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Abstract
Accurate measurements of available water resources play a key role in achieving a sustainable environment of a society. 
Precise river flow estimation is an essential task for optimal use of hydropower generation, flood forecasting, and best utili-
zation of water resources in river engineering. The current paper presents the development and verification of the prediction 
abilities of new hybrid extreme learning machine (ELM)-based models coupling with metaheuristic methods, e.g., Particle 
swarm optimization (PSO), Mayfly optimization algorithm (MOA), Grey wolf optimization (GWO), and simulated anneal-
ing (SA) for monthly streamflow prediction. Prediction precision of standalone ELM model was compared with two-phase 
optimized state-of-the-arts models, e.g., ELM–PSO, ELM–MOA, ELM–PSOGWO, and ELM–SAMOA, respectively. Hydro-
meteorological data acquired from Gorai and Padma Hardinge Bridge stations at Padma River Basin, northwestern Bangla-
desh, were utilized as inputs in this study to employ models in the form of seven different input combinations. The model’s 
performances are appraised using Nash–Sutcliffe efficiency, root-mean-square-error (RMSE), mean absolute error, mean 
absolute percentage error and determination coefficient. The tested results of both stations reported that the ELM–SAMOA 
and ELM–PSOGWO models offered the best accuracy in the prediction of monthly streamflows compared to ELM–PSO, 
ELM–MOA, and ELM models. Based on the local data, the ELM–SAMOA reduced the RMSE of ELM, ELM–PSO, ELM–
MOA, and ELM–PSOGWO by 31%, 27%, 19%, and 14% for the Gorai station and by 29%, 27%, 19%, and 14% for Padma 
Hardinge bridge station, in the testing stage, respectively. In contrast, based on external data, ELM–PSOGWO improves in 
RMSE of ELM, ELM–PSO, ELM–MOA, and ELM–SAMOA by 20%, 5.1%, 6.2%, and 4.6% in the testing stage, respectively. 
The results confirmed the superiority of two-phase optimized ELM–SAMOA and ELM–PSOGWO models over a single 
ELM model. The overall results suggest that ELM–SAMOA and ELM–PSOGWO models can be successfully applied in 
modeling monthly streamflow prediction with either local or external hydro-meteorological datasets.

Keywords Streamflow prediction · Extreme learning machine · Particle swarm optimization · Grey wolf optimization · 
Simulated annealing

Introduction

Accurate and reliable streamflow prediction is of great 
importance in designing, developing, and proper operation 
of water resources management, hydropower generation, 
and ecohydrological studies and plans. In this sense, vari-
ous and vigorous modeling strategies have been introduced 

and implemented in the literature, such as numerical-based 
(Suiju and Minquan 2015), autoregressive moving average 
models (Liu et al. 2015), and conceptual models (Boulariah 
et al. 2019).

During the last decades, with the advent of high-speed 
processors and the development of novel Soft Computing 
(SC) techniques, a new era of data mining methods, e.g., 
Machine Learning (ML) models for modeling and simulat-
ing different phenomena in hydrology, has been emerged 
(Najafzadeh and Niazmardi 2021; Najafzadeh et al. 2021; 
Zounemat-Kermani et al. 2020a, b; Najafzadeh et al. 2021; 
Barzkar et al. 2022; Granata et al. 2022; Ikram et al. 2023; 
Mostafa et al. 2023). Accordingly, streamflow prediction 

 * Hong-Liang Dai 
 hldai618@gzhu.edu.cn

 * Ozgur Kisi 
 ozgur.kisi@th-luebeck.de

Extended author information available on the last page of the article

http://crossmark.crossref.org/dialog/?doi=10.1007/s13201-023-01913-6&domain=pdf
http://orcid.org/0000-0001-7847-5872


 Applied Water Science (2023) 13:110

1 3

110 Page 2 of 24

using SC techniques and data-driven models has been one 
of the main targets for hydrologists and researchers in recent 
years (Adnan et al. 2020a). These models use ML techniques 
to map the complicated relationship between the predic-
tors (like precipitation and/or previous observed discharge 
values) and the response variable (short-term or long-term 
streamflow) (Adnan et al. 2020b). Poul et al. (2019) chal-
lenged four different types of data-driven models, including 
Multi-Linear Regression (MLR), Artificial Neural Network 
(ANN), K-nearest neighbors, and Adaptive Neuro-Fuzzy 
Inference System (ANFIS) in monthly streamflow predic-
tion based upon six input combinations. In general, the 
ANFIS and ANN models were slightly superior to the other 
methods. Fu et al. (2020) applied deep learning ML models 
for the prediction of daily streamflow in a tropical environ-
ment. They compared the results of the Long Short-Term 
Memory (LSTM), as the deep network, to the conventional 
backpropagation ANN. The findings of the study revealed 
the obvious advantages of the LSTM over the classic ANN.

It should be noted that among the successful applica-
tions of various types of ML models, the Extreme Learning 
Machine (ELM), which presents a simple structure yet fast 
learning speed single-layer ANN, has proven its accuracy 
and efficiency in simulating complex and nonlinear hydro-
logical problems (Rezaie-Balf and Kisi 2018; Yaseen et al. 
2020; Saberi-Movahed et al. 2020; Ikram et al. 2022).

In a study, Niu et al. (2020) utilized the ELM for the 
annual prediction of streamflow using data series of three 
hydropower reservoirs in China. It was shown that the devel-
oped ELM model outperformed several traditional methods. 
According to the previous researches, the majority of ML 
applications for streamflow prediction confirm the proper 
potential and accuracy of ML in comparison with the con-
ventional statistical or conceptual models in addressing this 
hydrological issue (Riahi-Madvar et al. 2019). Subsequently, 
new ideas for upgrading and enriching ML models, espe-
cially using integrative (hybrid) ML-heuristic methods, 
have been being developed and tested recently (Fadaee et al. 
2020).

