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Abstract—Machine Learning (ML)-based Intrusion Detection
Systems (IDS) is an effective technology to automatically detect
cyber attacks in the Internet of Things (IoT) dependent Industrial
Control Systems (ICS). It is faster, more efficient, and can
detect attacks without human intervention. However, ML-based
IDSs have introduced another security threat called Adversarial
Machine Learning (AML). An AML attack may cause severe
industrial infrastructural and production damage resulting in
substantial financial loss. This paper presents an exploratory
analysis of initiating an AML attack using adversarial samples
created using a Fast Gradient Sign Method (FGSM). The
research presented in this paper has been conducted from a
dataset generated from a full-fledged singular module of a
power distribution industry controlled by IoT-enabled ICSs.
We explored the AML attack on Gradient Boosting (GB) and
Iterative Dichotomiser 3 (ID3) model and discovered the average
classification accuracy, precision, recall, and F1-scores are 87%,
88%, 87.5%, and 87%, respectively. The AML attack reduces
the average precision, recall, and F1-score by 20.5%, 20.5%,
and 22.5%, respectively, when 50% perturbations are added to
10% samples.

Index Terms—Gradient Boosting, Iterative Dichotomiser 3, Ad-
versarial Machine Learning, Intrusion Detection System, Internet
of Things, Industrial Control System, Adversarial Samples.

I. INTRODUCTION

Modern manufacturing industries are controlled by em-
bedded systems [1]. Critical infrastructure, for example,
power generation, power distribution, telecommunication Base
Transceiver Station (BTS), natural resources refineries, etc.,
are controlled by IoT-enabled embedded systems known as
Industrial Control Systems (ICS) [2]. We live in an inter-
connected world connected to each other through Web 2.0-

Identify applicable funding agency here. If none, delete this.

enabled services [3]. And machines are interconnected through
IoTs, which control and monitor the machines remotely [4].
The application of IoT also facilitates the integration of
data analytic-based automation and optimization [5]. Anything
connected to the internet is subject to cybersecurity vulnera-
bilities, including the ICSs [6]. Due to their widespread use
and critical nature, these systems have become prime targets
for cybercriminals [7]. As these systems regulate real-world
processes, any cyber attacks on them might have far-reaching
effects on the communities in which they function and the
people who live in them [8]. It is, therefore, not surprising
that concerns over the safety of these devices have gained
international attention. As a result, it is more crucial than
ever to develop foolproof, secure, and effective methods of
monitoring and protecting ICS networks against cyber threats
[9].

The ICSs are different from traditional IT systems [10].
These devices are specially designed to consume minimal
energy. As a result, most of these have resource-constrained
architecture restricting their capability to detect and defend
against cyber attacks [11]. However, these embedded systems
are connected to the physical infrastructure responsible for
manufacturing and production. The scenario is more crucial
and sensitive in a grid where power generation and distribution
are controlled using network-connected ICSs [11]. Any attack
on these systems can cause devastating results like nationwide
blackouts causing significant damage to almost every sector
[12]. That is why 24 × 7 monitoring to detect anomalies
and defend against attacks immediately is essential for ICSs.
Machine learning models are promising solutions that mimic
human intelligence, recognize the signal pattern between the



ICS receives, classify them into malignant and benign classes,
and defend against cyber attacks [13].

ML models trained to identify malicious and anomalous
signals strengthen the security of ICSs against cyber attacks.
However, a successful attack on the trained model compro-
mises the overall security of the system [14]. Systematic
attacks on trained machine-learning models employed to detect
anomalies and identify cyber attacks are called Adversarial
Machine Learning (AML). In AML, the weaknesses of the
trained models are exploited by introducing data perturbations.
Data perturbation adds noise to data carefully chosen through
rigorous feature engineering so that the ML model classi-
fies malicious or anomalous data as benign [15]. Successful
misclassifications of security incidents, including but not lim-
ited to information disclosure, production loss, financial loss,
infrastructural damage, and delayed detection. The purpose
of using ML models is to reduce the amount of human
intervention [16]. A successful AML attack can go undetected
for a lengthy period of time, leaving devastating effects [17].
This is why exploring AML attacks and analyzing the potential
defense mechanism is essential in modern IoT-controlled ICSs.

