found that approximately
33.3% of the reviewed papers focused on predicting the inducibility of interferon-γ (IFN-
γ) using the IFNepitope server [57]. Similarly, 33.3% of the papers were devoted to the
prediction of interleukin-4 (IL-4) inducibility using the IL4pred server [58], and 22.2%
targeted interleukin-10 (IL-10) inducibility using the IL10pred server [59].

5.1.9. Population Coverage

Population coverage indicates the proportion of the population that could potentially
benefit from the vaccine. IEDB Population Coverage tool is used to predict the size of the
population that would elicit an immune response to the constructed vaccine [60]. Among
nine articles, only 55.6% performed this analysis.

5.2. Primary Vaccine Construct

In the realm of mRNA vaccine development, the design of the construct is paramount, influ-
encing the vaccine’s efficacy, stability, and safety. Ahammad and Lira [27] and ELKHOLY [28]
offer a comprehensive insight into this crucial phase, deepening our understanding of the
entire developmental trajectory. The open reading frame (ORF) emerges as an essential
component of the mRNA vaccine. It should encompass five pivotal elements: the Kozak
sequence, epitopes, adjuvants, linkers, and a stop codon. The Kozak sequence, a consensus
sequence vital for efficient mRNA translation, incorporates the start codon. Conversely,
the surrounding sequence of the stop codon can be optimized to effectively terminate the
translation. Chosen epitopes should exhibit antigenicity, be non-allergenic, non-toxic, and,
exclusively for HTLs, induce cytokines. Adjuvants amplify the immune response, linkers
seamlessly connect various construct segments, and the stop codons ensure translation
termination. This synthesis draws from a range of articles, offering a detailed perspective
on this foundational stage and enhancing our comprehension of the entire process [61].

On the other hand, Bhattacharya et al. [29] and Oladipo et al. [32] focus on the sta-
bilizing elements like the 5′ cap and poly(A) tail, which are indispensable for mRNA
stability and efficient translation. Notably, Bhattacharya et al. [29] introduces the innova-
tive concept of self-amplifying mRNA vaccines, offering a mechanism for enhanced efficacy.
Adjuvants also play a vital role in boosting the vaccine’s adaptive immune response.
While ELKHOLY [28] and Oluwagbemi et al. [30] highlight the CD40 ligand (CD40L) as
a co-stimulatory molecule, Khan et al. [31] introduces human beta defensin 2 (HbD-2) as
another potential adjuvant. These molecules activate professional antigen-presenting cells
(pAPCs), adding complexity and potency to the vaccine construct.

Ahammad and Lira [27], ELKHOLY [28], and Oluwagbemi et al. [30] discuss how
specific linkers like GPGPG and (EAAK)2 are employed to optimize the vaccine’s efficacy.
Hussain et al. [33] employs molecular modeling to assess the structural and thermodynamic
attributes of the construct, a technique further refined by Durojaye et al. [34] through the
use of SimRNA for 3D structure prediction. Pourseif et al. [35] add to the discussion by
presenting two distinct vaccine constructs optimized for different platforms, showcasing
the adaptability inherent in mRNA vaccine technology. The use of specific linkers and
molecular modeling techniques can help optimize the efficacy of mRNA vaccines, while
the adaptability of the technology allows for the creation of different vaccine constructs for
different platforms [62].

5.3. Post-Vaccine Construction
5.3.1. Allergenicity, Antigenicity, and Solubility Profile Analysis of the Vaccine Construct

The evaluation of allergenicity, antigenicity, and solubility profiles is indispensable
for ensuring both the safety and efficacy of mRNA vaccine development. A variety of
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bioinformatics tools and servers are employed to scrutinize these critical properties, as
highlighted by the articles under review and detailed in Table 2.

Table 2. Comparison of various in silico tools used in post-vaccine construction studies. The table
shows the frequency of each tool’s usage in the revised articles.

