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A B S T R A C T

Low contrasts and visual similarity between different skin conditions make skin disease recognition a chal-
lenging task. Current techniques to detect and diagnose skin disease accurately require high-level professional
expertise. Artificial intelligence paves the way for developing computer vision-based applications in medical
imaging, like recognizing dermatological conditions. This research proposed an efficient solution for skin
disease recognition by implementing Convolutional Neural Network (CNN) architectures. Computer vision-
based applications using CNN architectures, MobileNet and Xception, are used to construct an expert system
that can accurately and efficiently recognize different classes of skin diseases accurately and efficiently. The
proposed CNN architectures used a transfer learning method in which models are pre-trained on the Imagenet
dataset to discover more features. We also evaluated the performance of our proposed approach with some of
the most popular CNN architectures: ResNet50, InceptionV3, Inception-ResNet, and DenseNet, thus establishing
a comparison to set up a benchmark that will ratify the essence of transfer learning and augmentation. This
study uses data from two separate data sources to collect five different types of skin disorders. Different
performance evaluation indicators, including accuracy, precision, recall, and F1-score, are calculated to verify
the success of our technique. The experimental results revealed the effectiveness of our proposed approach,
where MobileNet achieved a classification accuracy of 96.00%, and the Xception model reached 97.00%
classification accuracy with transfer learning and augmentation. Moreover, we proposed and implemented
a web-based architecture for the real-time recognition of diseases.
. Introduction

.1. Background

Skin is the most vital and sensitive organ in the human body,
hielding against heat, injury, and infections. Unfortunately, the skin
ondition is sometimes disrupted due to bacterial and viral infection,
ungus, lack of a strong immune system, and genetic imbalances. In
any cases, diseases caused by those factors have macabre effects on
uman life. In addition, some skin diseases are contagious, risking not
nly individuals but also others related to the infected. Statistics [1]
eported that over 100 million people all over the world are suffering
rom different types of skin indispositions; the most frequent skin disor-
ers are Atopic dermatitis, Eczema, Herpes, Nevus, Warts, Ringworm,
hickenpox, and Melanoma, etc. American Cancer Society reported [2]
hat, by the end of the year 2020, 100,350 new melanoma cases will
e reported and diagnosed, and almost 6850 people are about to die
ecause of melanoma.
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Most skin diseases have revealing symptoms such as rash, ulcers,
lesions, moles, etc. However, the diagnosis of skin diseases faces some
difficulties. The most common obstacle is that many skin conditions
have similarities between them that are not distinguishable visually.
Besides, symptoms are constantly changing over a long process. Even
physicians are bound to visual imperfections due to the lighting con-
ditions of the environment, the skin color of the patient, and their
professional experience. In most cases, early detection of skin diseases
reduces the risk factors. The mortality rate of some diseases with a high
mortality rate can be reduced to 90% if diagnosed in the early stage [3].

1.2. Motivation

Researchers are actively investigating methods to develop skin dis-
ease recognition systems. Many studies have utilized image process-
ing techniques incorporating statistical analysis to extract information
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about skin conditions [4–8]. Researchers were trying to recognize
skin diseases by analyzing textures, structures, and colors in these
approaches. Methods like Self-organizing Map (SOM), Radial Basis
Function (RBF), Gray Level Co-occurrence Matrix (GLCM), etc., were
used for such approaches. But all these methods lack in terms of
precision and accuracy since these methods require sufficient data,
good coverage of the input space, and high dependence on texture
features such as contrast, correlation, entropy, etc.

In recent times, Artificial Intelligence (AI) has evolved enormously
in the clinical context, or medical field [9,10]. In the medical field,
Machine learning (ML) and Deep Learning (DL) algorithms prove
their worth in implementing smart and automated AI-based systems
[10–13]. Researchers have pulled their strings to develop more ad-
vanced frameworks that can be applied in various image-based ap-
plications. Convolutional Neural Network (CNN) is considered the
state-of-the-art method in the analysis of visual imagery. In medical
image analysis such as X-ray images, MRI images, CNN model and its
derivations such as ResNet, VGG-16, GoogleNet, AlexNet, etc., have
shown significant results in detection, recognition, and classification
tasks [14]. However, deep learning architectures like CNN require
immense computation resources as well as a lot of image data to
train the proposed model [15]. Due to the lack of sufficient data and
resources, the field of medical image analysis for skin diseases is yet to
explore to the full extent. Pretrained CNN models have come to a point
by researchers to aid the purpose. Besides, image analysis techniques
such as Augmentation are widely used to construct a generalized model
and robust systems where training data is inadequate.

CNN architectures like MobileNet and Xception are helping re-
searchers to bring out new intelligent systems nowadays. For exam-
ple, the MobileNet model shows high accuracy for the classification
task [16] where welding defects from images were analyzed. In medical
imaging, such as children’s colonoscopy [17] combination of MobileNet
with DenseNet is proposed for better classification results. In [18], lung
diseases were analyzed and detected from chest X-ray images using
the MobileNet model. In language processing tasks [19,20] MobileNet
model was studied for the recognition task of Bangla characters which
are handwritten and complex sign language translations. The Xception
model is also widely used for different computer vision-based tasks.
For example, chest X-ray images were analyzed using the Xception
model in [21,22] to differentiate between COVID-19 lung condition and
normal pneumonia. In [23], Xception based framework is used to clas-
sify and authenticate forensic images. Researchers also implemented
this model for the garbage image classification task in [24] for the
productive garbage management system.

1.3. Contribution

In this work, we implement an automated system based on com-
puter vision-based techniques where two structured Convolutional Neu-
ral Network architectures MobileNet [25] and Xception [26], con-
tribute to the recognition of different types of dermatological diseases,
namely Atopic dermatitis, Eczema, Herpes, Nevus, and Melanoma. In
order to construct an accurate model, we combined these two archi-
tectures with transfer learning and a real-time image augmentation
process. In addition to that, we evaluated the effectiveness of our
propositions by comparing the performance with state-of-the-art deep
learning models such as ResNet50, InceptionV3, Inception-ResNet, and
DenseNet.

