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Background: In the last couple of years, viral infections have been leading the

globe, considered one of the most widespread and extremely damaging health

problems and one of the leading causes of mortality in the modern period.

Although several viral infections are discovered, such as SARS CoV-2, Langya

Henipavirus, there have only been a limited number of discoveries of possible

antiviral drug, and vaccine that have even received authorization for the

protection of human health. Recently, another virial infection is infecting

worldwide (Monkeypox, and Smallpox), which concerns pharmacists,

biochemists, doctors, and healthcare providers about another epidemic. Also,

currently no specific treatment is available against Monkeypox. This research gap

encouraged us to develop a new molecule to fight against monkeypox and

smallpox disease. So, firstly, fifty different curcumin derivatives were collected

from natural sources, which are available in the PubChem database, to determine

antiviral capabilities against Monkeypox and Smallpox.

Material and method: Preliminarily, the molecular docking experiment of fifty

different curcumin derivatives were conducted, and the majority of the substances

produced the expected binding affinities. Then, twelve curcumin derivatives were

picked up for further analysis based on themaximum docking score. After that, the

density functional theory (DFT) was used to determine chemical characterizations

such as the highest occupied molecular orbital (HOMO), lowest unoccupied

molecular orbital (LUMO), softness, and hardness, etc.

Results: The mentioned derivatives demonstrated docking scores greater than

-6.80 kcal/mol, and the most significant binding affinity was at -8.90 kcal/mol,

even though 12 molecules had higher binding scores (-8.00 kcal/mol to
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-8.9 kcal/mol), and better than the standard medications. The molecular

dynamic simulation is described by root mean square deviation (RMSD) and

root-mean-square fluctuation (RMSF), demonstrating that all the compounds

might be stable in the physiological system.

Conclusion: In conclusion, each derivative of curcumin has outstanding

absorption, distribution, metabolism, excretion, and toxicity (ADMET)

characteristics. Hence, we recommended the aforementioned curcumin

derivatives as potential antiviral agents for the treatment of Monkeypox and

Smallpox virus, and more in vivo investigations are warranted to substantiate

our findings.
KEYWORDS

curcumin, monkeypox, smallpox virus, molecular docking, DFT, admet, molecular
dynamic simulation
1 Introduction

Viruses have been considered obligatory microscopic biological

infections that are incredibly tiny and pathogenic (Greenwood et al.,

2012). They are very complex nonliving substances or basic

biological microorganisms that may act as live-in host cells and

act as a particle outside the host cell (Villarreal, 2004). They are

obligatory intracellular parasitic since they do not possess the

metabolic enzymes or the infrastructure necessary to produce

proteins (Vlachakis et al., 2013). The viral genome is formed of a

single form of nucleic acid, either deoxyribonucleic acid (DNA) or

ribonucleic acid (RNA), as well as a capsid (Lucas and Knipe, 2010).

The protein coat is occasionally surrounded by an enclosure that is

made up of lipids, proteins, and carbohydrates (Parvez, 2020).

Viruses can infect every living thing, such as animals, plants,

bacteria, and archaea6, and can only multiply and execute

through their physiological activities in a host cell.

In the last couple of years, viral disease has developed very

rapidly and infected millions of people around the globe, such as

SARS CoV-2 (Khattak et al., 2022; Miller et al., 2023), Monkeypox

virus (Mahase, 2022), Ebola virus (Malvy et al., 2019), HIV (Zhou

and Saksena, 2013), Smallpox (Smith and McFadden, 2002),

Hantavirus (Vaheri et al., 2013), Influenza (Dunn and Miller,

2014), Langya Henipavirus (Akash et al., 2022b), and Dengue

(Pawitan, 2011). This viral infection is sometimes converted into

global pandemics such as the SARS-CoV-2 pandemic and the Ebola

pandemic (Islam et al., 2022), which directly impact world

economics and the health sector (Kumer et al., 2022b). Several

studies and findings have reported that millions of people die

annually due to viral infection.

The Orthopoxvirus genus of the Poxviridae family includes the

enveloped double-stranded DNA virus known as the monkeypox

virus. Monkeypox is a viral zoonosis that is clinically less severe

than Smallpox. It has symptoms comparable to those of Smallpox

(Di Giulio and Eckburg, 2004; Rizk et al., 2022). The Monkeypox

virus is susceptible to several animal species. A 9-month-old boy in
02
the Democratic Republic of the Congo, where Smallpox had been

eradicated in 1968, was the first person to be diagnosed with human

Monkeypox in 1970 (Breman et al., 1980). Contacting infected

animals’ blood, body fluids, skin, or mucosal lesions can result in

animal-to-human (zoonotic) transmission. Since it affects the rest of

the world, in addition to nations in west and central Africa,

Monkeypox is a disease of worldwide public health concern now

(Di Giulio and Eckburg, 2004; McCollum and Damon, 2014).

The World Health Organization declared Monkeypox an

“evolving threat of moderate public health concern” on June 23,

2022, after more than 3000 Monkeypox virus infections were

detected in more than 50 nations (Thornhill et al., 2022). There

isn’t a specific medication for the Monkeypox virus infection right

now. However, a number of antiviral drugs used to treat Smallpox

and other ailments could be beneficial for those with Monkeypox

infection. According to the Centers for Disease Control and

Prevention (CDC), supportive care is often sufficient for people

with a Monkeypox virus infection because no particular medicines

are available (Rizk et al., 2022). The computational technique is

used to develop a safe drug against Monkeypox and Smallpox virus

infection. Because developing any medication takes more than 10-

12 years, huge cost, time, and resources, but this new computational

technology creates a new era in which effective drugs and new

biological substances can be developed within a concise period of

time, reducing both time and costs (Rahman et al., 2012; Tropsha

and Bajorath, 2016; Stanzione et al., 2021). For more than three

decades, the discovery of clinically significant compounds has been

greatly helped by computer-aided drug discovery and design

techniques (Marhöfer et al., 2011; Hung and Chen, 2014).