Post-Vaccine Construction

In Silico Software fi/N × 100 ∗ Reference

Secondary Structure
Vaccine PSIPRED 11.1% (1/9) [35]

RNAfold 11.1% (1/9) [33]
SOPMA 11.1% (1/9) [30]
SimRNA 11.1% (1/9) [34]

Tertiary Structure
Vaccine SWISS-MODEL 44.4% (4/9) [27,29,33,35]

Phyre2 22.2% (2/9) [30,32]
SimRNA 11.1% (1/9) [34]
Robetta 11.1% (1/9) [31]

Physiochemical
properties prediction ProtParam 44.4% (4/9) [27,29,30,35]

Protein-Sol 11.1% (1/9) [29]
Antigenicity VaxiJen 2.0 44.4% (4/9) [27,29,30,35]

ANTIGENpro 22.2% (2/9) [27,30]
Allergenicity AllerTop V 2.0 22.2% (2/9) [27,29,30,35]

AlgPred 11.1% (1/9) [35]
AllergenFP 11.1% (1/9) [30]

Toxicity Toxinpred 22.2% (2/9) [27,30]
Docking Molecular AutoDock Vina 22.2% (2/9) [27,29]

HDOCK 22.2% (2/9) [29,34]
ClusPro 2.0 33.3% (3/9) [30,34,35]

HPEPDOCK 11.1% (1/9) [34]
HawkDock 11.1% (1/9) [31]

Molecular Dynamics iMODS 22.2% (2/9) [30,32]
WebGro 11.1% (1/9) [30]

GROMACS 5.0.7 33.3% (3/9) [30,34,35]
D3Pockets 11.1% (1/9) [34]

In silico Cloning Jcat 22.2% (2/9) [29,31]
Immune simulation C-ImmSim 66.7% (6/9) [27,29–31,33,35]

* In the third column, the percentages of the regularity of each web tool in articles are shown.

Antigenicity gauges the ability of a vaccine to trigger an immune response. Ahammad
and Lira [27], Bhattacharya et al. [29], Oluwagbemi et al. [30], Pourseif et al. [35],
and Oladipo et al. [32] utilized the VaxiJen server for this purpose, with Ahammad
and Lira [27] and Oluwagbemi et al. [30] also incorporating the ANTIGENpro server that
employs machine learning algorithms. These methods are generally alignment-free and
rely on the physicochemical characteristics of the protein to make their predictions.

Allergenicity is another vital aspect that needs meticulous evaluation to ensure the
vaccine’s safe administration. The AllerTOP server was commonly used for this pur-
pose [27,29,30,32,35]. Oluwagbemi et al. [30] extended its analysis by also using the
AllergenFP server, while Pourseif et al. [35] included FAO/WHO allergenicity rules in
its evaluation. These tools employ various methods like autocross-covariance (ACC)
transformation and E-descriptors to assess the likelihood of an allergic response.The
toxicity of the vaccine construct is a critical safety parameter. Ahammad and Lira [27],
Oluwagbemi et al. [30], and Oladipo et al. [32] used the ToxinPred server for this assess-
ment. This server operated based on support vector machine (SVM) models, aiding in the
classification of toxicity and non-toxicity [56].

The solubility of the expressed vaccine protein is not to be overlooked, as indicated by
Bhattacharya et al. [29], who employed the Protein-Sol online server for this assessment.
Solubility is crucial for a vaccine’s stability and its subsequent effectiveness in eliciting
an immune response. Physicochemical properties such as molecular weight, theoretical
isoelectric point (pI), and instability index (II) are also integral to vaccine construct eval-
uation. Ahammad and Lira [27], Bhattacharya et al. [29], Oluwagbemi et al. [30], and
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Pourseif et al. [35] utilized the ExPASy ProtParam online web server for this comprehen-
sive analysis. Pourseif et al. [35] went a step further by also examining additional properties
like half-life and extinction coefficient.

5.3.2. Secondary Structure Vaccine

Various bioinformatics tools have been developed to assist in the process of secondary
structure configuration, each with its own features, and selected based on the type of work
and purpose. Therefore, 44.4% of the papers reviewed addressed this analysis. PSIPRED
v4.0 and SOPMA applications were used by Pourseif et al. [35] and Oluwagbemi et al. [30],
respectively [63,64]. Using default parameters, these two servers calculate the percentage
of 2D configurations such as alpha helix, random coil, and beta-turn. Moreover, specific
servers for predicting RNA sequence structures, such as RNAfold and simRNA, were used
by Hussain et al. [33] and Durojaye et al. [34], respectively [65,66]. The latter was proposed
to predict the three-dimensional structure, but also provides additional results, including
the secondary structure.