In the field of hydrology, several researchers have 
reported the successful application of heuristic algorithms 
embedded with ML models. Sudheer et al. (2014) devel-
oped a hybrid (integrative) ML model using Support Vector 
Regression (SVR) and Particle Swarm Optimization (PSO) 
for forecasting monthly streamflow in the USA. Analyzing 
the forecasted results indicated that the SVR–PSO model 
gave a better performance than the ANN and statistical 
model, namely ARMA (autoregressive moving average 
model). Malik et al. (2020) employed several integrative 
models based on the SVR and six heuristic algorithms in 
predicting daily streamflow in India. Comparing the results 
showed that SVR–HHO (SVR and Harris Hawks Optimi-
zation algorithm) during calibration/validation periods had 

superior performance to the other developed integrative 
models. Jiang et al. (2020) developed an integrative (hybrid) 
ELM–PSO model for monthly streamflow forecasting. The 
findings of the study demonstrated the superiority of the 
ELM–PSO over standard ELM, SVR, and ANFIS models.

Considering conventional heuristic algorithms, the 
PSO and Simulated Annealing (SA) are among the most 
widely used optimization algorithms in hydrology, and 
numerous applications have been applied using these 
algorithms (Bazargan and Norouzi 2018; Hosseini et al. 
2020). Recently, some new heuristic algorithms have been 
introduced and claimed with high capability in optimiz-
ing sophisticated problems, such as Mayfly Optimization 
Algorithm (MOA) (Zervoudakis and Tsafarakis 2020), 
Grey Wolf Optimization (GWO) (Mirjalili et al. 2014), and 
hybrid PSOGWO (Şenel et al. 2019). However, there has 
not been a report on the comprehensive assessment of the 
capabilities of these algorithms in dealing with hydrological 
issues compared to the conventional ones (here, the PSO and 
SA). In this regard, this study utilizes the extreme learning 
machine (ELM) as the main model embedded with conven-
tional (PSO and SA) and novel (GWO, hybrid PSOGWO, 
MOA, and hybrid SAMOA) as predictive models to realize 
streamflow in subhumid region of Bangladesh.

The main contribution and innovation of this study lie in 
(1) developing four integrative ELM models and analyzing 
their performance on simulation of a complicated engineer-
ing problem, namely streamflow prediction, and (2) appraisal 
of all developed models based on seven different input com-
binations scenarios including lagged streamflow values, 
precipitation, and temperature. To have a clear comprehen-
sion, these new approaches include simple (ELM–MOA and 
ELM–GWO) and hybrid integrative (ELM–PSOGWO and 
ELM–SAMOA) ML models. Continuously, the results of 
the new mention models will be compared with the standard 
ELM and integrative ELM–PSO and ELM–SA to achieve 
an inclusive perception for their usefulness and accuracy.

Case study

For the current research, the Padma river, a large river basin, 
is the major downstream stretch of the Ganges River, which 
runs more than 2561  km2 derived from the Gangotri glacier 
of the Himalayan system which was chosen as a case study. 
This river basin is regarded as one of the highly populated 
residents on the globe. The Padma River acts a crucial role 
in the socio-economic conditions of the country. The stretch 
of the Padma river flows for 108  km2 before the confluence 
with Meghna River at Chandpur point. Gorai River is one 
of the tributaries of the Padma River. The accumulated dis-
charge of the Padma and Brahmaputra River is 30,000  m3/
s−1, and sometimes, it reaches 75,000  m3/s−1 during the 
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bank full phase (Dewan et al. 2017). Geographically, the 
study basin is positioned between 23° 48′ and 25° 18′ north 
latitudes and 88° 27′ and 89° 48′ east longitudes. Annually, 
900 metric tons of sediment load passes through the river, 
out of which, 60% of sediment is either silt or clay, while 
the rest is bed load (Islam 2016). Islam et al. (2021) stated 
the floodplain of the river as a ‘wandering’ form. Padma 
River basin is vital for sustaining livelihood through agri-
cultural activities, navigation, nourishment, aquaculture, and 
environmental sustainability perspective. For instance, the 
freshwater distributed by this basin is truly imperative to 
sustaining a riparian ecosystem of the south-western region 
of Bangladesh, mostly in the world’s largest mangrove for-
est, the Sundarbans, by holding the salinity anterior down-
stream side into the Bay of Bengal (BOB) (Mirza 2004). 
Apart from this, this basin reports extreme variability of flow 
regime (water and sediment), triggering from monsoonal 
precipitation and the melting of the Himalayan ice, which 
causes frequent large floods of high magnitude in Bang-
ladesh. Further, bank erosion and river shifting are com-
mon phenomena in this basin, which led to environmental 
degradation and population migration. This is anticipated 
to enhance in forthcoming years (CDMP 2014) since ele-
vated precipitation triggered by climate change will raise 
the runoff into the Ganges–Brahmaputra–Meghna River 
systems (Moors et al. 2011). Four seasons, such as summer 

(March–May), monsoon (June–September), post-monsoon 
(October–November), and winter (December–February), 
have predominated in this region with significant tempera-
ture and precipitation differences (Akhter et al. 2019). Run-
off in the Padma river was mostly distributed in June–Octo-
ber, accounting for 72.5% of the accumulated annual runoff. 
The dry season is from December to April, accounting for 
l2.1% of the accumulated annual runoff. From December 
to February, it was the lowest, accounting for solely 5.87% 
of the annual total (Islam et al. 2016). Runoff in this river 
basin mostly originates from heavy rainfall. Therefore, in 
the current study, two hydro-meteorological sites on the 
Padma River basin, e.g., Padma Hardinge bridge and Gorai 
stations were employed for predicting monthly streamflow 
(see Fig. 1). The data adopted in this work were collected 
from Bangladesh Water Development Board (BWDB).

Methods

Extreme learning machine (ELM)

ELM is a form of the single-layer feed-forwarding network 
(FFN) that aims to intertwine the traditional neural networks 
and biological learning mechanism. Due to its special struc-
ture based on the random hidden neurons mechanism—in 

Fig. 1  Study area
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which hidden neurons do not need to be tuned similar to the 
conventional ANNs—it can provide precise modeling results 
having a lower computational cost. Moreover, ELM offers 
other advantages such as ease of implementation, better gen-
eralization ability, and minimal human intervention. As a 
result of the mentioned arguments and reasons, ELM has 
been chosen as the core machine learning tools in this study. 
The main mathematical methodology of ELM is described 
in the following.