To our best knowledge gained from the literature review, this
is the first exploratory analysis of AML attacks on Gradient
Boosting (GB) and Iterative Dichotomiser 3 (ID3) using a
dataset obtained from an actual full-fledged singular module of
a power distribution industry controlled by IoT-enabled ICSs
under testbed mode. The core contributions of this research
are:

• Exploration of the intrusion detection effectiveness of
Gradient Boosting (GB) and Iterative Dichotomiser 3
(ID3) models against AML attacks.

• Adversarial sample generation and effectiveness analysis.
• Studying the effect of adversarial samples on trained

machine learning models.
The rest of the paper has been organized into five sections.

The literature review has been presented in the second section.
The third section discusses the testbed. The methodology has
been studied in the fourth section. The experimental evaluation
and result analysis are presented in the fifth section. Finally,
the paper has been concluded in the sixth section.

II. LITERATURE REVIEW

Machine Learning algorithms are being adopted in different
sectors, including but not limited to industrial automation [18],
banking [19], education [20], healthcare [21], Human Re-
source Management (HRM) [22], agriculture [23], telecommu-
nication [24], Web technology [25], mobile application [26],
and many other sectors. Recently, there has been significant
growth in machine learning-based intrusion detection systems
for various ICS systems [27]. The literature review, presented
in table I, summarizes different ICS systems and accompa-
nying machine learning techniques to attack detection and
categorization in various environments. it clearly shows the
technological maturity of delegating human responsibilities of
ICS management to ML models, including intrusion detection.
However, it makes the system vulnerable to AML. The current

published scientific literature on AML is still emerging, and
there are many fields with the potentially vulnerable to AML
[15].

Machine learning is all about the quality of the dataset [28].
A flaw in the dataset can impact the overall performance of the
model. The characteristics of a trained model depend on the
feature of the training data [29]. By altering a tiny proportion
of the original training data, an adversary may exploit and
effectively circumvent the machine learning algorithms used
in spam filters [30]. Furthermore, R. Yumlembam et al. assess
the resilience of an artificial neural network trained on the
DREBIN Android malware dataset [31]. They find that simply
changing a tiny number of characteristics in the training set it
is easy to confuse the model. That means anyone with access
to the training data can intentionally inject a set of instances
that allows him to trick the model and take unauthorized access
to resources. Especially malicious insiders can analyze the
training data feature through feature engineering and introduce
tolerance to particular inputs to the model [32].

A recent study on hostile malware as a service conducted
by A. Lanz et al shows that it is possible to build thousands
of adversarial applications within minutes. It is a service that
constantly monitors thousands of nodes and extracts features to
enrich its database. With the current enriched database, it can
discover the vulnerability of the software and machine learning
models and perform AML attack [33]. Another research con-
ducted by S. Chen et al. uncovers some advanced adversarial
attack strategies. Their research shows that without knowing
the data features and characteristics of the machine learning
models, it is possible to attack and bypass the models assigned
for intrusion detection [34]. In their study, E. Alshahrani et al.
use actual adversarial attacks on network intrusion detection
systems. The purpose is to identify botnet traffic using machine
learning classifiers. However, the adversarial samples added
to the dataset during the training caused the model to fail
to identify the botnet traffic. As a result, the experimenting
web server crashes [35]. These observations prove that the
Adversarial Machine Learning (AML) is being applied in
many different sectors. It is high time we explored more about
the effect of it.

The AML is a threat to any machine learning models
which training dataset features or relevant information are
disclosed [36]. It is easier for malicious insider to access
the required information. Many research has been conducted
on AML in different sector considering malicious insider
the attacker. However, the effect of AML is still ignored
despite few attempts [37]. I. Alarab et al. demonstrated a
straightforward AML attack on a Long Short-Term Memory
(LSTM) classifier using an ICS dataset [38]. It shows how
a well-trained LSTM classifier with acceptable classification
accuracy fails to classify anomalies. However, this research
uses manually developed handcrafted adversarial samples. It
is beyond the scope of this approach to attack sophisticated
systems. That is why it is considered as the early stage
application of AML [38]. The recent advanced approaches
show that even multi-layer security layer fails when ML based



systems are under AML. That is why it is essential to analyze
the effect of adversarial machine learning to understand its
characteristics.