5.3.3. Tertiary Structure Vaccine

Several tools are used to assist in the configuration of tertiary structure. According
to quantitative investigations in this study, approximately 90% of the papers have been
devoted to this analysis. SWISS-MODEL is the most frequently used, appearing in ap-
proximately 44.4% of the studies. The tool’s popularity is largely due to its homology
modeling capabilities [67]. Following SWISS-MODEL is Phyre2, which is used in about
22.2% of the studies. Phyre2 is particularly renowned for its ability to generate high-quality
3D models even when sequence identity to known structures is low [68]. Less commonly
employed are SimRNA and Robetta, each appearing in 11.1% of the studies. SimRNA
specializes in RNA structure prediction, while Robetta is distinguished for its ab initio
modeling capabilities [65,69].

5.3.4. Molecular Docking

Molecular docking is a critical step in vaccine development, providing insights into
the binding affinity and interactions between epitopes and their corresponding major
histocompatibility complex (MHC) alleles or other TLRs. Each article in the review offers a
unique approach to molecular docking, employing various algorithms and software tools.

Ahammad and Lira [27] performed a comprehensive docking analysis between T
lymphocyte epitopes and their corresponding MHC alleles. The study used AutoDock Vina
for docking and evaluated the binding affinity in terms of kcal/mol. Bhattacharya et al. [29]
also focused on molecular docking between epitopes and MHC alleles, but extended the
study to include docking with TLR7. The study employed the HDOCK server for protein
docking against mRNA molecules. Both Oluwagbemi et al. [30] and Pourseif et al. [35]
utilized the ClusPro 2.0 server to assess the binding affinity between their vaccine constructs
and TLRs. While Oluwagbemi et al. [30] focused on interactions with TLR4 to gauge the
vaccine’s potential efficacy in immune signaling pathways, Pourseif et al. [35] extended
the analysis to include TLR5 as well. This additional consideration of multiple TLRs by
Pourseif et al. [35] adds depth to our understanding of how the vaccine might elicit a broad
immune response.

Khan et al. [31], Durojaye et al. [34], and Oladipo et al. [32] employed various compu-
tational tools for peptide docking and molecular dynamics simulations to understand the
vaccine’s interaction with different components of the immune system. Durojaye et al. [34]
used both HPEPDOCK and ClusPro servers to dock peptides against the HLA*A-0201
allele, and further validated the stability of the protein–peptide complex through molecular
dynamics simulations. On the other hand, Khan et al. [31] utilized the HawkDock server
for docking analysis with human TLR4, and also examined the interactions of selected T
cell epitopes with corresponding HLAs. Meanwhile, Oladipo et al. [32] leveraged Hex 8.0.0
software to study the vaccine construct’s affinity for TLR3 and TLR9, which are known
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for recognizing microbial or viral nucleic acids. This diverse set of methodologies offers a
comprehensive understanding of how the vaccine may engage with and activate various
immune system components.

5.3.5. Molecular Dynamics and Quantum Calculations

According to quantitative investigations in this study, approximately 44.4% of the
papers have been devoted to molecular dynamics analyses. It is noteworthy that a majority
of the articles did not employ molecular dynamics simulations in their research, which
raises questions about the comprehensiveness of their computational analyses.

The molecular dynamics simulation of complex vaccine–receptor interactions may be
an alternative and complementary tool for clarifying the physical basis of the structure and
functions of biomolecules, mainly due to the prominence that mRNA vaccines have been
gaining lately [62,70,71]. The study by Oluwagbemi et al. [30] stood out for its application
of MD simulations, employing the iMODS server and the WebGro macromolecular simula-
tions platform. The analysis included a detailed evaluation of the vaccine-TLR4 docked
complex, utilizing normal mode analysis (NMA) and various equilibrium properties like
RMSD and RMSF.

Durojaye et al. [34] also employed MD simulations but focused on the design of the
epitope peptide and its interactions with the HLA*A-0201 receptor. The GROMACS and
D3Pockets servers were used to model, while Pourseif et al. [35] used MD simulations
using only the GROMACS 5.0.7 software and the GROMOS 96 force field to optimize the
free energy of the model. The article by Oladipo et al. [32], on the other hand, used the
IMODs tool to capture the detailed atomic behavior of the proteins and their interactions
with the TLR3 and TLR9 complexes.