As can be seen in Fig. 2, a single hidden layer resides in 
the ELM network. The input weights between the input and 
hidden layers are only initialized once and do not need to 
be conditioned (Zhu et al. 2019; Prasad et al. 2018; Yadav 
et al. 2017; Zhang et al. 2020). Iterative testing is used to 
prepare the outcome weights between the un-seen and out-
come layers. The training and process time of an ELM is 
much quicker than that of the comparable single-layer FFN 
since the input weights remain in their initial state and only 
the output weights are trained. Huang et al. (2006) suggested 
the ELM, a basic three-layer structure algorithm, to address 
the shortcomings of conventional soft computing techniques. 
The input weight and the bias values are generated at random 
in the ELM structure. ELM uses a basic simplified inverse 
operation of the hidden layer output matrix to measure the 
output weight matrix between hidden and output layers ana-
lytically (Fan et al. 2018; Zhu et al. 2020). The ELM is a 
promising time series prediction method because of its inter-
polation and uniform approximation capabilities. ELM can 
be represented mathematically as a function with L hidden 
nodes and N training data, as seen in Huang et al., (2006):

(1)

L∑

i=1

wig
(
Win(i), bi, xj

)
=

L∑

i=1

wig
(
Win(i), xj + bi

)
= Yj, j = 1,… ,N.

where xj represent the input vector, Win(i) denotes the weight 
vtor of the input, Win(i).xj corresponds the inner product of 
Win(i) and xj , bi denotes the bias of the ith hidden node, g(∙) 
denotes the sigmoid function, wi refers to the weight matrix 
of the output, and yj is the modeled output of the ELM. At 
the start of the ELM algorithm, the input weight and bias 
are selected at random.

Particle swarm optimization (PSO)

The PSO algorithm is a type of optimization algorithm to 
simulate the behavior of swarm intelligence (Qi et al. 2018; 
Xi et al. 2021). It is an efficient globally optimized search 
algorithm through the system intelligence guidelines that 
comes from the collaboration and rivalry between parts of 
the group. In the research space of N-dimensional, it can 
specifically be represented randomly as a particle group (the 
quantity is m) and each implemented a special structure of 
ANN (Chen et al. 2020; Wang et al. 2018). The primary 
architectural theory of PSO is closely related to two stud-
ies: the first is the evolutionary algorithm; the PSO swarm 
mode where the mostly optimized objective solution space 
can be searched simultaneously. The other is synthetic life 
and in particular the examination of artificial systems with 
life-characteristics. The efficiency of the particles location 
was measured by the statistical error in the training phase. 
More specifically, at generating the lowest values of MSE, 
the ANN structure is defined by a particle with a superla-
tive performance (Elsheikh and Abd Elaziz 2019). The next 
swarm was produced based on updating the particles’ loca-
tions, which takes into account the best position of swarm 
and particle. Particle swarms gradually shifted to the optimal 
location up to the maximum number of iterations. The veloc-
ity and direction of the particle can be modified as follows:

Fig. 2  ELM structure
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where Vk+1
i

 and Vk
i
 denote the particle ( i ) velocity at iteration 

( k ) and ( k + 1 ), rand () represents a random value between 0 
and 1. c1, c2 are called a learning or acceleration factor and 
equaled 2 for both in this work. � refers to the coefficient of 
inertia. P and G represent the best place for a particle and a 
swarm, respectively. In the present work, number of itera-
tions, population, and runs were 100, 25 and 7, respectively. 
� ranged from 0.2 to 0.9.

Mayfly optimization algorithm (MOA)

The suggested process of optimization considers as a PSO 
adjustment and the combination of main PSO, genetic and 
firefly algorithms benefits (Gao et al. 2020; Zervoudakis and 
Tsafarakis 2020). In reality, it offers for researchers who seek 
to advance the efficiency of the PSO algorithm with certain 
techniques and local search, a powerful hybrid algorithm, 
dependent upon the mayflies’ actions, as PSO has proved that 
modifications are required to ensure optimum performance 
in high-dimensional areas. The algorithm functions like this. 
Initially, the random generation of two groups of mayflies is 
male and female, respectively (Mansouri et al. 2019). The indi-
vidual fly can be put on a random basis as a d-dimensional 
vector solution x = (x1,…,xd) in problem space, and its output 
is assessed on the previous definition of objective function 
f (x). The velocity of the mayfly v = (v1,…,vd) is known as 
the shift of its path, and each mayfly’s flying path is a com-
plex relationship between individual and social experience. 
In specific, they will change their direction to their best (Pbest) 
location and the best position achieved by any swarm flying 
(Gbest) (Haddad et al. 2006). In Swarms, male’s mayflies will 
continue to investigate or manipulate during iterations. The 
speed will be modified to their present fitness data and histori-
cal optimal values of fitness (Chen and Shi 2019; Mansouri 
et al. 2019; Zhou et al. 2018). The females will update their 
speeds in a particular way. In biological terms, the female only 
live with wings in one day to at most seven days, so the female 
mayflies need to search the male mayflies to intermarriage 
and spread. They will then update their speeds on the basis of 
their masculine flies. The top best male and female mayflies 
are regarded as the first mate and the second best female/male 
mayflies as the second mates and so on. In the present study, 
the parameters used for this algorithm are presented in Table 1.

Simulated annealing algorithm (SA)

The SA is an algorithm that belongs to meta-heuristic methods 
and is known also as Monte Carlo Annealing (Shao and Zuo 

(2)
Vk+1
i

= � × Vk
i
+ c1 × rand() ×

(
Pk
i
− Xk

i

)
+ c2 × rand() ×

(
Gk

i
− Xk

i

)

(3)Xk+1
i

= Xk
i
+ Vk+1

i

2020; Tufano et al. 2020; Turhan and Bilgen 2020). The SA 
algorithm is a physical annealing method based on simulation 
that has successfully extended to multiple dynamic problem 
optimization. The concept behind the SA stems from thermo-
dynamics and illustrates how to mirror the solidifying mecha-
nism of the fluid into a crystalline solid (Abdel-Basset et al. 
2021; Redi et al. 2020; Silva et al. 2020; Tang et al. 2020). 
Annealing is a physical mechanism utilized to tend to harden 
metals beginning at maximum temperature and cool off slowly. 
At first, SA parameters including the initial temperature T0, 
final temperature Tfinal and cooling rate are initialized. The 
original temperature is the maximum and will be gradually 
refreshed using the rate of cooling before the end tempera-
ture is reached (Ben Messaoud 2020; Meng et al. 2020). A 
sharp decline in temperature causes the molecules to select the 
right location, normally not the best possible case, therefore 
quench the object. The algorithm starts with a randomly cre-
ated solution. The approach is based on progressive improve-
ment of the present solution. During iterations process, a new 
neighboring solution for the current solution is chosen. If the 
latest neighboring solution is stronger, the existing solution is 
modified. In addition, when the adjacent solution is stronger, 
the optimal solution is refreshed. When the end temperature 
is hit, the model stops (Liu et al. 2020; Zhao et al. 2020). For 
each iteration (), the actual temperature T is modified by:

(4)T = T ∗ 𝜏, 0 < 𝜏 < 1

Table 1  Parameters setting of each optimization algorithms

PSO Cognitive component ( c
1
) 2

Social component ( c
2
) 2

inertia weight 0.2–0.9
MOA positive attraction constants ( a

1
) 3

positive attraction constants ( a
2
) 3.5

Visibility coefficient ( �) 0.1
gravitational coefficient ( g) 0.98
Initial nuptial dance coefficient d

0
3

Initial random walk coefficient fl
0

3
Random value crossover rof 0.95

SA Initial temperature ( T
0
) 100

Final temperature ( Tf ) 0.01
Cooling rate � 0.7

GWO a Decreased 
from 2 
to 0

PSOGWO As in both PSO and GWO
SAMOA As in both SA and MOA
All algorithms Population 25

Number of iterations 100
Number of runs for each Algorithm 7
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Boltzmann distribution gives the probability according to 
mathematical thermodynamics that a molecule is at a certain 
energy degree as follows:

where �i is the energy at the state ( i ), k represents the con-
stant of Boltzmann, T equals the thermodynamic tempera-
ture and m denotes the overall states number. In this study, 
the initial and final temperatures were 100 and 0.01, respec-
tively, and the rate of cooling was 0.7 (Table 1).

Grey wolf optimizer (GWO)

GWO is an advanced successful introduced swarm intel-
ligence algorithm suggested by Mirjalili et al. (2014) in last 
decade. The kind of algorithms is based on the imitation 
of the social order and hunting activities of the Grey Wolf 
Herd. GW is purely hierarchical social species comprising 
∝ , β, δ, and � . In this respect, ∝ is the leader who distrib-
utes several assignments to individuals at various levels to 
achieve global optimization. Due to its simple structure, 
insignificant parameter change required and high accuracy, 
the GWO algorithm has always been used for functional 
optimization (Dehghani et al. 2019; Himanshu et al. 2020; 
Wang et al. 2018). The location of the ith wolf is defined 
as  Xi =  XI

1,  XI
2…,  XI

d. XI
d stands for the position of the ith 

wolf is d-dimensional space, for a population containing N 
grey wolves (X = X1, X2,…, XN). The specific role of hunting 
is as follows:

where A and C stand for the coefficient vectors, t is number 
of iterations, X(t) is the position vector of GW, Xi (t) is target 
position vector of the GW, D corresponds to the distance 
between the prey and the grey wolf.

Defining the coefficient vector as follows:

where r1 and r2 correspond to the random vectors with val-
ues (0, 1) and a represents the iteration factor. In this study, 
the population, number of iterations, and number of runs for 
all algorithms were 25, 100, and 7, respectively, as demon-
strated in Table 1. In addition, a decreased from 2 to 0. GW 

(5)P
�
�i

�
=

exp−�i∕kT
∑m

j=1
exp−�j∕kT

(6)D = ||C ∗ Xi(t) − X(t)||

(7)Xi(t + 1) = X(t) − A ∗ D

(8)A = 2 ∗ a ∗ r1 − a

(9)C = 2 ∗ r2

(10)a = 2 − i ∗
(

2

Maximum iteration

)

has strong food quest ability. ∝ is the boss who will serve 
in all activities and sometimes β and δ can participate. β 
and δ can also provide ∝ with successful goal information 
in the GWO as an ideal solution (Mohammadi et al. 2020; 
Tikhamarine et al. 2020, 2019; Yu and Lu 2018). Therefore, 
α, β, and δ are the three ideal alternatives in fact and their 
adjusted positions:

where Xα, Xβ, and Xδ correspond to the current positions of 
the three optimal solutions α, β, and δ, respectively; X(t) 
stands for the target position; Dα, Dβ, and Dδ denote the 
distances from the prey to the three solutions, respectively; 
X(t + 1) is the position vector with updated searching factor; 
C and A represent the random vectors.

Hybrid PSO–GWO algorithm

Without modifying the overall operation of PSO and GWO 
algorithms, our hybrid PSO–GWO algorithm has been built. 
In nearly all real-world issues, the PSO can produce good 
results. Nevertheless, the PSO algorithm has to be reduced 
to minimal in the local solution. The GWO algorithm in 
our approach suggested follows the PSO algorithm in order 
to minimize the risk of slipping through a minimum local 
level (Şenel et al. 2019). The PSO algorithm leads those 
particles into the random spot, as discussed in PSO descrip-
tion section, with no potential to escape local minima. These 
directions can be risky for going away from the global mini-
mum. The GWO algorithm’s scanning ability can be used to 
avoid these threats by directing those particles into locations 
which are partly enhanced by the GWO algorithm rather 
than randomly guided. The runtime therefore is expanded, 
since besides the PSO algorithm, the GWO algorithm is still 
used. The longer time will be considered tolerable, based 
on the optimization problem solved, when the results are 
effective and the additional time required is considered. The 

(11)D∝ = ||C1 ∗ X∝ (t) − X(t)||

(12)Dβ =
|||C2 ∗ Xβ(t) − X(t)

|||

(13)Dδ =
||C3 ∗ Xδ(t) − X(t)||

(14)X1 = X∝ − A1 ∗ D∝

(15)X2 = Xβ − A2 ∗ Dβ

(16)X3 = Xδ − A3 ∗ Dδ

(17)X(t + 1) =
X1 + X2 + X3

3
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improved success will accommodate extra time in the sec-
tor like leather, in which losses are much more important as 
long as the solution is accomplished in a proper time. The 
flowchart of this algorithm is presented in Fig. 3.