Besides, we proposed and implemented a web-based architecture
for the real-time recognition of diseases. We deployed our trained
models on the web using Flask framework [27], and the recognition
of skin diseases can be done remotely using this system. Our proposed
approach can aid health professionals by recognizing different skin
diseases more efficiently and making the diagnosis process more user-
friendly for the patients. Moreover, besides pandemics and natural
disasters, a cloud-based healthcare system can be built to operate the
healthcare system remotely. Here we sum up the whole concept of this
work’s contribution below:
2

• Propose an automated framework for skin disease recognition
based on pre-trained CNN architectures, namely MobileNet and
Xception.

• For a more robust and generalization model, augmentation and
transfer learning techniques are included.

• Propose and implement a web-based application to recognize skin
diseases remotely.

• Evaluate the model’s performance by comparing it with other
deep learning models such as ResNet50, InceptionV3, Inception-
ResNet, and DenseNet.

2. Literature review

Researchers were trying to develop an efficient and effective system
that visually recognizes different classes of skin diseases. Some of
the approaches include image processing techniques with statistical
methods, texture, and color analysis. AD Mengistu, DM Alemayehu [4]
proposed image processing techniques for recognizing and predicting
skin cancers. Predefined classes of skin cancers collected from the
American cancer society and DERMOFIT were used in this experiment.
A hybrid method that integrates two image processing techniques,
namely a Self-organizing map (SOM) and radial basis function (RBF),
was used in this recognition task, and image features such as color, tex-
tures, and image structure were combined. Further, the acquired results
were compared with other approaches such as KNN, Naïve Bayes, and
ANN. The reported result revealed that the overall accuracy for this
applied hybrid method was 93.15%. Manish Pawar et al. [5] Identify
different skin disease conditions based on feed-forward backpropaga-
tion neural networks. Texture features were used as key attributes
for image recognition purposes that were analyzed from the GLCM
method. Three skin conditions were selected for the classification task,
and the overall accuracy was reported at 66.66%. To enhance the
scope for identifying multiple skin diseases, Li-sheng et al. [6] pro-
posed a method that combines both color and texture features. The
preprocessing task included noise and background removal through
filtering and transformations. The GLCM approach was implemented
to extract texture features such as contrast, correlation, entropy, etc.,
and for color feature extraction watershed algorithm was used. For
this research purpose, three types of common skin diseases, namely
herpes, dermatitis, and psoriasis, were classified using a support vec-
tor machine (SVM) classifier. The average accuracy while recognizing
those 3 classes of skin disease images reached 90% using SVM classifier
and combining color and texture features. Md. Nazrul Islam et al. [7]
established a system for recognizing multiclass skin diseases that relied
on image texture. Different preprocessing operations, such as resize,
grayscale conversion, contrast enhancement, and noise removal were
conducted for this experiment. Images textures were extracted using
the GLCM method, and segmentation was carried out using Maximum
Entropy Thresholding. Finally, the Backpropagation (BPN) algorithm
was used to classify 3 different classes of skin disease images Eczema,
Impetigo, and Psoriasis. The obtained accuracy for this method was
reported at 80% along with sensitivity and specificity of 71.4% and
87.5%, respectively.

Rahat Yasir et al. [28] proposed a computer vision-based approach
for recognizing skin diseases from images. Different preprocessing algo-
rithms, like sharpening, median, smooth filter, binary mask, histogram,
YCbCr, etc., were used for feature extraction. An artificial neural net-
work (ANN) was used for training and test purposes. On a real-time
dataset, the proposed model obtained a classification accuracy of 90%.
To make a classification between skin conditions such as normal, spots,
and wrinkles, Jhan S. Alarifi et al. [29] used traditional ML approaches
based on SVM and CNN. SVM used feature extraction techniques like
LPB and HOG. For CNN, GoogleNet architecture was implemented with
different optimizers. The experimental result showed that GoogleNet
with NAG optimizer outperformed SVM in all aspects, reached to an
accuracy level of 89%. Yuexiang Li and Linlin Shen [30] proposed
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deep learning methods for tasks like segmentation, extraction, and
classification, which are involved in skin lesion detection. A fully
convolutional residual network (FCRN) framework with a lesion index
calculation unit (LICU) was used for segmentation and classification.
On the other hand, feature extraction was carried out using the Lesion
Feature Network (LFN) framework. The experiment was evaluated on
ISIC 2017 dataset containing 2000 images for training and 150 images
for validation. The accuracies of the proposed approaches for segmenta-
tion and classification were 75% and 91%, respectively, and the feature
extraction task achieved an accuracy of 84%. An automated image
recognition system was proposed by Jainesh Rathod et al. [31] for
detecting skin diseases. Noise removal and image enhancement filters
were used in the preprocessing phase. CNN algorithm was applied to
the DermNet dataset as a feature extractor and classifier. An accuracy
of 70% was reported in this experiment.