Although, computer-aided drug discovery and design has a lot of

advantages and reduce the time, cost and resources to develop a

potential drug, but it has some its own limitations.

One of the most complicated issues has to be solved in drug

development is considered about target flexibility. The use of a

toxicity prediction model is helpful in determining whether or not a

medication candidate is harmful to organs such as the liver, kidneys,
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heart, and lungs. Besides, the accuracy of prediction models is

hindered by a lack of trustworthy experimental data and factors

relevant to ADME and toxicity. It is also noteworthy to know that

only forty percent of medicine candidates are being tested in clinical

trials by the forecast computer model (Singh, 2014; Hassan Baig

et al., 2016).

Curcumin and its derivatives are thought to have carried out a

study against Monkeypox and Smallpox infection. According to

research, curcumin, the primary biologically active component of

turmeric (Curcuma longa L.), functions as a potent anti-

inflammatory, antioxidant, antibacterial, antifungal, and antiviral

activity (Rathore et al., 2020). The chemical formula C21H20O6 may

represent it, and its molecular mass is determined to be 368.38 g/

mol. This lipophilic polyphenol is principally abundant in the

rhizomes of turmeric (Curcuma longa L), which is a member of

the ginger family (Zingiberaceae) and is indigenous to the tropical

regions of South Asia. It contains a yellow-to-orange hue. Turmeric

powder is an eastern flavor that is typically derived from this plant.

Curcumin, along with natural ingredients and other coumarins, is

one of the most prominent bioactive substances recognized in

turmeric powder (Basnet and Skalko-Basnet, 2011; Kotha and

Luthria, 2019; Adamczak et al., 2020). Due to its antimicrobials,

antioxidative, anti-inflammatory, and anti-cancerous properties,

curcumin has long been anticipated to be a therapeutic or

preventive agent for many human diseases (Tønnesen and

Karlsen, 1985; Hsu and Cheng, 2007; Hatcher et al., 2008; Lestari

and Indrayanto, 2014).
2 Literature review of curcumin

2.1 MPXV: Genome and physiological
characteristics

Since its first appearance, the Monkeypox virus (MPXV) has

been found throughout West and Central Africa. Recently,

occasional cases of MPXV infections have been reported in a

number of nations. According to recent findings, the MPXV-2022

strains are members of the same family as the MPXV strain

discovered in 2018. In comparison to the MPXV strain that was

found in 2018, the MPXV-2022 strains have been shown to include a

total of 46 additional consensus substitutions, comprising 24

variants that are nonsynonymous (Wang et al., 2022). Besides, the

MPXV genome consists of about 197,000 base pairs and has hairpin

termini in addition to more than 190 open reading frames that do

not overlap (ORFs) (Shchelkunov et al., 2001). The highly conserved

segment in the middle of the genome that codes for proteins is

surrounded on both sides by flexible endpoints that include inverted

terminal repeats. At least ninety open reading frames (ORFs) are

documented to be necessary for the proliferation and development

of poxviruses. Many other ORFs considered non-essential have a

role in the abnormalities in host tropism, immunomodulation, and

pathogenicity caused by poxviruses (Seet et al., 2003). The form of

MPXV virions may be described as either barrel or oval, and their

sizes range from around 280 to 220 nanometers in general (Erez
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et al., 2019; Kmiec and Kirchhoff, 2022). The physiological features

and structures of MPXV are displayed in Figure 1 (Miller, 2013).
2.2 Effect of curcumin on viral infections

Curcumin has been shown to interfere with the progress of viral

infection via various pathways, explicitly targeting the viral genome,

reducing protein assembly and cell proliferation, and preventing the

virus from entering the host cells and replicating (Basu et al., 2013;

Wang et al., 2020). An updated research investigation reported that

curcumin might be suppressed the respiratory syndrome virus

(RSV) by preventing the virus’ interaction with hosting cells

(Yang et al., 2017). According to new findings, curcumin seems

to hinder the attachment of the porcine reproductive and

respiratory syndrome virus (PRRSV). This may be accomplished

by affecting the flexibility of viral envelopes. In addition, curcumin

can prevent viral infection by blocking PRRSV-mediated cell fusion

(Du et al., 2017). Another study reported that curcumin and its

derivatives had been shown to have a high binding affinity to

hemagglutinin (HA), the primary capsid glycoprotein of the

influenza virus that is responsible for viral attachment, and

disrupts the integrity of the membrane structure to inhibit IAV

entrance. This stops the virus from adhering to host cells and

prevents the virus from entering the cell (Liu and Ying, 2020).
2.3 Effects of curcumin on the SARS CoV-2

The primary antiviral function of curcumin against SARS-CoV-

2 is its capacity to block the folding of viral spike protein to the

ACE2 receptors, which is the first stage in the development of

infecting the host organism. The inflammatory response brought on

by COVID-19 is a complicated and multi-step phenomenon.

Patients with a severe illness are more likely to be influenced by a

hyperinflammatory phenomenon known as a cytokine storm. This

fact highlights the necessity for anti-inflammatory therapies to
FIGURE 1

Physiological structures of MPXV.
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minimize the hyperactivation of the immune reaction that occurs

when it causes the cytokine storm (Rattis et al., 2021). Two

investigations were performed with COVID-19-infected patients,

one of which focused on the anti-inflammatory effects of curcumin.