Proposed hybrid MOA–SA algorithm

For on-going optimization issues, the MOA algorithm was 
designed above. The new hybrid algorithm called MOA–SA 
is for fitness function problems of each particle in the cur-
rent population and selecting the best particle and swam. 
Our hybrid MOA–SA algorithm was created without altering 

the overall operation of MOA and SA algorithms. Each 
MOA solution vector shall be transformed, i.e., only 0 s and 
1 s and evaluated in binary form. The S-shaped transition 
mechanism is used for this conversion. The option of select-
ing a specific feature in a solution vector is given by this 
function. The initial temperature is the highest and will be 
steadily refreshed using the cooling rate to reach the final 
temperature, as discussed in the SA algorithm description. 
The algorithm begins with a solution generated at random. 
The method is focused on gradual changes to the existing 
approach. A new neighboring solution for the current solu-
tion is selected during the iteration process. The final steps 

Fig. 3  Flowchart of the PSO–GWO Algorithm
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are checking the iteration process and terminate the compu-
tational process and store the optimal solution. The flowchart 
for the new hybrid algorithm (MOA–SA) is shown in Fig. 4.

Application and results

The ability of two-phase optimized ELM models, 
ELM–PSOGWO and ELM–SAMOA, is investigated in 
monthly streamflow prediction. Various combinations of 
streamflow, precipitation and temperature data obtained 
from two stations, Pakistan, are used as model inputs. 
The outcomes acquired from the ELM–PSOGWO and 
ELM–SAMOA are compared with two single-phase opti-
mized models, ELM–PSO, ELM–MOA, and standalone 
ELM. The following criteria are utilized in assessment of 
the employed models:

(18)

RMSE ∶ Root Mean Square Error

=

√√√√ 1

N

N∑

i=1

[
(So)i − (Sc)i

]2

(19)

MAE ∶ Mean Absolute Error =
1

N

N∑

i=1

|
(
So

)
i
−
(
Sc

)
i
|

(20)

MAPE ∶ Mean Abs. Percentage Error

=
1

N

N∑

i=1

|(So)i − (Sc)i| ∗ 100

(Sc)i

Fig. 4  Flowchart of the MOA–SA Algorithm
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where Sc, So, So are calculated, observed and mean of the 
observed streamflows, respectively, and N is the quantity of 
the data. Several control parameter values were considered 
in model development phase, and the optimal ones were 
decided with respect to lowest square error (Najafzadeh and 
Niazmardi 2021; Najafzadeh et al. 2021). These values are 
listed in Table 1 for each algorithm. The table also shows 
the population and iteration numbers and the number of 
runs which are necessary to get more robust results from 
the meta-heuristic algorithms. Input combinations listed in 
Table 2 were decided taking into account the correlation 
analysis (autocorrelation and/or partial auto-correlation 
functions). As seen from Table 2, first three involve lagged 
streamflow values, in the inputs iv and v, precipitation data 
are imported and after temperature data are included in the 
input combinations.

Table  3 represents training and testing statistics 
of single-phase optimized, two-phase optimized and 
standalone ELM models in predicting streamflows 
of Padma Station. As it is clear from the table, two-
phase optimized models are superior to the other mod-
els, while the standalone model has the worst results 
in streamflow prediction. It is also clear that the two-
phase optimized ELM–SAMOA has the lowest RMSE, 
MAE and MAPE and the highest NSE and R2 in both 
training (RMSE = 3448   m3/s, MAE = 2282   m3/s, 
NSE = 0.928, R2 = 0.928, MAPE = 10.78%) and testing 
(RMSE = 4042   m3/s, MAE = 2413   m3/s, NSE = 0.896, 
R2 = 0.897, MAPE = 15.24%) stages; an increase in RMSE 
of ELM, ELM–PSO, ELM–MOA, ELM–PSOGWO is by 
31%, 27%, 19% and 14% applying the ELM-SAMOA in 
the test stage, respectively. All models’ outcomes reveal 
that importing precipitation information deteriorates the 
accuracy while lagged temperature inputs improve the 
efficiency of the single-phase optimized ELM–MOA and 

(21)

NSE:Nash − Sutcliffe efficiency

= 1 −
∑N

i=1
[

(So)i − (Sc)i
]2

∑N
i=1

[

(So)i − So
]2 ,−∞ < NSE ≤ 1

the two-phase optimized ELM–SAMOA models (com-
pare the inputs iii and iv/v). The RMSE and MAE of the 
ELM–SAMOA decrease from 4488 and 2419  m3/s to 4042 
and 2413  m3/s by 11% and 0.2%; the NSE and R2 increase 
from 0.872 and 0.878 to 0.896 and 0.897 by 3% and 2%.

Training and testing results of the ELM-based models 
in predicting streamflows of Gorai Station are compared in 
Table 4. Here, also the superiority of the two-phase opti-
mized ELM models over other models and the standalone 
model has the last rank in accuracy. The ELM-SAMOA 
with third input combination produced lower RMSE (413.1 
 m3/s), MAE (240.4  m3/s), MAPE (18.94%) and higher NSE 
(0.855) and R2 (0.857) than those of the best ELM with input 
iii (RMSE = 531.3  m3/s, MAE = 289.6  m3/s, NSE = 0.760, 
R2 = 0.762, MAPE = 27.29%), ELM–PSO with input vii 
(RMSE = 523.38  m3/s, MAE = 281.17  m3/s, NSE = 0.767, 
R2 = 0.788, MAPE = 27.15%), ELM–MOA with input iv 
(RMSE = 492.8   m3/s, MAE = 276.2   m3/s, NSE = 0.793, 
R2 = 0.810, MAPE = 23.68%) and ELM–PSOGWO 
with input iv (RMSE = 470.5   m3/s, MAE = 275.1   m3/s, 
NSE = 0.811, R2 = 0.819, MAPE = 23.17%) in the testing 
stage. By applying the two-phase optimized ELM–SAMOA, 
the RMSE was improved by 29%, 27%, 19% and 
14% compared to ELM, ELM–PSO, ELM–MOA and 
ELM–PSOGWO, respectively. On the contrary to Padma 
Station, here adding precipitation information into the 
inputs improves the accuracy of the ELM–MOA (RMSE 
from 521.5 to 482.8  m3/s, MAE from 281.17 to 276.2  m3/s, 
NSE from 0.767 to 0.793 and R2 from 0.788 to 0.810) and 
ELM–PSOGWO (RMSE from 600.6 to 470.5  m3/s, MAE 
from 324.7 to 275.1  m3/s, NSE from 0.693 to 0.811 and R2 
from 0.812 to 0.819). Importing temperature input slightly 
improves efficiency of ELM–PSO; from input combination 
iii to vii, the RMSE, MAE, NSE and R2 were improved by 
0.6%, 6.9%, 0.4% and 3% in the testing stage, respectively.