Min Chen et al. [32] proposed a real-time and dynamic framework
for skin disease recognition that is composed of self-learning with a
wide collection of data for effective interaction between users. A data
filter algorithm was employed for the removal of unwanted data and
feeding the network with valuable data. Information entropy was used
for this filtering task. Three CNN learning models, namely LeNet-5,
AlexNet, and VGG-16, were used for the classification and prediction
task. The authors also test the reliability and validity of the proposed
system by analyzing the computation and transmission delays of the
system. This analysis, it had been shown that the communication delay
of the AlexNet and LeNet models is 75 ms and 63 ms, respectively.
Md Ashraful Alam Milton [33] experimented with Melanoma detection
techniques where different deep neural networks like PNASNet-5-Large,
InceptionResNetV2, SENet154, InceptionV4 were used. Images from
ISIC 2018 dataset were used to train and test the proposed models. All
the images were preprocessed by several operations such as normaliza-
tions, and augmentation before training. Parameters were initialized
using the ImageNet model, and models were fine-tuned. The highest
validation score was 76% which was reported for the PNASNet-5-Large
model. For the construction of an automated computerized diagnosis
system, Haofu Liao [34] proposed a method based on deep CNN. In
this study, advanced CNN architecture such as VGG-16, VGG-19, and
GoogleNet was implemented. The experiment was conducted on two
different datasets, namely Dermnet and OLE, and the performance of
the models was compared. All the models that were used in this study
were pretrained on the ImageNet dataset. On the DermNet dataset,
the top-5 accuracy was 91% using the VGG-16 model, while for the
OLE dataset, the top-5 accuracy reached 69.5%. Shanthi et al. [35]
suggested a method that was used to detect four types of skin diseases
from the DermNet Dataset. The CNN architecture called ALexNet,
which is utilized by 11 layers, was used for the detection task. The
maximum pooling layer with a learning rate of 0.01 was used for
the model training purpose. The highest accuracy was 93.3% for the
Eczema herpeticum class.

Srinivasu et al. [36] combined MobileNet V2 with LSTM to classify
skin disease. HAM10000 dataset was used in this experiment and the
reported accuracy was 85%. They have also proposed a web application
for the classification of skin decreases. In another work, Iqbal et al. [37]
proposed multi-class classification for skin diseases using a deep CNN
model and used 3 different datasets, namely ISIC-17, ISIC-18, and ISIC-
19. The proposed experiment has achieved a specificity of 91% with
the ISIC-17 dataset. Reis et al. [38] presented a CNN network based
on inception block (InSiNet) to detect lesions. The proposed method
reported an accuracy of 94.59% with the ISIC 2018 dataset. A details
comparison between different CNN architectures was demonstrated
in this study and InSiNet outperforms all of them. To classify skin
cancer, Gupta et al. [39] used the CNN model that can work on
both dermoscopic and photographic images. This approach obtained a
classification accuracy of 83.2% using the Inception V3 model.

Kalaiyarivu and Nalini [40] studied a CNN-based approach to detect
skin diseases by extracting color and texture features. The proposed
3

Fig. 1. Architecture of the expert system to recognize skin diseases.

CNN model achieved an accuracy of 87.5%. In another work, Kousis
et al. [41] used 11 different CNN models to recognize skin cancer.
In this approach, they have used the HAM10000 dataset, and they
reported an accuracy of 92.25% using the DenseNet169 model. Ahmad
el at. [42] proposed a hybrid classification approach using CNN and
stacked BLSTM. In this work, BLSTM is used for feature extraction and
then ensembled with a deep CNN network for the classification task.
The authors experimented on two different datasets, one customized
and another one HAM10000, and reported an accuracy of 91.73% and
89.47%, respectively. Aijaz et al. [43] proposed a deep learning-based
application where different categories of skin diseases are classified.
two different deep learning models CNN and LSTM were used in this
approach. For better results, different pre-processing techniques such
as augmentation, enhancement, and segmentation were employed in
this study and achieved an accuracy of 84.2% and 72.3% for CNN and
LSTM, respectively.

3. System architecture and research methodology

This section scrutinizes the pertinent technologies and architectures
that will be used to develop an automated system for different skin
disease recognition.

3.1. System architecture

We presented a web-based medical expert system using deep learn-
ing framework for recognizing different skin diseases. The proposed
overview of the system is illustrated in Fig. 1. The hypothesis behind
this architecture is that a user captures an image of the diseased area
using a smart device where the proposed application will be pre-
installed. Then the image will be sent to the expert system through
the application. Then feedback will be generated based on our trained
model or expert system. The feedback will be returned to the user who
seeks to identify or diagnose skin diseases via email or SMS.

3.2. Research methodology

Since we have minimal images to train our deep learning model, we
propose models with real-time data augmentation and transfer learning
approach integration. First, the acquisition of pretrained weights from
tasks conducted on the ImageNet dataset is made in the building phase.
Features from the training data are extracted as well as the labels in
this phase. Second, a feature tensor combines these features according
to the class labels. Third, the transfer learning approach uses pretrained
weights that are acquired from a large dataset is applied. The domain
knowledge from this phase is then transferred to the MobileNet and
Xception model in the building phase. An unlabeled image data is
then fed to the learned network. Finally, the model generates the class
labels based on the knowledge it has gained from the previous phase.
The schematic representation of our approach is given in Fig. 2. The
required steps with the setup that will be carried out throughout the
experiment are illustrated in Table 1.
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Fig. 2. Proposed system architecture. (A systematic representation of our proposed approach including data acquisition, preprocessing using augmentation, transfer learning,
training, testing, and predictions carried out in building and deployment phases.)
Table 1
All the necessary steps with the setup that will be carried out throughout the experiment.

Algorithm: Experimental setup

Input 1. Collected images of 5 classes of skin diseases .

Environment 2. Google Colab.

Configuration 3. Import all necessary libraries and packages .
4. Import the images.

Directories Configuration 5. Construct directories for Training, testing and validation.

Training and Testing 6. Build CNN models. For transfer learning use a model trained on ImageNet dataset.
7. Fine-tune the models by adding additional global average pooling layers, a fully connected layer and Softmax class

Model Compilation

8. Model compile with RMSProp optimizer and learning rate of 0.001.
9. Set 100 epochs for model fitting.
10. Use val_accuracy monitor as model checkpoint.
11. Save model.

Performance Evaluation
12. Generate classification report and confusion matrix.
13. Generate AUC–ROC curve.
14. Generate model accuracy and loss reports.