The first investigation that the research team undertook looked at

how nano curcumin affected the production of cytokines that

promote inflammation. Patients diagnosed with COVID-19 had

an extreme amount of mRNA generation and production of the

cytokines IL-1b, IL-6, TNF-a, and IL-18; however, patients treated

with nano curcumin exhibited a substantial decline in IL-6 and IL-

1b levels (Valizadeh et al., 2020; Tahmasebi et al., 2021).
2.4 Curcumin function on dengue protease

Research and investigation reported that curcumin might

inhibit plaque formation caused by dengue virus strains (DENV-

1-4, IC50 of 9.37, 3.07, 2.09, and 4.83 M, correspondingly) that were

tested in LLC-MK2 cells and exhibited only a moderate level of

toxicity (CC50 of 59.42 M) (Gao et al., 2019). Even though the

method of suppression was not investigated, previous research

indicated that curcumin probably suppresses DENV-2 implicitly

via its influence on cellular systems rather than immediately on

viral activities. Besides, curcumin and its four analogs could

suppress viral protease activity (IC50 values ranged from 36–66

M) when tested in an in vitro experiment. The multiplication of a

DENV2 reporter plasmid mutant was only moderately suppressed

by these substances, with the acyclic and cyclohexanone analogs of

curcumin functioning substantially better than the natural

curcuminoids (50% effective concentration (EC50) of 8.61 and

8.07 μM vs. 13.91 μM) (Balasubramanian et al., 2019). It appears

that the actions of curcumin on cellular lipid metabolism were

responsible for the virus-inhibiting properties of curcumin against

DENV. Curcumin and its analogs could inhibit the enzymes acetyl-

CoA carboxylase and fatty acid synthase and reduce the

development of lipid droplets (LD). These mechanisms would

ordinarily serve to make DENV acquisition more prevalent. In

addition, therapy with curcumin culminated in the disarray of actin

filaments and abnormalities in polymerization, which is another

function that is inherently essential for DENV entrance and

reproduction (Balasubramanian et al., 2019; Jennings and

Parks, 2020).
2.5 Effects of curcumin on the influenza
A virus

Curcumin is another potent inhibitor of the Influenza A virus

(IAV), and it probably impacts the virus at various phases during its

lifespan. When IAV is incubated with curcumin, the pathogenicity

of the virus is diminished; this is presumably owing to the capacity

of curcumin to compromise with the viral haemagglutinin function

(Chen et al., 2010; Han et al., 2018). Curcumin significantly blocks

NF-kB signaling, which is essential for the reproduction of the

influenza A virus (Nimmerjahn et al., 2004). For instance, curcumin

blocked various IAV-induced toll-like receptor (TLR) signaling
Frontiers in Cellular and Infection Microbiology 04
pathways and enzymes, such as TLR2/4/7, MyD88, TRIF, and

TRAF6, which are generally essential for effective virus assembly.

Stimulating cells with agonists for TLR2/4, p38/JNK MAPK (Dai

et al., 2018).
2.6 Effects of curcumin on Zika, and
chikungunya virus

Several curcumin analogs that are effective against the

enveloped viruses Zika (ZIKV), Chikungunya (CHIKV), and

Vesicular Stomatitis (VSV), as well as the non-enveloped virus

Coxsackie B3 (CVB3) (Adams et al., 2004). Curcumin could be

effective in inhibiting when applied to cells both before and after

being infected with Zika or chikungunya; however, it works against

Zika solely during cell attachment or entrance and does not affect

the final stages of the disease (Ardebili et al., 2021). Curcumin at

concentrations of 5 M was demonstrated to be significantly efficient.

This resulted in a drop in virus intensity of more than 0.5 log10

despite causing negative impacts. Additionally, the IC50 values for

curcumin against Zika and Chikungunya were significantly 1.9 M

and 3.89 M (Mounce et al., 2017). In addition, they encountered

that curcumin stopped the chikungunya and vesicular stomatitis

virus from entering cells or attaching to them (von Rhein

et al., 2016).
2.7 Effects of curcumin on hepatitis C virus
instead of herpes simplex virus

Components of curcumin that include -unsaturated ketone

groups make the HCV membranes less flexible. This, in turn,

prevents the virus from attaching to cells and fusing with them.

Therefore, curcumin prevents the entry of all HCV genotypes into

cells that have been evaluated in a dose-dependent manner, with a

half-maximal inhibition zone (IC50) of about 8.46 1.27 M (Colpitts

et al., 2014; Qin et al., 2014). Curcumin’s ability to block the PI3K-

AKT and Akt-SREBP-1 pathways and induce heme oxygenase is

responsible for its antiviral effects (Calland et al., 2015; Wahyuni

et al., 2018).
2.8 Curcumin as HIV protease inhibitor

Curcumin has been the subject of a significant number of

research, all of which have shown to be an effective inhibitor of

HIV protease. Curcumin meanly inhibit HIV-1 proteases (IC50 =

100 M) and HIV-2 proteases (IC50 = 250 M), which may be

responsible for its anti-HIV activities (Prasad and Tyagi, 2015).

By engaging with the catalytic center of isolated HIV-1 integrase,

curcumin was capable of inhibiting HIV-1 integrase with an IC50

value of 40 microM. Additional research demonstrated that the

anti-integrase action of curcumin was connected to the

intramolecular arrangement of two phenyl rings, which brought

the hydroxyl groups into direct connection with one another

(Prasad and Tyagi, 2015). Not only does curcumin control the
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infectious potential of HIV, but it also boosts the potency of

medications used to treat HIV and AIDS. In another research,

curcumin was demonstrated to increase the systemic exposure of

saquinavir in rats, but it did not affect the intravenous

pharmacokinetics of saquinavir (Kim et al., 2013). In the

appearance of the curcumin-loaded microemulsion, the oral

administration of saquinavir led to a rise in both the AUC and

Cmax by a factor of 3.8 and 2.7, significantly (Prasad and

Tyagi, 2015).

As curcumin is already established as potential effectiveness

against the different viruses in clinical and laboratory trials

(Table 1), so, we believe that the curcumin derivatives might have

capabilities to inhibit viral entry/gene expression. Thus, we have

selected more than 50 curcumin derivatives available in natural

sources to find an effective medication against smallpox and

Monkeypox virus treatment. At the beginning of the studies,

these 50 derivatives were conducted molecular docking against

the Monkeypox virus and selected best 12 compounds according

to maximum binding energy for further investigation (Figures 2, 3

displayed selected the most potent 12 curcumin derivatives from 50

natural curcumin analogs, Figure 4 is illustration for antiviral

mechanism of curcumin).