III. TESTBED: A FULL-FLEDGED SINGULAR POWER UNIT

The experiment has been conducted on a full-fledged sin-
gular unit of a power distribution industry controlled by IoT-
enabled ICS. It has been illustrated in figure 1. There are
multiple units in the industry. A fully functional unit was
isolated from experimenting with the approval of the respective
authority as a testbed.

Fig. 1. Dataset and Pre-processing

The elements of the testbed, their full forms, and roles are
listed in table II. There are two generators in the system. The
power flow from the generator is protected by circuit breakers.
There are four circuit breakers in the experimenting unit.
These circuit breakers are controlled by smart switches. These
switches are designed to protect the system from excessive
current flow. The smart switches are connected to substation
switch-gear. It can control any specific power generation node
[47]. The Power Distribution Controller (PDC) uses the switch
gear to control the power flow [48]. It is connected to IoT and
a trained machine learning model. The ICS is connected to the
PDC through an IoT device. It consists of a snort, a system
log, and a control panel.

IV. METHODOLOGY

To explore how well supervised classification algorithms
can learn to detect cyber attacks in an ICS environment,
the performance of supervised machine learning when the
corresponding data discussed in Section 4.1 was used to train
the classification model and evaluated. The following Sections
report the features present in the power systems dataset, as well
as describe the methodology behind selecting and training the
best-performing supervised classifiers.

A. Dataset

The dataset has been prepared from the testbed. It has two
classes - malignant and benign. The benign class includes
two types of instances. They are ’usual signal’ and ’natural
signal.’ The usual signal refers to the regular activities with
the usual amplitude and frequency of current and voltage. It
also includes regular phase shifting. Sometimes natural events
cause surge voltage and current, phase shift, and distorted
power flow. These are also considered elements of the benign
class. The malignant instances have been created by observing
the behavior of the system for five different types of attack
listed and described in table III

The dataset has been recorded using the System Log (SL)
application. During the data collection period, the existing
machine-learning model was disconnected from the system
to understand the system behavior for particular attacks.
The final dataset contains a total number of 60,830 in-
stances. Among these instances, 25,126 belong to the ma-
licious class, and 35,704 belong to the benign class. In
the malicious class, the numbers of instances represent-
ing SCA, FMA, RCA, SMA, andIJA are 4,249, 5018, 4957,
5183, and 5719, respectively. Figure 2 illustrates the different
types of instances of the malignant class.

Fig. 2. Different types of instances of malignant class

B. Feature Engineering & Dataset Processing

Any machine learning model learns from the features of
the dataset [49]. In feature engineering, we explored the
features relevant to classifying malignant signals [50]. The
analysis is entirely based on electrical signals. The pieces of
equipment on the testbed are electrical components triggered



TABLE I
RECENT RESEARCH ON INTRUSION DETECTION IN INDUSTRIAL CONTROL SYSTEMS (ICSS)

Author(s) Year Dataset Machine Learning Model
A. Eirini [39] 2021 Power Generation Random Forest and J48
D. Wang et al. [40] 2019 Power System Random Forest
E. Hoxha et al. [41] 2019 Wind Turbines SVM
J. Gao et al. [42] 2019 SCADA Testbed Long Short Term Memory (RNN)
SD. Anton et al. [43] 2018 Power system (synthetic) Naive Bayes, Random Forests, SVM
RL. Perez et al. [44] 2018 Gas Pipeline SVM, Random Forest
LA. Maglaras et al. [45] 2018 SCADA Testbed Random Forest, J48, Logistic Regression, Naive Bayes
I. Abdallah et al. [46] 2018 Wind Turbine Decision Trees (J48, Random Forest, CART, Ripper, etc.)