Prediction
15. Load best model.
16. Load random images.
17. Predict disease classes.
𝑖
m
T
a
f
e

We have implemented six different CNN-based architectures namely
esNet50, InceptionV3, Inception-ResNet, DenseNet, MobileNet, and
ception. But we focused more specifically on MobileNet and Xception
odel. The remaining models are used in this study to compare the

erformance of our propositions.

.2.1. Convolutional Neural Networks (CNN)
CNN is the most popular artificial neural network specially designed

or computer vision-based applications that incorporates analyzing vi-
ual imagery [44]. The network takes an image as input and processes
he image for extracting different features and patterns from that input
mage. These features are also made distinguishable by the network.
oth spatial and temporal characteristics are captured using CNN.
hese characteristics are used in differentiating different classes of

mages. The feature detection task is the backbone of the CNN model,
hich has been carried out using the feature extractor filter or Kernel.
 𝑍

4

The learning process of CNN constitutes convolutional layers, non-
linear processing units, and layers for subsampling tasks [45]. The
working of CNN implements a layered architecture and presented in
Fig. 3. Three main layers, namely convolution, pooling, and fully con-
nected layer, are used to build a CNN model [46]. Convolutional layers
have a convolutional kernel that works as a feature extractor. These
kernels slice the input image into receptive fields. The relation between
the input feature map and output feature map can be expressed using
convolutional operation, i.e., 𝐹 (𝑥, 𝑦) = (𝑓 ∗ 𝑘)(𝑥, 𝑦) =

∑

𝑖
∑

𝑗 𝑓 (𝑖, 𝑗)𝑘(𝑥 −
, 𝑦− 𝑗). 𝐹 (𝑥, 𝑦) and 𝑓 (𝑥, 𝑦) corresponds to the output and input feature
ap, and k(x,y) represents the element of the corresponding kernel.
he pooling layer involves an operation that sums up all the relevant
nd similar information from the neighborhood. The size of the input
eature map has been reduced by cutting down the number of param-
ters. The pooling operation can be formulated using the equation,
= 𝑔 (𝑓 ) where Z is the polled feature map operating with input
𝑝
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Fig. 3. A convolutional neural network (CNN) architecture with its dimensions. (A layered representation of CNN architecture for performing different operations like convolution,
pooling, and consist of convolution layers, pooling layers and fully connected layer.)
Fig. 4. Architecture of MobileNet. (A CNN architecture performing Depthwise and Pointwise convolution on the input image for the completion of the filtering task and the
reation of linear output combinations.)
eature map f. Finally, the classification task has been carried out using
global operation carried out in a fully connected layer (FC). All the

xtracted features are analyzed in this layer and create a non-linearity
etween them.

.2.2. MobileNet
MobileNet is a popular Deep CNN network, widely used in computer

ision-based applications such as image classification, categorization
r segmentation, etc., for its lightweight and small architecture and
ast operational characteristics [25]. The fabrication of MobileNet is
stablished on depthwise separable filters represented in Fig. 4. The
ain focus of this model is to optimize latency with a small network

nd make a model that is suitable for deploying on mobile devices. Mo-
ileNet architecture is incorporated with two steps, namely depthwise
onvolutions and pointwise convolutions. First, the feature extraction
rocess is carried out by depthwise convolutions, where only a filter
rocesses each input channel. Then the pointwise 1 × 1 convolution is
pplied that combines features obtained from depthwise convolutions.
n depthwise separable convolutions, extraction of features, and com-
ining those features are done by separate layers. This results in the
eduction of computation time and computation cost, and model size.

There exist some architectural differences between the general con-
olutional layer and the depthwise convolutional layer. The input that
s taken by a standard convolutional layer can be expressed as 𝐷𝐹×𝐷𝐹×

of feature map F and produces 𝐷𝐺 ×𝐷𝐺 ×𝑁 of feature map G. The
value of 𝐷𝐹 ×𝐷𝐹 represents the dimension (height*width) of the input
image and 𝐷𝐺 × 𝐷𝐺 represents the dimension (height*width) of the
utput image. Here 𝑁 is the number of input channels or input depth,
nd M is the number of output channels or output depth. For standard
5

convolution layers where K is the kernel of size 𝐷𝐾 ×𝐷𝐾 ×𝑀×𝑁 where
𝐷𝐾 ×𝐷𝐾 denotes the dimension of the kernel. The output feature map
is given by the following equation

𝐺(𝑘,𝑙,𝑛) =
∑

(𝑖,𝑗,𝑚)
𝐾(𝑖,𝑗,𝑚,𝑛).𝐹(𝑘+𝑖−1,𝑖+𝑗−1,𝑚) (1)

For the depthwise convolution layer, is depthwise convolution ker-
nel is denoted by 𝐾, and the size of this kernel can be computed as
𝐷𝐾 × 𝐷𝐾 × 𝑀 . So the depthwise convolution for input depth can be
written as

𝐺(𝑘,𝑙,𝑚) =
∑

(𝑖,𝑗)
𝐾(𝑖,𝑗,𝑚).𝐹(𝑘+𝑖−1,𝑖+𝑗−1,𝑚) (2)

Here 𝑚𝑡ℎ filter in 𝐾 applied to the 𝑚𝑡ℎ channel in F to produce
the 𝑚𝑡ℎ channel of 𝐺. The total computational cost for depthwise
convolutions is given by 𝐷𝐾 .𝐷𝐾 .𝑀.𝐷𝐹 .𝐷𝐹

3.2.3. Xception
Xception is another class of Deep CNN which is adapted from the

Inception-V3 model [26]. The model is constructed based on the intu-
ition of the depthwise separable convolutional module. Modification is
made in the inception block of the Inception-V3 model. The modified
architecture for Xception has a wider inception block than Inception-
V3. It has spatial dimensions of 1 × 1, 5 × 5, and 3 × 3, which is
replaced in the Xception model with a single dimension of size 3 × 3
and 1 × 1, i.e., Convolution part is divided into spatial and pointwise
convolution. Fig. 5 illustrates the architecture of the Xception network.
Firstly, 1 × 1 pointwise convolution is applied, and then a 3 × 3
depthwise convolution is applied [45]. This approach results in the
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Fig. 5. Architecture of Xception. (A layered architecture of Xception consisting of 36 convolutional layers and 14 modules. It implements a 1 × 1 pointwise convolution followed
by a 3 × 3 depth-wise convolution.)
Fig. 6. The process of transfer learning. (Pretrained weights from earlier tasks conducted on a very large dataset has been used for the purpose of transporting knowledge. An
additional global average pooling layer, a fully connected layer, and a Softmax layer are added for fine-tuning the network.)
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reduction of parameters and layers and makes the network lightweight.
Disengagement of this correlation is followed by Eqs. (3) and (4).