Figures 5 and 6 illustrate the time variation diagrams of 
the observed and predicted streamflows by the best ELM-
based models for the Padma and Gorai stations, respectively. 
From the figures, the two-phase optimized ELM-SAMOA 
model appears to be better simulate the streamflows com-
pared to other models while the standalone ELM cannot 
adequately catch the observed values in both stations. The 
scatter diagrams of the streamflow predictions are compared 
in Figs. 7 and 8 for two stations. From these graphs, it is 
also apparent that the ELM-SAMOA offers better accuracy 
with less scattered estimates compared to other alternatives. 
The implemented models are further compared on Taylor 
and violin diagrams in Figs. 9 and 10 for the Padma and 
Gorai stations. It is apparent from the Taylor graphs that 
the ELM–SAMOA has the closest standard deviation to 
observed one with the highest correlation and the lowest 
square error and it is followed by the other two-phase opti-
mized ELM–PSOGW, single-phase optimized ELM–MOA, 

Table 2  The input combinations used for model development

Input combinations Variables

(i) Qt-1
(ii) Qt-1,Qt-11
(iii) Qt-1,Qt-11,Qt-12
(iv) Qt-1,Qt-11,Qt-12,Pt10
(v) Qt-1,Qt-11,Qt-12,Pt10, Pt-11
(vi) Qt-1,Qt-11,Qt-12,Pt10, Pt-11,Tt-9
(vii) Qt-1,Qt-11,Qt-12,Pt10, Pt-11,Tt-9,Tt-10
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ELM–PSO and standard ELM models, respectively. It is 
clear from the violin diagrams that the distribution of the 
ELM–SAMOA predictions is closer to the observed one 
while the standard ELM model has the most different distri-
bution. All the graphs justify the testing statistics provided in 
Tables 3 and 4 that the ELM–SAMOA acted better than the 
other models in prediction of monthly streamflows.

Table 5 compares the single-phase, two-phase optimized 
and standalone ELM models with respect to t-test for both 

stations. In the table, the statistics were calculated accord-
ing to the significance level of 5% (two-tailed test). Higher 
t-statistics (t-stat) than the critical one shows that there is 
no significant difference in mean between the computed 
and observed data. The model having higher t-stat indicates 
better robustness. It is clearly seen from Table 5 that the 
two-phase optimized ELM–SAMOA has higher statistics 
compared to the other models in Padma and Gorai stations.

Table 3  The results of the single-phase, two-phase optimized and standalone ELM models in prediction streamflows of Padma Station

Bold values defines the best accuracy (meaning the slowest RMSE and MAE and highest NSE and R2)

Models Input Com-
binations

Training Testing

RMSE MAE NSE R2 MAPE RMSE MAE NSE R2 MAPE

ELM I 9559 6482 0.443 0.461 58.06 10,388 7105 0.313 0.336 71.04
II 5933 3753 0.785 0.786 29.34 6215 3816 0.754 0.758 28.56
III 4947 2834 0.851 0.851 18.26 5295 3032 0.822 0.823 19.75
IV 4979 3093 0.849 0.852 18.17 5427 3195 0.813 0.814 21.38
V 4805 3024 0.859 0.859 17.84 5647 3393 0.797 0.798 25.47
VI 4957 3029 0.850 0.850 18.49 5405 3131 0.814 0.816 24.59
VII 4549 2862 0.874 0.874 17.16 5402 3368 0.812 0.814 24.48

ELM-PSO I 8916 6232 0.515 0.516 54.18 9412 6379 0.436 0.439 60.25
II 5558 3620 0.812 0.813 23.59 5367 2952 0.817 0.823 22.37
III 4668 2760 0.867 0.867 17.48 5122 2885 0.833 0.836 19.08
IV 4738 2967 0.863 0.864 17.69 5390 3266 0.815 0.817 21.07
V 4339 2670 0.885 0.887 16.27 5549 3198 0.804 0.805 24.29
VI 4752 2874 0.862 0.862 17.16 5177 2987 0.829 0.834 23.97
VII 4158 2624 0.895 0.899 16.05 5208 3183 0.827 0.828 24.05

ELM-MOA I 8876 6291 0.520 0.520 53.89 9291 6628 0.450 0.460 53.18
II 5473 3379 0.817 0.817 23.14 5303 3233 0.821 0.821 21.56
III 4367 2566 0.884 0.885 16.25 4867 2823 0.849 0.851 18.49
IV 4357 2615 0.884 0.886 16.20 5106 2794 0.834 0.848 19.67
V 4139 2695 0.896 0.897 16.13 5474 3111 0.809 0.810 20.24
VI 4104 2577 0.897 0.899 16.02 4789 2733 0.854 0.855 18.05
VII 3874 2607 0.909 0.909 15.95 5011 2992 0.840 0.841 18.37

ELM-PSOGWO I 8825 6235 0.525 0.525 52.76 8860 6199 0.500 0.501 52.49
II 4963 2777 0.850 0.851 20.75 4855 3055 0.850 0.853 20.92
III 3918 2313 0.906 0.907 12.76 4622 2491 0.858 0.869 17.68
IV 4256 2708 0.890 0.891 14.68 4861 2777 0.850 0.861 17.85
V 3742 2341 0.915 0.915 13.80 5395 3198 0.815 0.816 20.08
VI 4031 2620 0.901 0.901 13.98 4719 2810 0.864 0.866 17.46
VII 3515 2320 0.925 0.925 13.50 4991 3061 0.841 0.847 19.72