The phases of the viral life cycle are complex and occur through

different processes. These processes consist of the attachment of the

virion to its cell surface receptor, the subsequent entrance of the

virion, the phase of viral genome replication and transcription, the

process of translation of the viral genome, the congregation of the

virion, and ultimately the release of the virion. As a result of

curcumin’s ability to suppress the function of viral envelope

proteins, viral attachments and entrance are both blocked.

Furthermore, curcumin has been shown to affect specific

signaling pathways, inflammatory processes, and translation and

transcription, which ultimately results in a blockage of viral

replication. Then, curcumin competitively inhibits the synthesis

of viral DNA within the host cell. As a result, the virus cannot

multiply and is unable to survive within the host cell (Hussain

et al., 2022).
2.9 Transmission and clinical manifestation

The natural reservoir of MPX has not been identified; however,

rats are a leading possibility. Consumption of uncooked or
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improperly prepared meat or other animal products from infected

animals is a potential risk factor. People who reside in or near

forested areas may also be at risk of low-level or indirect exposure to

diseased animals. Though transmission of MPX is infrequent, it

may occur via direct or indirect contact with infected bodily fluids

(Guarner et al., 2022). The MPX may be transmitted via the

placenta and spread through sexual intercourse before, during,

and after childbirth (Di Gennaro et al., 2022). Rash, fever, chills,

headache, adenopathy, and myalgia have been the ailments and

indicators of MPX disease (Sale et al., 2006). Occasionally, in the

first stages of MPX disease, the rash has present primarily in the

genitalia and perineal regions. The incubation period for

Monkeypox may be from around 5 to 21 days, although it is

most often between 6 and 13 days. After 14–21 days, in most

cases, patients recover completely from the disease on their

immunity (Kumar et al., 2022; Pal et al., 2017). In Figure 5, the

transmission pathway of MPX is graphically displayed.
3 Computational method

3.1 Preparation of Ligand and
geometry optimization

Curcumin is a natural flavonoid polyphenol class compound,

which is the primary and bioactive component of turmeric. Around

8000 different flavonoid compounds have been discovered, making

flavonoids the most abundant family of phenolic chemicals. In

addition to this, they are considered nutritional supplements that

improve health and guard against infection (Zeghbib et al., 2022).

Numerous studies demonstrate that curcumin reflects a variety of

biological actions, suggesting that they may have preventive benefits

against a broad range of diseases (Table 1). In this investigation,

more than 50 compounds were taken from the PubChem database

(https://pubchem.ncbi.nlm.nih.gov/) (50 derivatives displayed in

Supplementary Table 1), and the canonical SMILES of the

exploration molecules were also acquired from the PubChem

database. The 2D structures of the molecules were obtained by

importing the canonical SMILES into the ChemBioOffice program.

The Molecular optimization of 3D structure of molecules were

carried out with the assistance of a method known as density

functional theory (DFT) then optimized geometrically, and

energy was minimized by employing B3LYP and the functional
TABLE 1 Experimental and clinical data of antiviral activities against viral strains reported in different research investigations (throughout 2018-2022).

No Virus species Antiviral Activity References

01 SARS CoV-2 Inhibiting the Endosomal acidification (Rattis et al., 2021)

02 Dengue virus Entry inhibitor (Balasubramanian et al., 2019)

03 Influenza A virus Replication inhibitor (Dai et al., 2018)

04 Herpes simplex virus Gene expression inhibition (van de Sand et al., 2021)

05 Human immunodeficiency virus Viral protein degradation/Protease inhibitor (Butnariu et al., 2022)

06 Zika virus Entry inhibitor (Pacho et al., 2021)
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unit DFT procedure of DMoL3 code from material studio 08

(Delley, 1995; Delley, 2010; Ramos, 2020). The HOMO-LUMO

expression was then calculated using the optimized structures, and

the optimized molecules were saved in PDB format for further

work. The optimized chemical structures of curcumin derivatives

are given in Figure 2.
3.2 ADMET profile prediction, Lipinski rule,
and drug-likeness

The advancement of computer technology has enabled

scientists to create innovative drug targets, which has cut down

on the number of experiments that need to be conducted while

simultaneously raising the success rate; in order to facilitate

preliminary evaluation during drug discovery and development,

ADMET pharmacokinetic features and drug-likeness play a major
Frontiers in Cellular and Infection Microbiology 06
role. The ADMET (Absorption, Distribution, Metabolism,

Excretion, and Toxicity) characteristics might be obtained using

the in silico investigation (Kumer et al., 2021; Hassan et al., 2022).

In this current study, the pkCSM(https://biosig.lab.uq.edu.au/

pkcsm/) and SwissADME (http://www.swissadme.ch/index.php)

online tools are used to investigate the ADMET features, Lipinski

Rule and drug likeness (Mvondo et al., 2021).
3.3 Target structure selection and
preparation

The 3D crystal protein-structures Monkeypox virus (PDB ID

4QWO) and smallpox virus (PDB 3IGC) were downloaded from the

RCSB PDB database (https://www.rcsb.org/). To design any drug,

must be needed a receptor. So, the these mentioned target receptor

were taken since they are responsible for pathogenic effects. So, if this
FIGURE 2

Optimized structure of curcumin derivatives.
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FIGURE 4

Probable mechanism action of curcumin against the virus.
FIGURE 3

Chemical structure of curcumin and its derivatives.
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target protein is possible to inhibited, virus cannot replicate within

the host cell and as a result, they cannot produce pathogenicity.

Besides, to bind a drug in a specific side, like as lock and key model,

must be cleaned or fresh target receptor, excess molecules such as

water and other unwanted substances may interfere to bind specific

site. So, the water and other unwanted substances are cleaned before

docking. By utilizing the Discovery Studio v16.1.0.15350, and Pymol

version 2021 program, the 3D crystal structures of Monkeypox and

the small virus were cleaned up in preparation for molecular

docking. This included the removal of all ligands, non-protein

components, and molecules of water (Mahmud et al., 2021).

Before molecular docking, the energy of the targeted protein was

minimize using swisspdbviwer (Rangisetty et al., 2023).