𝑓𝑘
(𝑙+1)(𝑝, 𝑞) =

∑

(𝑥,𝑦)
𝑓𝑘
𝑙 (𝑥, 𝑦).𝑒

𝑘
𝑙 (𝑢, 𝑣) (3)

𝑘
(𝑙+2) = 𝑔𝑐 (𝐹 𝑘

(𝑙+1), 𝐾(𝑙+1)) (4)

Here, F corresponds to the feature map of l transformation layers,
𝑥, 𝑦) and (𝑢, 𝑣) show the spatial indices of feature map F and kernel

having depth one. Kernel K is spatially convolved across feature
ap F. Here 𝑔𝑐 (.) indicates the convoluted operation. In total, a basic
ception model has 36 convolutional layers and 14 modules. Among

hese, 12 modules are connected with a residual layer boosting the
erging process and paving the way for achieving higher accuracy.
rchitecturally, the Xception network consists of 3 flows, namely Entry

low, Middle flow, and Exit flow. Downsampling of input images with
imensionality reduction is carried out using the Entry flow part.
earning from features and optimizing those features is done by the
iddle flow part of the network. Finally, the Exit flow carries out the

ntegration of features.

.3. Transfer learning

The Transfer Learning (TL) approach in the context of deep learning
s a pervasive method in computer vision-related tasks. However, creat-

ng a robust and generalized deep learning model, it is highly required r

6

lot of images and computational resources [47]. To overcome this,
eep learning models can utilize the TL approach, in which a model
hat has been trained for one task can be used as a baseline model
or another. This method of reusing models that have been trained
reviously with a large amount of data can be used in another training
rocess that has a small amount of data and paves the way for achieving
igher accuracy [48]. In general, weights are initialized using random
umbers in the training process of neural networks. These assigned
eights are then slowly updated during the training process. So in most

ases, training with a small number of training data cannot achieve
ufficient accuracy. To perform the transfer learning process, we should
repare a neural network model trained with many data that can
andle similar types of data, which becomes the source model for
ransfer learning.

In the transfer learning process, features learned from huge image
ets such as ImageNet are highly transferable to a variety of image
ecognition tasks [49]. This process is depicted in Fig. 6. Several ways
o transfer knowledge from one model to another. One approach is to
rain the top layer of the already pretrained model and then replace it
ith a randomly initialized one. After that, the top layer parameters
re trained for the new task while all other parameters remain fixed.
his approach best suits a task where there is a maximum similarity
etween the pretrained model and the new task. If we have more data,
hen we can train the entire network by unfreezing these transferred pa-

ameters. Only the initial values of the parameters are transferred while
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Fig. 7. Different skin diseases used in our approach.
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Table 2
Overall dataset splitting.

Skin diseases Training images Validation images Test images

Atopic dermatitis 2610 432 100
Eczema 4750 950 100
Herpes 4200 840 100
Nevus 1955 391 100
Melanoma 1720 344 100
Total 15235 2957 500

weights are initialized using pretrained models instead of initializing
them randomly, boosting the convergence process.

4. Experimental evaluation and result analysis

4.1. Environment specifications

Image analysis or classification requires intense computing powers,
and GPU (Graphics Processing Unit) can provide such computing com-
patibility. But GPU installation is expensive and requires additional
hardware to support the computing task. So we use the Google Colab1

latform to train our model, which provides us with high-end GPU on
he cloud. It comes with all the necessary packages which are used in
he training process, so there is no burden of installing packages or
xtra storage [50]. Google Colab comes with NVIDIA K80 GPU, GPU
emory of 12 GB, Up to 2.91 teraflops double-precision rendition,

nd disk space of 358 GB. These specs give an enormous computation
nvironment to train Deep Learning models.

.2. Dataset description

We have used 5 classes of skin diseases, namely Atopic dermatitis,
czema, Herpes, Nevus, and Melanoma. Since there is no available
ataset that contains images of all these classes, we prepared our
ataset by collecting images from two different sources. We have
ollected images for Atopic dermatitis, Eczema, Nevus, and Herpes from
ermnet [51]. For Melanoma images, we have used the HAM10000
ataset [52]. A total number of 18692 images are used in our approach,
plit for training, validation, and testing purposes. A glimpse of images
onstituting our dataset is given in Fig. 7 Splitting the dataset into
raining and testing datasets depicts in Table 2.

.3. Data preprocessing

The proposed CNN architecture MobileNet and Xception require
ery less preprocessing images as they extract features directly from
mages. MobileNet model requires an input shape of 224 × 224, and

the Xception model requires images of dimension 229 × 299. So firstly,
images are resized according to the measurement for each model.
Since a robust model requires many images to train and validate

1 https://colab.research.google.com/
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the model, we performed real-time image augmentation in our study,
expanding our training data virtually. The augmentation operations
that are performed in this task are flip, shift, and zoom. Both vertical
and horizontal flips are performed to reverse the pixel columns or rows.
Shift operation moves all of the pixels unidirectional, and using zoom
operation, images are randomly zoomed by adding new pixel values.