MD simulations provide a dynamic, time-dependent perspective on molecular in-
teractions and changes, while NMA offers a static view focused on inherent vibrational
modes [70,72]. Using both methods together allows for a more robust and comprehensive
analysis, validating findings and thereby enhancing the robustness and comprehensiveness
of their analyses [30].

While this is a valuable approach, the studies could benefit from the incorporation
of additional computational techniques. For instance, employing quantum mechanical
calculations could provide a more nuanced understanding of electronic interactions within
the complexes. To enhance the accuracy of calculations involving intricate vaccine–receptor
interactions, a hybrid approach that combines quantum mechanics/molecular mechanics
(QM/MM) can be employed. QM/MM techniques have firmly established themselves
as the pinnacle of computational methods for biomolecular systems by this point. The
burgeoning number of publications that have leveraged QM/MM methodologies serve as
compelling evidence of their maturation since their inception approximately three decades
ago [11,45,73,74].

The QM/MM methodology enables the decomposition of the total energy into distinct
components, thereby facilitating a nuanced analysis of the protein environment, down
to individual residues. This is particularly advantageous when numerous electrostatic
interactions are present [75]. In a hypothetical application of this methodology using
the ONIOM multilayer framework, accessible in Gaussian code, the receptor would be
designated to the MM layer, while key amino acid residues from the vaccine would be
assigned to the QM layer. The B3LYP (Becke, three parameters, Lee–Yang–Parr) hybrid
functional and the 6-311G (d,p) basis set would be used for the QM calculations. Amino
acid residues within a 6.0 Åradius from the ligand’s centroid would be allowed to undergo
geometric optimization [11,45,46].

5.3.6. Computational Immune Simulation Analysis of the Constructed Vaccine

The utilization of in silico immune simulations in vaccine development has become
an increasing tool for predicting real-world outcomes. The studies under review employ a
variety of approaches to this end, revealing both the potential and the limitations of current
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methodologies. At this stage, the evaluation of the immunogenicity of all the predicted
conjugate vaccine peptides and the characteristics of the immune response is carried out
through in silico immune simulation. Notably, 77.8% of the reviewed articles evaluated the
immune response profile, underscoring the importance of this aspect in vaccine research.
The C-ImmSim online server predicts the associated immune interactions and epitopes
using a machine learning-based method and position-specific scoring matrix (PSSM) [76].

Ahammad and Lira [27], Hussain et al. [33], and Bhattacharya et al. [29] appear to be
almost identical in their approach, employing the C-ImmSim server with default settings
for predicting epitopes and immune interactions. However, Bhattacharya et al. [29] adds a
layer of complexity by incorporating HLA alleles for immune profiling, offering a more
personalized prediction of vaccine efficacy. The use of default settings may be convenient
but potentially overlooks the nuances of individual immune responses, a concern that the
authors of [32] addressed by customizing the total number of time steps in the simulation.
This customization allows for a more tailored approach, potentially offering insights that
are closer to real-world scenarios.

The work of Oluwagbemi et al. [30] is distinguished by its detailed simulation of
anatomical compartments, providing a more holistic understanding of vaccine–immune
system interactions. Khan et al. [31] also stand out for their customization of the total
number of time steps, allowing for a nuanced understanding of the immune response
over time. Oladipo et al. [32], while also using C-ImmSim, emphasize the importance of
recognizing antigenic peptides but stick to default settings, limiting the study’s depth.

Notably, ELKHOLY [28], Durojaye et al. [34], and Pourseif et al. [35] did not employ
any in silico immune simulations, representing a significant gap in these studies. The
absence of such simulations limits the predictive power of these studies and raises questions
about the robustness of their conclusions.

5.3.7. In Silico Codon Optimization and Molecular Cloning

The in silico codon optimization and molecular cloning stage is a critical component in the
development of mRNA vaccines, as it directly impacts the translation efficiency and expression
of the vaccine construct. However, among the nine articles, only Bhattacharya et al. [29] and
Khan et al. [31] delve into this aspect, employing different tools and methodologies.