TABLE II
ELEMENTS OF TESTBED AND THEIR DESCRIPTION

Sequence Symbol Full Form Role
1 G Generator Generating power
2 CBR Circuit Breaker Breaking the circuit if current overflows
3 SWT Smart Switch Controlling the circuit breaker
4 SWTG Substation Switch Gear Switch to control power distribution
5 PDC Power Distribution Controller Controlling the SWTG
6 Snort Source Network Intrusion Detection System Analyzing real-time network traffic
7 SL System Log Maintaining system log
8 CP Control Panel Displaying the controll panel dashboard
9 ML Model Machine Learning Model Automating intended tasks
10 IoT Devices Internet of Things Devices Connecting devices with internet

TABLE III
TYPES OF ATTACKS AND THEIR DESCRIPTIONS

Serial Attack Description

SCA Short-circuit
It triggers the circuit breaker to
break the circuit and cause
power supply interruption.

FMA False Maintainance
It turns off one or more power line
by sending false maintenance
signal.

RCA
Remote Command
Injection

It is a remote access attack allows
attacker to command the PDC and
control the power distribution

SMA Settings Manipulation The attackers manipulate the ICS
settings in this type of attacks.

IJA Injection Attack

In this attack, the attackers inject
manipulated values of voltage,
current, and power to misguide the
human operators

and controlled by different attributes of electrical signals listed
in table IV. These attributes are the features used to train the
machine learning model to classify attacks on ICSs.

During studying the features, it has been observed that many
instances on the dataset contain outliers. These outliers do
not represent any attacks mentioned in III. That is why these
instances have been removed. After cleaning the dataset, it has
been observed that it is possible to create a balanced dataset
from the cleaned dataset. We randomly selected 20,000 ma-
lignant and 20,000 benign instances. The malignant instances
are well-balanced as well. There are 4,000 instances of each
type of attack. The dataset balance instance ratio is illustrated
in figure 3.

The final dataset maintains binary distribution. The in-
stances of the malignant class are also distributed with a unity
ratio. We used a training and testing ratio 65 : 45 to train and

TABLE IV
THE FEATURES AND THEIR DESCRIPTIONS

Symbol Feature Description

V Voltage The phase angle of the voltage
stored in capacitor

ip Phase Angle of Current The phase angle of the AC
current

im Amplitude of Current Amplitidue of AC current

vp Phase Angle of Voltage The phase angle of the
AC voltage

vm Phase Angle of Voltage Amplitude of AC voltage

I DC Current Polarity Directory of the flow of DC
current

Im DC Current Amplitude Amplitude of DC current

Fr Relay Frequency Operating frequency of the
relay

Fslope
Rate of Change of
frequency

The first derivative of the
relay frequency with
respect to time

Z
Apparent Impedance
for Relays

The apparent impedance
of the relay exclusive
internal resistance

Zp
Apparent Phase Angle
for Relays

The phase angle of the
apparent impedance

Rs Relay Status Current status of the relay

Fig. 3. The dataset distribution balance



test the models. The k−fold cross-validation has been used to
validate the model’s performance at k = 5.

C. Model Training

We used Gradient Boosting (GB) [51] and Iterative Di-
chotomiser 3 (ID3) [52] machine learning algorithms to train
the model to classify the control signals of ICSs into malignant
and benign classes. It has been observed that the effects of GB
and ID3 in AML attacks are superficially explored. This paper
aims to explore the impact of these two ML models in AML
attacks. We used the dataset obtained from the full-fledged
singular unit of a power distribution industry controlled by
IoT-enabled ICSs illustrated in figure 1.

1) Gradient Boosting (GB): The dataset is labeled dataset.
The training instances are defined by 1.

Traininginstance,Dt = {(xi, yi)}ni=1 (1)

A differentiable loss function, L(y, F (x)), has been used
to train the model. The F0(x) is defined by 2. This equation
initializes the model with a constant value.

F0(x) = argminγ

n∑
i=1

L(yi, γ) (2)

Later, the pseudo-residuals are calculated for all instances
using equation 3 where m represents the current instance.

pseudoresiduals, rγ = −[
δL(yi, F (xi))

δF (xi)
]F (x)−Fm−1(x) (3)

The GB model training depends on the computational
multiplier λm for every instance. In our approach, it has been
solved using a one-dimensional optimizer defined by equation
4.

γm = argminγ

n∑
i=1

L(yi, Fm−1(xi) + γhm(xi)) (4)

Finally, the model is updated using equation 5, which is
repeated for M instances.