ELM-SAMOA I 8740 6117 0.534 0.534 51.68 8837 6238 0.503 0.503 52.18
II 4953 3091 0.850 0.852 19.49 4622 2503 0.864 0.872 17.49
III 3997 2418 0.903 0.903 13.68 4488 2419 0.872 0.878 17.24
IV 4087 2542 0.898 0.898 14.51 4794 2960 0.854 0.857 18.28
V 3681 2286 0.917 0.918 12.24 5080 3023 0.836 0.837 19.37
VI 3929 2617 0.906 0.906 12.85 4484 2586 0.872 0.872 17.56
VII 3448 2282 0.928 0.928 10.78 4042 2413 0.896 0.897 15.24
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Two-phase optimized ELM models were also com-
pared with the single-phase optimized and standalone 
ELM models in estimating streamflows of Gorai Station 
(downstream) using data of Padma Station (upstream). 
Same input combinations were taken into account, and 
the model outcomes are listed in Table 6 with respect to 
RMSE, MAE, NSE, R2 and MAPE. In this application, 

also two-phase optimized ELM models perform superior 
to the single-phase optimized and standalone ELM mod-
els; however, the difference between the ELMSAMOA 
and ELM–PSO is marginal. The best two-phase optimized 
ELM–PSOGWO model with input ii has lower RMSE 
(511.9  m3/s) and higher NSE (0.777) than those of the best 
ELM with input iv (RMSE = 612.1  m3/s, NSE = 0.681), 
ELM–PSO with input v (RMSE = 538  m3/s, NSE = 0.753), 

Table 4  The results of the single-phase, two-phase optimized and standalone ELM models in prediction streamflows of Gorai Station

Bold values defines the best accuracy (meaning the slowest RMSE and MAE and highest NSE and R2)

Models Input Com-
binations

Training Testing

RMSE MAE NSE R2 MAPE RMSE MAE NSE R2 MAPE

ELM I 1063.7 777.3 0.520 0.523 50.28 868.5 565.0 0.358 0.424 59.34
II 770.8 433.2 0.748 0.748 28.64 607.3 364.6 0.686 0.698 34.62
III 727.8 352.5 0.775 0.775 27.86 531.3 289.6 0.760 0.762 27.29
IV 658.4 359.4 0.816 0.817 22.62 566.8 330.7 0.726 0.737 30.38
V 452.0 276.2 0.913 0.914 14.08 560.6 338.0 0.732 0.734 30.17
VI 412.9 215.3 0.928 0.928 13.85 580.3 338.1 0.713 0.722 30.76
VII 379.0 213.3 0.939 0.939 13.68 580.2 311.4 0.713 0.756 28.37

ELM-PSO I 1046.2 718.6 0.535 0.535 49.78 843.00 553.14 0.395 0.452 57.82
II 714.2 352.7 0.784 0.784 25.49 592.05 342.13 0.701 0.703 33.29
III 705.2 338.2 0.789 0.789 25.36 526.56 300.63 0.764 0.764 27.08
IV 531.7 296.7 0.880 0.880 18.27 539.94 311.35 0.752 0.756 29.84
V 420.4 220.2 0.925 0.925 14.18 553.30 304.25 0.739 0.785 27.48
VI 405.4 221.3 0.930 0.930 13.72 577.69 342.24 0.716 0.724 30.67
VII 378.8 213.2 0.939 0.939 13.65 523.38 281.17 0.767 0.788 27.15

ELM-MOA I 1028.0 704.5 0.551 0.552 48.27 826.9 564.3 0.418 0.459 56.37
II 705.7 361.8 0.789 0.789 25.16 563.8 332.7 0.729 0.741 29.38
III 579.1 262.4 0.858 0.858 20.38 521.5 326.4 0.768 0.772 26.84
IV 481.4 285.2 0.902 0.903 15.74 492.8 276.2 0.793 0.810 23.68
V 378.5 200.1 0.939 0.939 13.29 546.5 291.0 0.746 0.763 27.17
VI 389.0 212.3 0.936 0.936 13.38 574.1 369.2 0.719 0.720 30.54
VII 360.2 190.3 0.945 0.945 13.08 522.9 301.2 0.767 0.789 27.02

ELM-PSOGWO I 1000.4 659.3 0.575 0.575 47.24 813.5 568.1 0.436 0.474 55.34
II 655.1 304.5 0.818 0.818 23.65 538.7 297.3 0.753 0.765 27.61
III 530.2 300.1 0.881 0.882 17.95 600.6 324.7 0.693 0.812 23.78
IV 434.2 222.3 0.920 0.920 13.91 470.5 275.1 0.811 0.819 23.17
V 365.9 192.4 0.943 0.944 13.12 535.0 295.8 0.756 0.780 26.19
VI 388.0 210.8 0.936 0.936 13.34 567.0 305.7 0.726 0.796 25.87
VII 306.8 168.9 0.960 0.960 12.85 483.8 287.1 0.801 0.811 24.38

ELM-SAMOA I 998.4 656.5 0.577 0.577 46.39 807.1 565.3 0.445 0.484 54.82
II 630.0 301.2 0.832 0.832 22.87 515.9 285.3 0.773 0.774 26.34
III 513.9 273.5 0.888 0.888 17.25 413.1 240.4 0.855 0.857 18.94
IV 410.8 224.8 0.928 0.928 13.82 442.1 259.0 0.834 0.836 17.96
V 349.7 191.2 0.948 0.948 13.08 518.1 287.1 0.771 0.789 25.43
VI 333.7 182.4 0.953 0.953 12.92 557.0 300.7 0.736 0.793 24.19
VII 306.6 168.6 0.960 0.960 12.81 472.5 278.8 0.810 0.817 22.38
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ELM–MOA with input ii  (RMSE = 543.4   m3/s, 
NSE = 0.749) and ELM-SAMOA with input iv 
(RMSE = 535.7   m3/s, NSE = 0.756) in the testing 
stage. Implementing the ELM–PSOGWO improved the 
RMSE of the best ELM, ELM–PSO, ELM–MOA and 

ELM–SAMOA by 20%, 5.1%, 6.2% and 4.6% in the testing 
stage, respectively. By including precipitation inputs, the 
accuracy of standalone ELM (input iv), (ELM–PSO (input 
v) and ELM–SAMOA (input iv) was improved, whereas 
the temperature data did not increase the efficiency of the 