Bhattacharya et al. [29] use the JCat server for codon optimization based on default
parameters, which are generally considered crucial for successful recombinant DNA cloning.
The study goes a step further by simulating the ligation of the vaccine candidate into an
E. coli K12 expression vector, using the EMBOSS Backtranseq tool and SnapGene software.
Khan et al. [31] also employ the JCat tool, but complement it with the ExpOptimizer tool.
While JCat focuses on codon adaptation based on a proposed algorithm stored in the
PRODORIC database, ExpOptimizer aims to highly express any protein of interest in any
mainstream expression host.

Notably, the other articles do not address this stage, representing a significant gap in
their methodologies. The absence of in silico codon optimization and molecular cloning
simulations could limit the applicability and translational success of these studies, raising
questions about the completeness of their vaccine development process. This approach
optimizes the codon sequence and provides a simulated environment for assessing the
cloning efficiency, thereby enhancing the study’s robustness.

6. Conclusions

The integration of reverse vaccinology to design mRNA vaccines plays a pivotal
role. The blend of computational tools with traditional methods is catalyzing the swift
identification and assessment of crucial epitopes, streamlining the pathway to robust
vaccine designs. This comprehensive approach ensures not only the enhanced stability
and efficiency of mRNA vaccines, but also broadens the scope of their applicability against
diverse pathogens, including the emerging variants of SARS-CoV-2.
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Many studies have employed a reverse vaccinology approach for COVID-19, tar-
geting the SARS-CoV-2 spike glycoprotein. These studies span a broad spectrum, from
epitope binding predictions to molecular dynamics and immune simulations Ahammad
and Lira [27], ELKHOLY [28], Bhattacharya et al. [29], Oluwagbemi et al. [30], Khan
et al. [31], Oladipo et al. [32]. To address the emerging SARS-CoV-2 variants, the DOW-21
mRNA vaccine construct was developed, highlighting crucial spike protein domains and
fine-tuned for efficient translation Hussain et al. [33]. Another study harnessed reverse
vaccinology for an mRNA vaccine, concentrating on the peptide sequence “YLQPRTFLL”
and customizing it for the human toll-like receptor 7 Durojaye et al. [34]. Furthermore,
innovative approaches led to the exploration of two mRNA vaccine blueprints, namely,
DPVC and SAMV. In silico evaluations affirmed their potency Pourseif et al. [35], with the
research also examining elements influencing vaccine compatibility and resilience through
molecular dynamics simulations.

However, the incorporation of advanced computational techniques, such as molecular
dynamics (MD) simulations and quantum mechanics/molecular mechanics (QM/MM)
methods, could offer more insights into vaccine–receptor interactions and enhance the
robustness of these in silico models [11,45,73,74]. The absence of such advanced computa-
tional techniques leaves room for further refinement in future research. As we transition
from identifying potential areas of improvement to offering solutions, it is clear that the
landscape of mRNA vaccine design is evolving.

We hope this review acts as a valuable guide for researchers and developers keen
on leveraging reverse vaccinology for mRNA vaccine design against SARS-CoV-2 and
other emerging pathogens. The adoption of reverse vaccinology in mRNA vaccine creation
represents not only a solution to today’s global health issues, but also lays the groundwork
for a new era in vaccine development.
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EAAK Glutamic Acid–Alanine–Alanine–Lysine
EMBOSS European Molecular Biology Open Software Suite
Epijen Epitope Jen
FASTA Fast All
GISAID Global Initiative for Sharing All Influenza Data
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IEDB Immune Epitope Database and Analysis Resource
IFN-γ Interferon-γ
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IL-4 Interleukin-4
JCat Java Codon Adaptation Tool
MHC Major Histocompatibility Complex
MD Molecular Dynamics
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NMA Normal Mode Analysis
NCBI National Center for Biotechnology Information
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ORF Open Reading Frame
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ProPed1 Protein Peptide 1
PSSM Position-Specific Scoring Matrix
QMM Quantum Mechanics/Molecular Mechanics
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RankPep Rank Peptide
RMSD Root Mean Square Deviation
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RV Reverse Vaccinology
SARS-CoV-2 Severe Acute Respiratory Syndrome Coronavirus 2
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