Augmentation techniques that are used in our approach are illus-
trated in Fig. 8.

4.4. Performance evaluation metrics

The performance of a classifier is described through the confusion
matrix, which gives an insight into the correct and incorrect predictions
made by the classifiers [53]. A classifier is used to predict some classes
that can be either true or false. There can be four cases as output
while classifying some data belonging to more than one class. Firstly
all the predictions (true or false) are correct, which is indicated by True
Positive (TP) and True Negative (TN). However, there can be another
case in which the prediction is true, but in reality, it is false, and vice-
versa. These two cases are called False Positive (FP) and False Negative
(FN). Not only that, we can calculate some more specific metrics from
the confusion matrix that can be deciding factors for revealing the
classification performance of our models. These metrics are Accuracy,
Precision, Recall, and F1-score. These metrics are calculated using the
following formulas.

Accuracy: Accuracy is the indicator of how well a model can predict
rue and false classes precisely and expressed using formula (5).

𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
∑𝑁

𝑖 𝑀𝑖
∑𝑁

𝑖
|

|

𝑇𝑖||
× 100% (5)

where, ∑𝑁
𝑖 𝑀𝑖 indicates the total number of correct predictions, and

∑𝑁
𝑖
|

|

𝑇𝑖|| is the total number of predictions.
When it comes to binary classification, Accuracy is represented

using the following formula (6)

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = 𝑇𝑃 + 𝑇𝑁
𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁

(6)

where, 𝑇𝑃 = True Positives, 𝑇𝑁 = True Negatives, 𝐹𝑃 = False Posi-
tives, and 𝐹𝑁 = False Negatives.

Precision: Precision indicates how well a classier performs in terms
of predicting correct outcomes that are positive. Mathematically repre-
sentation can be established using the formula (7)

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 𝑇𝑃
𝑇𝑃 + 𝐹𝑃

(7)

Recall: Recall indicates the performance of a classier by measur-
ing the proportion of true positive observations that were correctly
predicted. Formally Eq. (8) defines Recall,

𝑅𝑒𝑐𝑎𝑙𝑙 = 𝑇𝑃
𝑇𝑃 + 𝐹𝑁

(8)

F1 score (F-measure): F1 score is the symphonic average of pre-
cision and recall. Formally it is represented mathematically as Eq. (9)

𝐹1 𝑠𝑐𝑜𝑟𝑒 = 2 ∗ 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑅𝑒𝑐𝑎𝑙𝑙 (9)

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙

https://colab.research.google.com/
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Fig. 8. Augmentation techniques that are used in our approach.
Table 3
Class-wise classification results of MobileNet and Xception. (Values of evaluation
metrics Precision, Recall, and F1-score for MobileNet and Xception model with Transfer
Learning approaches is presented for each disease classes.)

Model Class Recall (%) Precision (%) F1 (%)

MobileNet

Atopic dermatitis 97.00 90.70 93.71
Eczema 89.00 95.70 92.22
Herpes 95.00 96.94 95.96
Melanoma 100.00 97.08 98.51
Nevus 99.00 100.00 99.50

Xception

Atopic dermatitis 96.00 97.00 96.50
Eczema 90.00 95.74 92.80
Herpes 99.00 92.52 95.65
Melanoma 100.00 100.00 100.00
Nevus 100.00 100.00 100.00

Sometimes accuracy and F1-score are not enough for evaluating
redictive models. So another metric which is called the Receiver Op-
rating Characteristics curve or ROC curve, is also used for evaluation.
ith AUC, an accumulated measure of performance can be defined

t every possible classification threshold. From the ROC curve, the
rea under the ROC curve (AUC) is induced, which is a compatibility
ndicator of a predictive model. Derivation of ROC can be done when
he True Positive Rate (TPR) is plotted against False Positive Rate
FPR). True positive rate is nothing but Recall, and FPR is defined by
n Eq. (10)

𝑃𝑅 = 𝐹𝑃
𝐹𝑃 + 𝑇𝑁

(10)

4.5. Results

In this segment, we demonstrate the results of our proposed ar-
chitectures (MobileNet and Xception) to scrutinize the robustness of
the models. Additionally, the experiment was conducted on other
deep learning models, ResNet50, InceptionV3, Inception-ResNet, and
DenseNet, to compare and evaluate the performance of our proposi-
tions. Finally, we present the performance comparison of the proposed
architectures with some graphical presentations and tables.

4.5.1. Classification performance of proposed MobileNet and Xception
models

Classification results of our proposed models MobileNet and Xcep-
tion according to our classes (skin disease) are illustrated in Tables 3
and 4. We have shown the results based on propositions transfer
learning (TL) with augmentation for each model and without TL and
augmentation. To give an overall insight into our classification results
in terms of the number of right classifications and misclassification,
We presented confusion matrices for MobileNet and Xception model in
Fig. 9. Fig. 9(a) illustrates the produced confusion matrix of MobileNet
architectures. From this representation, it can be observed that Herpes
and Eczema classes have achieved 100% right prediction scores for this
approach. The classification performance of Xception architecture is
illustrated in Fig. 9(b).

A more comprehensive representation of classification results is
depicted in Table 5 of our proposed MobileNet and Xception models.
8

Table 4
Class-wise classification results of MobileNet and Xception. (Values of evaluation
metrics Precision, Recall, and F1-score for MobileNet and Xception model with without
Transfer Learning and without augmentation approaches is presented for each
disease classes.)

Method Class Recall (%) Precision (%) F1 (%)

MobileNet

Atopic dermatitis 88.3 91.0 89.6
Eczema 85.7 66.0 74.5
Herpes 84.6 99.0 91.2
Melanoma 89.4 93.0 91.1
Nevus 100. 99.0 99.4

Xception

Atopic dermatitis 84.2 91.0 87.4
Eczema 91.0 71.0 79.7
Herpes 80.4 99.0 88.7
Melanoma 97.8 93.0 95.3
Nevus 100.0 96.0 97.9

Table 5
Overall classification report. (Comparison results between ResNet50,
InceptionV3,Inception-ResNet, DenseNet, MobileNet, and Xception model based
on average values of Precision, Recall, and F1-score.)