The details of Monkeypox and the small virus are listed

in Figure 6.
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3.4 Molecular docking analysis

The docking studies modeling was executed to investigate the

molecular interaction strategy and acquire documentation on the

binding capacity and ligand effectiveness to inhibit the targeted

protein. In the current study, the molecular docking analysis was

evaluated with the cooperation of the PyRx AutoDock tools

application, version 4.2 (Akash et al., 2022a; Rizvi et al., 2013).

The automatic maximized function was used to compose the 3D

grid for ligand-receptor interaction during molecular docking. The

grid box parameters were generated as center (x = 12.0443, y =

18.445, z = 16.0634), dimension (x= 35.14496, y= 37.645, z=36.966)

for monkeypox virus, and center (x = 23.2575, y = -9.6147, z =

31.6074), dimension (x= 93.9023, y= 79.8679, z= 63.0821). When

the docking analysis was done, The BIOVIA Discovery Studio
FIGURE 5

Monkeypox transmission pathway.
FIGURE 6

Experimental three-dimensional protein structures information (Minasov et al., 2022; Perry et al., 2010).
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Visualizer v16.1.0.15350 was applied to generate docked residues,

ligand-protein complex structures, and 2D and 3D representations.
3.5 Molecular dynamics simulations

YASARA v21.6.17 software was used to run an MD simulation

to investigate the relationship between curcumin and 4QWO viral

protein. The simulation used the aided model construction with an

AMBER 14 force field (Zhang et al., 2020). By combining Cl- and

Na+ ions, the exchangeable Inter - molecular Potential3 (TIP3P)

water model was utilized. Each system operates with the most

effective gradient strategy for energy minimization (5000 cycles).

The simulations used a periodic boundary condition in which the

cell size was always ten times larger than the protein size. Using

particle-mesh Ewald (PME) methods, MD simulations and

electrostatic interactions were carried out, and also some

physiological settings were set at 298 K, 0.9% NaCl, and pH 7.4

(Krieger et al., 2006). A Berendsen thermostat was used to control

the simulation temperature while keeping the pressure fixed.

Finally, 100 ns of MD simulations were run under constant

pressure, and subsequent analysis was handled via the built-in

YASARA MACRO script (Krieger et al., 2002).
4 Results and discussion

4.1 Chemistry

The molecular structure of curcumin exposes the myriad of

functional groups (1, 7-bis [4-hydroxy-3- methoxyphenyl]-1,6-

heptadiene-3,5-dione, Figure 3). Rings A and B, both of which are

aromatic phenol rings, are joined to one another by different pairs

of -unsaturated carbonyl groups (Pullakhandam et al., 2009). These
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carbonyl groups are excellent Michael receivers and can react with

glutathione and other nucleophiles. Other essential structural

properties of curcumin are the two aryl methoxy groups located

in the ortho position, the hydroxyl component, and the connected

-diketone subunits. So, when different substitutes are added,

generating various analogs, they act as potential drug candidates

and provide better pharmacological efficacy (Nabavi et al., 2014).

The studied analogs of curcumin are given in Figure 3.
4.2 Lipinski rule, pharmacokinetics

The Lipinski rule, commonly referred to as the rule of five,

states that one of the most crucial aspects of a drug is how similar

it is to other substances. Molecular weight, hydrogen bond

donors and acceptors, Topological polar surface area, and

Consensus (Log Po/w) criteria for determining drug similarity

characteristics must be followed (Akash, 2022; Kumer et al.,

2022a). The molecular weight should be between 150 and 500 g/

mol, the number of hydrogen bond donors should be five or fewer,

and the number of hydrogen bond acceptors ought to be ten or

fewer. The value of TPSA must fall within the limit of 20 and 130,

whereas the acceptable range for Log Po/w must not be higher than

6.00 (Chen et al., 2020).

In our studied compounds, the molecular weight 294.34 –

492.49 Dalton, but two compounds (02 and 27) showed 502.51

Dalton as molecular weight, hydrogen bond donors (03-03) and

acceptors (03-08), Topological polar surface area (35.53 Å²-122.16

Å²), and Log Po/w (2.83 – 5.19), which all falls into standard ranges.

Lipinski was used to predict the drug likeness accurately, and all the

chosen compounds accept the Lipinski rule. So, it is noticed that

they might be used as drugs. The in-silico prediction of druglike

qualities has been compiled in Table 2, and it was accomplished

with the help of the web program SwissADME.
TABLE 2 Predicted data of Lipinski rule, pharmacokinetics.

Ligand
No

Molecular
Weight(g/mol)

Hydrogen bond
acceptor

Hydrogen
bond donor

Topological polar
surface area (Å²)

Consensus
Log Po/w

Lipinski rule

Result violation

01 368.38 06 02 93.06 3.03 Yes 00

02 502.51 08 03 122.52 4.16 Yes 01

04 338.35 05 02 83.83 3.00 Yes 00

05 308.33 04 02 74.60 2.83 Yes 00

06 294.34 03 00 35.53 3.86 Yes 00

10 338.35 05 03 86.99 3.18 Yes 00

24 487.50 07 03 122.16 3.61 Yes 00

27 502.51 08 03 122.52 4.16 Yes 01

31 492.47 08 02 93.06 5.05 Yes 00

36 472.49 07 03 113.29 4.05 Yes 00

42 492.47 08 02 93.06 5.19 Yes 00

47 492.47 08 02 93.06 4.99 Yes 00
fro
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4.3 Molecular docking analysis against
monkeypox and smallpox virus