Fm(x) = Fm−1(xi) + γhm(xi)) (5)

Once the model is trained, the GB model is trained, it
is expressed as FM (x), where M represents the number of
instances the model was trained with.

2) Iterative Dichotomiser 3 (ID3): The initial state of the
ID3 algorithm begins by considering the ground truth of any
training instance {(xi, yi)}ni=1. It is considered as the root
node and denoted by S. In every iteration, it calculates the
entropy of unused instances defined by equation 6.

H(S) =
∑
x∈X

−p(x)log2p(x) (6)

Here on equation 6, X is the set of classes in S, p(x) is the
ratio of the number of instances in X and number of instances
in S.

3) Model Performance: The models have been designed
and trained using Python 3.10, Scikit-Learn 1.1.2, Matplotlib
3.5.2, and other libraries. The models were deployed in a
conda environment hosted on a computer having 8192 MB of
primary memory running on Windows 10 Operating System
(OS) with a 3.60 GHz Intel(R) Core(TM) i3-9100 CPU. The
performance of the models has been evaluated using the state-
of-the-art machine learning evaluation metrics [53] accuracy,
precision, recall, and F1-score, which are defined by equation
7, 8, 9, and 10, respectively, and listed in table V.

Accuracy =
TP + TN

TP + TN + FP + FN
(7)

Precision =
TP

TP + FP
(8)

Recall =
TP

TP + FN
(9)

F1−score =
2 ∗ Precision ∗Recall

Precision+Recall
=

2 ∗ TP
2 ∗ TP + FP + FN

(10)

TABLE V
THE PERFORMANCE OF THE TRAINED MODELS

Classifier Accuracy Precision Recall F1-score Time (s)
GB 0.89 0.9 0.91 0.87 30.02
ID3 0.85 0.86 0.84 0.87 24.55

The experimental result shows that the accuracy of GB and
ID3 are 89% and 85%, respectively. The precision of these
two models is 90% and 86%, respectively, which indicates
the quality of the positive prediction is acceptable. The perfor-
mance visualization graph illustrated in figure 4 shows that the
F1-score of both models is the same. However, the accuracy,
precision, and recall of GB are better than ID3.

Fig. 4. The classification performance visualization



D. Attacker Model

Within the scope of our investigation, we examine an insider
threat attacker with administrative access to the systems.
Insider threats are among the most overlooked yet pose a
considerable danger to ICSs. Identifying and managing insider
risks is a complex and time-consuming process [54]. This
is because insiders usually have privileged access to the
network and sit beneath enterprise-level security defensive
mechanisms. The adversary has access to both the dataset and
its characteristics in our case. As an insider, the attacker is
aware of the features used to train the ML model. However,
due to the black-box nature of ML models, the attacker does
not know the algorithm settings. The goals of the attackers
are:

• Attack the ICS to cause service interruption,
• Misconfiguring the relays to make the system vulnerable,

and
• Injecting false values of voltage, current, and power.

E. Adversarial Sample Generation Methods

Generating the adversarial samples is challenging. The
AML method uses adversarial samples to perform the attack
[55]. The more effective the samples are, the higher the proba-
bility of successful attacks. It is possible to produce adversarial
samples using a wide variety of different approaches [56]. The
level of complexity, the rate at which they generate results,
and the level of performance offered by such approaches vary.
The manual manipulation of the input data points is a simple
method for producing such samples, but it is not an advanced
one. On the other hand, manually perturbing massive datasets
is a time-consuming process that may result in less accurate
results [57]. Methods with a higher level of sophistication may
involve the automatic analysis and identification of characteris-
tics that provide the best discrimination between target values.
The values that these features reflect are disrupted in a discrete
manner such that they reflect values that are comparable to
those that represent target values that are not their own.

We have used the Fast Gradient Sign Method (FGSM)
to generate the adversarial samples [58]. The FGSM attack
depends on adding noises to original samples X defined by
equation 11.