Model Recall(%) Precision(%) F1(%)

ResNet50 87.00 87.00 87.00
Inception-V3 93.00 93.00 93.00
Inception-ResNet 95.00 95.00 95.00
DenseNet 93.00 93.00 93.00
MobileNet 96.00 96.00 96.00
Xception 97.00 97.00 97.00

In addition, a comparison is established with the other models, such as
ResNet50, InceptionV3, Inception-ResNet, and DenseNet.

Another compatibility indicator for our proposed models is ROC
which is presented in Fig. 10. The highest reported micro average AUC
score is 0.9974, which is reported for the MobileNet model. The lowest
micro AUC score is reported for the ResNet50 model. The ROC of the
Xception model is the second highest, which is 0.9972. Other models
also showed good AUC scores.

4.5.2. Prediction accuracy and loss
In this segment, accuracy and loss for our approaches are depicted

for all six models. In Table 6, validation and testing accuracy and
loss are presented in terms. The highest testing accuracy is 97.00%,
and the lowest loss is 0.16, reported for the Xception model with TL
and augmentation. For MobileNet, the highest accuracy is 96.00%.
ResNet50 showed the lowest test accuracy (86.60%) and highest loss
score (2.40) compared to other models.

In Fig. 11(a) and (b), a line chart is illustrated for accuracy and
loss for the MobileNet and Xception model for 100 epochs. It is seen
from Fig. 11(a) that accuracy is pretty high and consistent for the
approach using TL and augmentation for the MobileNet model. There
exist some reductions and fluctuations per epoch for both models. For
loss, Fig. 11(a) demonstrates that the lowest loss rate is gained from
implementing both TL and augmentation approaches. For Xception
Model, Fig. 11(b) demonstrates accuracy and loss for each epoch. Like
MobileNet, here also observed high and consistent accuracy scores per
epoch by implementing TL and augmentation. From Fig. 11(b), insight
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Fig. 9. Confusion matrix presenting total number of right and wrong prediction that occurs in the testing process for MobileNet and Xception model.
Fig. 10. ROC curve for deep learning models. This representation depicts the micro
areas under the ROC curve (AUROC) for each of the models.

Table 6
Accuracy and Loss for the best models.

Model Accuracy (%) Loss

Validation Test Train Validation

ResNet50 96.70 86.60 0.19 2.40
Inception-V3 98.0 93.0 0.05 0.45
Inception-ResNet 98.80 94.80 0.99 0.42
Densenet 94.20 92.80 0.98 0.34
MobileNet (Without TL) 94.45 89.38 0.8 1.77
Xception (Without TL) 95.55 89.79 0.76 1.13
MobileNet (Proposed with TL) 96.00 96.0 0.15 0.21
Xception (Proposed with TL) 97.94 97.0 0.07 0.16

into the loss per epoch can be achieved. Here low loss scores were
reported per epoch by implementing Tl and augmentation.

Finally, the running time of our training process is given in Table 7
for each of our models. MobileNet model with TL and augmentation
takes the shortest time (7869 s) to complete the 100 epochs. The
longest time to complete the execution is reported for the Inception-
ResNet model with the TL approach, 22971 s. The exception model also
showed less time to complete the training process with 10877 s.

We have also presented a comparison between recent deep learning
approaches that are proposed in different computer vision-based works
in Table 8. From this comparison, it can be clearly derived that our
models with augmentation and transfer learning techniques have better
prediction accuracy.

The effectiveness of our approach in recognizing skin diseases is
depicted in Figs. 12 and 13. we have used both MobileNet and Xception
models with TL and augmentation to predict diseases as a part of
deployment phases. From this presentation, it can be seen that Both
9

Table 7
Total running times for each model.

Model Runtime (s)

ResNet50 14514 s
Inception-V3 5436 s
Inception-ResNet 22971 s
Densenet 16379
MobileNet 7869 s
Xception 10877 s

models can accurately predict the classes of the respective diseases.
We can see one misclassification case for the MobileNet model. But the
Xception model can successfully identify all skin diseases.

4.6. Result analysis

In this research work, we proposed implementing two deep learning-
based architectures MobileNet and Xception, in recognizing different
classes of skin diseases for computer vision-based applications. Be-
sides, other deep learning models such as ResNet50, InceptionV3,
Inception-ResNet, and DenseNet were also implemented to compare our
approaches’ effectiveness. Finally, we scrutinize the performance of our
different propositions for skin recognition tasks based on classification
reports, confusion matrix, ROC curves, and classification accuracy.

From Table 3, the decision can be reached about class-wise classi-
fication for both models. The highest Precision score is 100%, which
is achieved for the Nevus class using both MobileNet and Xception
models. Additionally Xception model also achieved a precision score
of 100 for the Melanoma class. This tells us that our approaches result
in a very good measure of the positive predictions that were actually
correct. For Recall, a maximum of 100 scores is observed for nevus
and Melanoma classes in Xception and melanoma classes in MobileNet.
Since we have used an imbalanced dataset, F1-score can be a deciding
factor. The maximum score is achieved for Melanoma and Nevus class
using the Xception model. From Table 4, it can be seen that both
Precision and Recall and F1-score are much lower for cases with no
TL and augmentation. We observed the highest F1-score of 97% for the
Xception (TL+A) model and 96.38% for MobileNet (TL+A) model. This
is an indication that our proposed approach with TL and augmentation
have good classification capability for imbalanced dataset.