Molecular docking investigation is the key, innovative drug

development strategy in the computational chemistry (structure-

based drug design), which sorts residual interactions between

targeting ligands and a protein’s receptor active site (Ferreira

et al., 2015). The docking value is calculated to determine the

degree to which ligand molecules bind with the active region of the

specific receptor. The greater the negative value of the binding

energy, the more strongly preferred the orientation will be, and the

more persistent the structure of the ligand-receptor complex is

formed (Cerqueira et al., 2015). To become a potential drug

candidate, the docking score might be greater than -6.0 kcal/mol

(Kumer et al., 2022a; Kumer et al., 2022c). So, the molecular

docking was performed against Monkeypox Virus (PDB ID

4QWO) targeted protein initially. When, the binding affinity was

achieved outstanding result against Monkeypox Virus (PDB ID

4QWO), then the Smallpox virus (PDB 3IGC) were also taken to

determine how much affinity present. In these current studies, the

binding affinities are generated from -7.7 kcal/mol to -8.9 kcal/mol

against Monkeypox virus (PDB ID 4QWO) and -7.3 kcal/mol to

-8.8 kcal/mol against smallpox virus (PDB ID 3IGC). The standard

Acyclovir displayed -6.4 kcal/mol and -6.5 kcal/mol. In both cases,

the binding energy is more remarkable than -6.00 kcal/mol, much

better than standard Acyclovir. Among all derivatives, the best

bonding affinity was reported -8.9 kcal/mol against Monkeypox

Virus (PDB ID 4QWO) in ligand 24, and -8.8 kcal/mol against

Smallpox virus (PDB 3IGC) in ligand 42. So, these reported natural

curcumin derivatives should be effective against monkeypox and

smallpox viruses.
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Noted that fifteen curcumin was taken from PubChem database

(Shown in Supplementary Table 1), and selected best twelve

compounds based on their binding affinities (Table 3).
4.4 Protein-ligand interaction analysis

The application known as BIOVIA discovery studio visualizer

v16.1.0.15350 was used to visualize the interaction and binding

between the ligands and the target proteins (Biovia, 2015). When

generating protein-ligand complexes, the discovery studio visualizer

was used to visualize various non-bonded interactions, such as

hydrogen bond interactions and hydrophobic bond interactions

with specific distances, as well as active amino acid residues, which

are shown in Figure 7. The visualization of intermolecular

interaction modes to estimate antiviral functions was further

investigated so that the mechanism of interactions between

bioactive substances and the enzyme substrates specific to each of

those medicines could be evaluated.

It has been determined that the significant sites in the instance of

monkeypox and smallpox virus constituted the active site pocket are

situated at ASN A-14, PHE A-17, ALA A – 34, ILE A – 35, VAL A –

31, ARG A -38, PRO A – 36, LYS A-13, GLU A – 18, HIS A-15, TYR

A-136. Besides, the two-dimensional visualizations of the most

effective active molecules, as determined by the number of hydrogen

bonds formed with the significant amino acids of the Monkeypox and

smallpox active sites, are shown in Figure 7A–C, correspondingly.

These findings imply that all these ligands might be explored as

a viable therapeutic strategy against Monkeypox and smallpox

viruses by decreasing viral multiplication and expression.

Therefore, the binding of ligands in the active site and their
TABLE 3 Summary of binding affinities against Monkeypox, and Smallpox virus.

Drug No PubChem CID
Monkeypox Virus (PDB ID 4QWO) Smallpox virus (PDB 3IGC)

Binding Affinity(kcal/mol) Binding Affinity(kcal/mol)

01 969516 -7.7 -7.3

02 44195235 -8.2 -8.1

04 146723 -8.1 -6.8

05 147439 -8.2 -7.7

06 830608 -8.1 -7.8

10 5324476 -8.1 -7.3

24 122515213 -8.9 -8.7

27 44195235 -8.2 -8.0

31 162394524 -8.5 -8.2

36 44452370 -8.2 -7.6

42 132993165 -8.8 -8.8

47 54597187 -8.4 -8.7

Standard (Acyclovir) 135398513 -6.4 -5.5
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durability are essential factors in determining the possible treatment

of Monkeypox and Smallpox viruses. Consequently, they have the

capability of monkeypox and smallpox viral agonists since they may

potentially attach to the pocket generated by the protein residues of

the virus and disrupt the virus’s functionality. The bonding residue

of active amino acid for best two complexes are given in

Supplementary Table 1.
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4.5 Chemical descriptors calculation

The highest occupied molecular orbitals (HOMOs) and the

lowest unoccupied molecular orbitals (LUMO) have a significant

role in biochemical reactions. The kinetic resilience, electrochemical

stability, chemical hardness, and softness of a drug molecule are all

correlated to the HOMO-LUMO energy gap exists between them.

The density functional theory was adopted to evaluate the chemical

potential, electronegativity, hardness, and softness of our

biomolecules (Table 4). The HOMO and LUMO frequencies are

used to derive these reactivity parameters. The HOMO and LUMO

frequencies are used to derive these reactivity parameters. Table 4

expresses the chemical reactivities of the 12 different curcumin

derivatives available in nature.

A larger energy gap suggests significant kinetic stability but low

electrochemical stability, while a relatively low energy difference

and enhanced softness imply that the molecules have a greater level

of polarity and chemical conductivity. Besides, the chemical

reactivity of molecules is reduced when the HOMO-LUMO

energy gap is large, indicating a lower electronic transition of the

electron, and is increased when the gap is small, representing a

higher atomic system and higher electrochemical stability, both of

which are closely relevant to bind with a targeted protein receptor.