X∗ = X + δ (11)

Here on equation 11, the X∗ is the adversarial samples
and δ is the noise. These modified samples are classified by
the trained ML models differently. These samples are further
enhanced using a pre-trained Multilayer Perceptron (MLP)
model. After generating the samples, the FGSM is applied,
which is governed by equation 12.

x∗ = x+ ϵsign(∆xJ(θ, x, y)) (12)

Here is equation 12 the J is the cost function. The gradient
of the cost function is used to compute the amount of noise.
Here, the inputs are x, ϵ is the amount of noise, and y is

the label of the ground truth. The θ in the equation is the
parameters of the model.

It is more likely that the ML models will be affected if
features are changed. To be more exact, an initial proportion
of features, denoted by θ, is selected to be disrupted by an
amount of noise denoted by λ. Thirdly, the model determines
whether or not the extra noise has caused the targeted model
to misclassify. This determination is made by analyzing the
results of the previous two steps. If the model’s performance
has not been negatively impacted by the noise, a new collection
of features will be chosen, and the iteration process will
continue until an effective adversarial sample has been created.

V. EXPERIMENTAL EVALUATION AND RESULTS

A. Original Samples

In the first phase of the experiment, we randomly selected
instances from the dataset and evaluated the network’s per-
formance using the confusion matrix illustrated in figure 5.
The instances of the dataset were unaltered. No adversarial
samples were used in this phase.

The precision, recall, and F1-scores obtained from the
confusion matrix of figure 5 are listed in table VI. According to
these experimental results, the trained models are good enough
to classify malignant and benign signals. The GB performs 4%
better than ID3.

TABLE VI
PERFORMANCE ON RANDOM ORIGINAL SAMPLES

Classifier Precision Recall F1-score
GB 0.88 0.88 0.88
ID3 0.85 0.84 0.84

B. Adversarial Samples

The second phase of the experiment is about exploring the
response of the trained model to adversarial samples. The
samples are generated at percentage of features, θ = 0.1 and
amount of noise, λ = 0.5. The confusion matrix analysis
illustrated in figure 6 and table VII shows that the model is
severely affected by the adversarial samples.

TABLE VII
PERFORMANCE AT θ = 0.1 AND λ = 0.5

Classifier Precision Recall F1-score
GB 0.68 0.68 0.65
ID3 0.64 0.60 0.62

It clearly indicates that the trained models are compromised
by the adversarial samples. At θ = 0.1 and λ = 0.5, the
average precision, recall, and F1-score have reduced by 20.5%,
20.5%, and 22.5%.

VI. CONCLUSION

Machine learning-based intrusion detection systems are now
widely acknowledged as essential tools for the detection of
cyber attacks on industrial control system (ICS) networks



Fig. 5. The performance of the classifier on unaltered dataset

Fig. 6. The performance of the classifier on unaltered dataset

because of their efficiency and adaptability. However, such sys-
tems are susceptible to cyberattacks that, in the most prevalent
form, are denoted by the acronym AML and have the potential
to substantially impede or mislead their capabilities. These
kinds of intrusions might have serious repercussions for ICS
systems. This is because adversaries could possibly change
harmful data points in order to circumvent the controllers,
which would result in a delay in the attack being detected
and considerable damage. In light of this, it should come as
no surprise that a better knowledge of the applicability of
these threats in ICS systems is required in order to design
more resilient machine learning models for ICSs. However, it
requires in-depth analysis to understand the weaknesses and
discover a better solution. This paper lays down the foundation
of such analysis. The exploratory analysis presented in this

paper unearths valuable insights about the effects of AML
attacks on ICS of power generation and distribution sectors.
The GB and ID3 models, trained with the data obtained from
real-world observation, demonstrate a remarkable performance
of 89% and 85% accuracy. A classifier with this accuracy can
defend most cyber attacks it is trained to defend. However,
the scenario alters after the AML attack. This paper showed
the adversarial sample generation using the Fast Gradient
Sign Method (FGSM). After applying the adversarial samples,
the performance of both GB and ID3 dramatically reduces
by 21.17% on average, making the machine learning models
vulnerable to five types of cyber attacks. That means a well-
trained machine learning model with good performance on
testing and validation datasets can be compromised by AML
attacks. Cybersecurity professionals should keep it in mind
before delegating the responsibilities of defending against
cyber attacks to machine learning models.
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