The more comprehensive representation of Precision, Recall, and
F1-score is given in Table 5, where an overall score for each of the
metrics is given for each of the models. The highest precision is 97.05%,
which is reported for the Xception model. This means that Xception
models predict the correct class of skin disease most of the time.
The highest recall value is 97.00% for Xception and 96.00% for the
MobileNet model, i.e., both of these modes correctly identify most
skin diseases. However, other models such as ResNet50 performed
poorly, achieving a low score. We observed the highest F1-score of
97.00% for the Xception model and 96.38% for the MobileNet model.
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Table 8
Comparison between existing approaches and our proposed approaches.

Method/Work done Dataset Used architecture Classification accuracy Best model

Yasir et al. [28] 775 clinical images CNN with adaptive learning 90% CNN
Alarifi et al. [29] Clinical images SVM + CNN 89% CNN with SVM
Li and Shen [30] ISIC 2017 FCRN with LICU 91% FCRN
Rathod et al. [31] DermNet CNN

CNN (PNASNet-5-Large,
70% CNN

Milton [33] ISIC 2018 InceptionResNetV2, SENet154,
InceptionV4)

76%,70%, 74%, 67% PNASNet-5-Large

Liao [34] DermNet and OLE CNN (VGG16) 91% (DermNet),
69.5% (OLE)

VGG16

Shanthi et al. [35] DermNet CNN (ALexNet) 93.3% ALexNet
Kalaiyarivu and Nalini [40] Clinical images CNN 87.5% CNN
Kousis et al. [41] HAM10000 CNN 92.25% DenseNet169
Ahmad et al. [42] Customized CNN + stacked BLSTM 91.73% –
Gupta et al. [39] ISIC VGG16, VGG19, and Inception V3

ResNet50, InceptionV3,
82.4%, 83.0%, 83.2% Inception V3

Proposed DermNet + ISIC 2018 Inception-ResNet , DenseNet,
MobileNet, and Xception

86.60%, 93%, 94.80%,
92.80%, 96%, and 97%

Xception
Fig. 11. Accuracy and Loss for MobileNet and Xception model with transfer learning and augmentation techniques.
Fig. 12. Predicting skin diseases using MobileNet model.
This indicates that our proposed approach with TL and augmentation
has good classification capability for imbalanced datasets than other
models presented in this study.

For illustrating the entire classification and misclassification, the
confusion matrix as a heatmap is depicted in Fig. 9. Using the transfer
learning and augmentation approach, both our models performed very
satisfactorily, outperforming other models. MobileNet and Xception
models reported only 20 and 15 misclassification cases, respectively.
Accuracy and loss reported by our models are presented in Table 6.
10
The highest classification accuracy is 97.00%, which is observed for
the Xception model. The MobileNet model also gives a tremendous
performance with a classification accuracy of 96.00%. ResNet seems to
be a bad choice in terms of testing accuracy achieving 86.60% testing
accuracy. Both models with TL and augmentation reported very low
loss scores also. But approach with no TL and augmentation reported
a higher loss score with low accuracy than other approaches.

With the ROC curve presented in Fig. 10, a relation is established
between the false positive rate and the true positive rate. The highest
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Fig. 13. Predicting skin diseases using Xception model.
Fig. 14. Developed web interface and application using a skin disease image.

OC–AUC measures are obtained for TL and augmentation approaches.
inally, Table 7 presents the runtime measures. But when it comes to
roducing a more robust and accurate classifier, the runtime is a minor
act, whereas accuracy and other evaluation metrics are the major ones
o consider.

.7. Deployment of web application

Finally, we use the Flask [54] web framework to deploy our trained
odel. We created a web application that detects skin conditions by

nalyzing the skin photograph supplied by the client. To deploy the
lask, we need two routes. First, we have created an index page route,
hich will help the users to upload their images. Finally, a predicted

oute will create an inference from our saved model.
The web application is created using the Xception model that has

een trained using our skin dataset. Fig. 14 shows the developed web
nterface for the clients. The user uploads the image of a suspected
iseased area using any smart device and submits it to the developed
xpert system or the web application through the interface. Then
eedback will be generated based on our trained model by classifying
he image based on different skin conditions.
11
5. Conclusion and future work

This paper has suggested a computer vision-based approach to
recognize five skin diseases Atopic dermatitis, Eczema, Herpes, Nevus,
and Melanoma. Two state-of-the-art deep learning models MobileNet
and Xception, are implemented to create an automated system. We pro-
posed approaches with transfer learning and augmentation techniques
and evaluated each of the models in computer vision-based recognition
tasks. Augmentation techniques pave the way for achieving a robust
model by increasing the training data, whereas transfer learning en-
ables reusing the weights from pretrained models. Integrating both
transfer learning and augmentation techniques with MobileNet and
Xception models proved to be a sophisticated approach to our disease
recognition task, outperforming other deep learning models ResNet50,
InceptionV3, Inception-ResNet, and DenseNet. The MobileNet model
has achieved a classification accuracy of 96.00% and an F1-score of
96.38%. On the other hand, both test accuracy and F1-score of the
Xception model reached 97.00%. In addition, We used the Flask web
framework to deploy our trained model by creating a web application
that detects skin conditions by analyzing the skin photograph sup-
plied by the client. The presented approaches can help recognize and
diagnose different dermatological diseases and aid health profession-
als in providing a better healthcare system. Finally, we have built a
web-based framework to identify skin diseases.

For future studies, experiments will be carried out using a more
diverse dataset. Only five classes of skin diseases are studied. So in the
future, we plan to extend our experiment by adding more classes of skin
diseases. Besides, the approach presented in this paper can be further
enhanced by ensembling different deep learning models. Recently,
transformer-based models such as Vision Transformers (ViTs) and Mo-
bileViT have been widely used in image processing tasks. So one of
our future research directions could be to develop a transformer-based
image recognition model for skin disease recognition. Our experiments
took a huge computation time, and reducing the computation time in
deep learning approaches could be another potential research direction
of our work.
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