The energy gap for organic or aromatic chemicals are typically

between 7.00 eV and 9.00 eV, which allows them to attach to any

protein efficiency (Kobir et al., 2022). Based on Table 4, it is

reported that all chemicals maintain the energy gap within the

acceptable number (7.00 eV to 9.00 eV). Furthermore, the chemical

potential (l), hardness (g), and softness (r), as well as the

electronegativity coefficients, might have been utilized to assess

therapeutic efficacy (Hoque et al., 2020; Kobir et al., 2022). Usually,

the hardness of the material is higher than its softness, and the two

properties are inversely proportional to one another. A lower

softness score indicates that the components have an outstanding

level of dissolving capacity (Kawsar et al., 2022). It is anticipated

that the hardness is approximately 3.5 to 4.5, whereas the softness is

within 0.24 for all curcumin derivatives. All of the chemical

potentials were discovered to be negative, evidence that any form

of chemical species or compounds may maintain a satisfactory level

of chemical stability and durability. It is clear from looking at

Table 4 that the potential chemical levels of all agonists range from

-4.93105 to -5.5725 (Kobir et al., 2022).
4.6 Frontier molecular orbitals (HOMO and
LUMO)

The HOMO and LUMO are remarkable promoters that can

manage the physiochemical properties of any chemical molecule,

hence deciding and regulating all of the chemical properties of that

substance. From this perspective, it predicts the chemical

characteristics of the subsequent curcumin analogs. As before,

oxygen atoms in these compounds make it difficult to determine

whether the aromatic chain or the heterocyclic ring dominates the

chemical characteristics without resorting to the HOMO and
B CA

FIGURE 7

Molecular docking pocket, hydrogen bonding, and binding
interaction. (A) Docking pocket, (B) Active side (Amino acid
residues), (C) Ionizibility.
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LUMO diagrams (Kobir et al., 2022). The discrepancy between

HOMO and LUMO is negligible, as seen in Figure 8. (The deep blue

and yellow of LUMO are the positive and negative ends of the

orbital node, and the green and red color of HOMO are the positive

and negative ends of the orbital node, similarly). It is remembered

that protein or targeted biomolecules are attached in the LUMO

region (Kumer et al., 2019; Kumer et al., 2022c).
4.7 Molecular dynamics simulations

The hit’s best pose from the virtual screening was chosen

compounds (42 and standard Acyclovir), and the YASARA

structure’s scenario mode was then set up using the default

option (Prasasty and Istyastono, 2020). Here, we ran 100ns of

MD simulations using the reference derivatives (Acyclovir). Protein

and ligand RMSDs of the Ca atoms were determined and shown in

(Figure 9) in a time-dependent manner.

The result is shown how proteins behave during an MD

simulation; as seen in the plot, compound 42 has shown high

fluctuation in the primary stage, but after near 74.3ns and 75.5ns,

Acyclovir is given the highest range of pick in RMSD, so ligand 42 is

a perfectly stable compound. For better results on how ligands 42

and Acyclovir influence the binding mode with Monkeypox protein

(PDB ID 4QWO). The two complexes’ structural changes were

evaluated by means of root mean square fluctuation (RMSF), the

radius of gyration, and the solvent-accessible surface area of the

protein-ligand complex (Figure 10).

Solvent can ruin a pocket if it penetrates the binding site.

Protein-ligand interactions must be tightly regulated. Figure 10A

represents compound 42 showed a high SASA value after close 7ns
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of simulation, it may not reduce the protein expansion. Figure 10B

demonstrates the radius of gyration value, compound 42 showed

more excellent value than Acyclovir, denoting loose packing of

protein structure, RMSF value, which depicts the flexibility of the

entire residue in the protein, is shown in Figure 10C. High

fluctuations were reached in some positions, including (13, 55, 59,

66, and 115 residues), which produced positive results. In Figure 11,

the hydrogen bond interaction between the protein and the ligand is

finally depicted.

Intermolecular hydrogen bonding shows that compound 42

and Acyclovir yield hydrogen bonds with the catalytic domain

residue in proteins. Protein folding and de-folding nature depend

on intermolecular hydrogen bonds. Acyclovir showed maximum

hydrogen bond contact rather than 42 compounds. Eventually,

all analyses from the MD simulations suggest that compound 42

is stable and performed a little conformational change of

the proteins.
4.8 ADME, and aquatic and non-aquatic
toxicity

The absorption, distribution, metabolism, excretion, and

toxicity of chemicals, abbreviated as ADMET, all contribute a

major function significantly to the discovery and development of

new drugs. Compounds are absorbed in the human small intestine,

move from one tissue to another , undergo chemical

biotransformation in the body, and are eliminated from the body

via excretion; and the level of toxicity of a compound is determined

by its toxicity. By using ADMET metrics, we were capable of

confirming that the most promising active components against
TABLE 4 Data of chemical descriptors calculation.

S/N I=- HOMO A=-LUMO Energy Gap
E(gap) =I-A (eV)

Chemical potential

(m) =
I + A
2

Hardness

(h) =
I − A
2

Softness

    (s) =
1
h

01 -9.8934 -0.9844 8.909 -5.4389 4.4545 0.2245

02 -9.886 -1.0205 8.8655 -5.45325 4.43275 0.2256

04 -9.7678 -0.9827 8.7851 -5.37525 4.39255 0.2277

05 -9.7719 -0.9936 8.7783 -5.38275 4.38915 0.2278

06 -8.8939 -0.9682 7.9257 -4.93105 3.96285 0.2523

10 -9.8924 -0.9944 8.898 -5.4434 4.449 0.2248

24 -8.8996 -0.9791 7.9205 -4.93935 3.96025 0.2525

27 -9.896 -0.9952 8.9008 -5.4456 4.4504 0.2247

31 -9.9115 -1.1298 8.7817 -5.52065 4.39085 0.2277

36 -9.0900 -0.9885 8.1015 -5.03925 4.05075 0.2469

42 -9.9041 -1.1225 8.7816 -5.5133 4.3908 0.2277

47 -9.9055 -1.2395 8.666 -5.5725 4.333 0.2308
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monkeypox and smallpox virus had the potential to become

marketable medications. The in silico prediction of ADMET

characteristics has been compiled in Table 5, and it was

accomplished with the help of the online program pkCSM.

If the absorption score is less than 30 percent, it indicates an

inadequate, poor absorption rate. The findings above suggest that

the human intestine can absorb all the chemicals effectively, most of

which absorb up to 90%. Water solubility (Log S) recommendations

for slightly and high solubility compounds vary from -4 to -6 and -2

to -4, correspondingly (Rout et al., 2022). Our invented molecules

reported that ligands (05, 06, and 31) are in -4 to - 6 ranges, and the
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rest ligands ranges fall with -4.0, which means ligands (05,

06, and 31) are slightly soluble, and the others ligands

(01,02,04,10,24,30,36,42, and 47) are highly soluble in the water

system. Moreover, it is believed that the volume of distribution

(VDss) is substantial better if the value is more than 0.45, and our

studies reported that most of the curcumin derivatives have a lower

volume of distribution (VDss) than the standard. It is also noticed

that none of the l igands can cross to the BBB. The

biotransformation of pharmaceutical drugs inside the body is

referred to as drug metabolism, a phrase often used. The

metabolism of drugs results in the formation of a number of

distinct enzymatic substrates, each of which contains its unique

set of physicochemical, pharmacokinetic, and pharmacological

characteristics. As a result, it is essential to consider how the

medicine will be metabolized and how it will react with other

medications. Drug interactions occur due to cytochrome P450

(CYP) inhibition, which is essential in drug metabolism. The

substances 04, 05, 06, and 10 were shown to be inhibitory of the

enzymes CYP1A2, while all of the agonists were confirmed to

effectively substrate with CYP450 2C9. The clearance parameter

characterizes the linear connection between the clearance rate and

the plasma concentration of medication. A low clearance constant

thus suggests enhanced retention of medicines inside the body long

time. The cumulative clearance rate of all chemicals demonstrates

that the medicine can excrete from the body after an extended

period. At the same time, only ligands 42 and 47 have negative

scores, which means these two have poor excretion rate constants.

Finally, carcinogenicity is applied to characterize the toxicity of

AMES; hence, it is essential to ensure that the expected chemicals

are not carcinogenic, skin sensitization, or hepatotoxicity. Our

projection is predicted that only ligands 04 and 05 may be

carcinogenic, and ligands 04 and 10 may be the hepatotoxic

effect, while the rest ligands are free from skin sensitization

effects. So, the overall finding of ADMET is favorable and

suggests them as new drug candidates.
5 Conclusions

Fifty different natural curcumin derivatives were used in these

computational investigations. In the meantime, twelve compounds
FIGURE 8

HOMO and LUMO diagram of curcumin and its derivatives.
FIGURE 9

The RMSD of Ca atoms over time for proteins and ligands. Here, red
and violet lines denote compound 42 and Acyclovir complexes,
respectively.
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were chosen based on having the highest possible docking score.

After that, a multitude of computational studies were carried out,

including molecular docking, dynamic modeling, ADMET, and

DFT.The molecular docking investigation corroborated these

findings, showing promise antiviral effectiveness against

monkeypox and smallpox virus. The finding docking score is about

-7.7 kcal/mol to -8.9 kcal/mol against monkeypox virus (PDB ID

4QWO) and -7.3 kcal/mol to -8.8 kcal/mol against smallpox virus

(PDB ID 3IGC). During molecular docking, different types of bond

and active amino acid residues were formed like as ASN A-14, PHE

A-17, ALA A – 34, ILE A – 35, VAL A – 31, ARGA -38, PRO A – 36,

LYS A-13, GLU A – 18, HIS A-15, TYR A-136. After that, DFT

calculation, the curcumin derivatives have shown the hardness is

approximately 3.5 to 4.5, whereas the softness is within 0.24 for all
FIGURE 10

The structural behavior change of protein by means of (A) solvent accessible surface area (SASA), (B) radius of gyration, and (C) root means square
fluctuations (RMSF) analysis. Here, the red line indicates Acyclovir, and the violet line indicates compound 42 complexes, respectively.
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FIGURE 11

The number of hydrogen bonds created overall between protein-
ligand complexes via MD simulations. Here, the red line indicates
Acyclovir complexes, and violet lines indicate compound 42
complexes, respectively.
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curcumin derivatives. So, it is suggested that these derivatives may

easily decompose or breakdown within physiological system. Then,

the molecular dynamic simulations were performed. The MDs

significantly and emphatically corroborates this observation over

100 ns, which confirms the binding stability of the docked

complexes in the trajectory analysis. It suggests that the protein-

ligand complexes maintain the strongest stability inside the biological

system. In accordance with this, the pharmacological features of these

chemicals suggested that the majority of the developed molecules

demonstrated enhanced pharmacokinetic parameters, conserved all

drug-likeness rules, and increased pharmacological activities. Based

on their pharmacokinetic and biological profiles, reported curcumin

derivatives were shown to have the most promising use in treating

Monkeypox and smallpox viral infections. So, these mentioned

derivatives might be further suggested for experimental

animal model.
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TABLE 5 Summary of in silico ADMET prediction.

S/
N

Absorption Distribution Metabolism Excretion Toxicity

Water
solubility
Log S

Caco-2
Permeability

x 10-6

Human
Intestinal
Absorption

(%)

VDss
(human)

BBB
Permeability

CYP450 1A2
Inhibitor

CYP450
2C9

Substrate

Total
Clearance
(ml/min/kg)

Renal OCT2
substrate

AMES
toxicity Skin

Sensitization
Hepatotoxicity

01 -3.952 0.617 88.035 -0.152 No No Yes 0.117 No No No No

02 -3.22 0.66 97.702 -0.445 No No Yes 0.112 No No No No

04 -3.967 0.955 92.354 -0.112 No Yes Yes 0.099 No Yes No Yes

05 -4.48 1.02 90.805 -0.247 No Yes Yes 0.041 No Yes No No

06 -5.346 1.64 95.334 0.015 No Yes Yes 0.329 No No No No

10 -3.895 0.894 89.952 0.057 No Yes Yes 0.179 No No No Yes

24 -3.8 0.5 82.557 -0.355 No No Yes 0.069 No No No No

27 -3.22 0.66 97.702 -0.445 No No Yes 0.112 No No No No

31 -4.598 0.497 96.984 -0.639 No No Yes 0.012 No No No No

36 -3.543 0.535 95.212 -0.587 No No Yes 0.08 No No No No

42 -3.428 0.72 98.664 -0.608 No No Yes -0.246 No No No No

47 -3.301 0.754 100 -0.652 No No Yes -0.243 No No No No
f
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