Fig. 5  Time variation graphs of the observed and predicted streamflows by different ELM-based models in the test period of Padma River Sta-
tion
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models in estimating Gorai’s streamflows utilizing data of 
upstream station. Time variation and scatter diagrams of 
the estimated streamflows by different ELM-based models 
are illustrated in Figs. 11 and 12. It is clear from the vis-
ual comparisons; two-phase optimized ELM models have 

closer streamflow estimates to the observed values, and 
their scatters are less compared to single-phase optimized 
and standalone ELM models. This part of study is very 
useful especially for the basins having missing streamflow 

Fig. 6  Time variation graphs of the observed and predicted streamflows by different ELM-based models in the test period of Gorai Station
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Fig. 7  Scatterplots of the observed and predicted streamflows different ELM-based models in the test period of Padma
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Fig. 8  Scatterplots of the observed and predicted streamflows different ELM-based models in the test period of Gorai
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data. In such basins, streamflow can be easily estimated 
using external (e.g., upstream) data.

Overall ,  two-phase optimized ELM models, 
ELM–PSOGWO and ELM–SAMOA models, perform 
superior to the single-phase and standalone ELM mod-
els in streamflow prediction. Among the two-phase opti-
mized ELM models, the ELM–SAMOA acted better than 
the other. In the second application, the ELM–PSOGWO 
offered better efficiency compared to other ELM-based 

models. The main advantages of the two-phase optimi-
zation approaches are improvement in exploration and 
exploitation abilities of single-phase metaheuristic algo-
rithms. Because for a robust and generalizable optimiza-
tion algorithm is to balance the ability of exploitation 
and exploration efficiently in order to find best solution/
parameters of a machine learning model. Results of this 
study also endorsed the effectiveness of PSOGWO- and 
SAMOA-based ELM models by improving exploration 
and exploitation capabilities.

Fig. 9  Taylor and violin diagrams of different ELM-based models in the test period of Padma Station
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Concluding remarks

The ability of two-phase optimized ELM models was inves-
tigated in monthly streamflow prediction using lagged 

streamflow, precipitation and temperature data as inputs. The 
outcomes were compared with the single-phase optimized 
and standalone ELM models. In the first application, each 
station’s streamflows were predicted using local data while 

Fig. 10  Taylor and violin diagrams of different ELM-based models in the test period of Gorai Station
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Table 5  t-test of single-phase, 
two-phase optimized and 
standalone ELM models for 
both stations using best input 
combination results

Models

ELM ELM-PSO ELM-MOA ELM-PSOGWO ELM-SAMOA

Padma station
t-stat 1.364 1.114 0.971 1.338 1.424
p value 0.328 0.267 0.333 0.183 0.157
t-critical 1.982 1.982 1.982 1.982 1.982
Gorai station
t-stat − 1.526 -0.316 0.104 − 0.583 1.086
p value 0.129 0.752 0.916 0.560 0.279
t-critical 1.982 1.982 1.982 1.982 1.982

Table 6  The results of the single-phase, two-phase optimized and standalone ELM models in estimation of Gorai’s streamflow using data of 
Padma Station (Upstream)

Bold values defines the best accuracy (meaning the slowest RMSE and MAE and highest NSE and R2)

Models Input Com-
binations

Training Testing

RMSE MAE NSE R2 MAPE RMSE MAE NSE R2 MAPE

ELM I 1145.5 804.1 0.443 0.444 59.34 892.9 635.9 0.321 0.455 58.19
II 858.2 430.1 0.687 0.690 34.18 691.8 393.4 0.592 0.760 28.17
III 766.4 354.0 0.751 0.751 29.47 622.9 371.3 0.670 0.769 28.02
IV 743.5 339.3 0.765 0.766 28.82 612.1 352.3 0.681 0.777 27.64
V 747.3 347.1 0.763 0.764 28.75 686.0 383.5 0.599 0.772 27.85
VI 694.0 312.9 0.796 0.796 24.62 672.6 378.0 0.615 0.775 27.72
VII 724.7 403.2 0.777 0.778 25.94 760.7 471.4 0.507 0.755 28.58

ELM-PSO I 1135.0 795.7 0.453 0.453 58.19 870.8 621.1 0.354 0.479 56.48
II 818.0 425.0 0.716 0.717 33.26 573.0 370.8 0.720 0.767 27.34
III 720.6 328.7 0.780 0.780 25.09 608.6 333.8 0.685 0.786 26.08
IV 730.7 352.2 0.773 0.774 25.82 640.1 361.3 0.651 0.795 25.54
V 687.5 324.5 0.799 0.799 24.29 538.0 311.6 0.753 0.802 24.76
VI 684.6 359.2 0.801 0.802 24.08 659.0 430.2 0.630 0.784 26.17
VII 666.5 352.1 0.811 0.812 23.47 651.4 418.7 0.639 0.752 27.95

ELM-MOA I 1132.8 791.9 0.455 0.455 57.29 868.7 629.5 0.357 0.472 55.19
II 788.4 410.0 0.736 0.739 30.73 543.4 334.4 0.749 0.822 22.38
III 713.5 339.0 0.784 0.786 26.81 595.0 353.9 0.698 0.786 25.49
IV 726.6 343.4 0.776 0.776 27.08 601.5 357.8 0.699 0.807 24.37
V 691.3 341.3 0.797 0.803 24.36 595.4 371.3 0.698 0.792 25.81
VI 669.6 326.7 0.810 0.810 22.18 693.0 439.4 0.591 0.794 25.64
VII 642.3 363.3 0.825 0.825 21.76 685.3 456.5 0.600 0.761 24.82

ELM-PSOGWO I 1114.3 778.0 0.473 0.473 55.72 864.3 630.5 0.364 0.473 52.42
II 747.3 371.3 0.763 0.764 28.64 511.9 338.2 0.777 0.829 21.71
III 714.5 317.2 0.783 0.785 27.42 592.1 326.1 0.701 0.784 24.95
IV 709.4 320.3 0.786 0.787 27.02 537.7 312.1 0.754 0.815 23.43
V 652.2 332.2 0.819 0.820 22.02 598.6 358.9 0.695 0.801 24.94
VI 648.1 318.8 0.822 0.822 21.76 574.6 383.3 0.719 0.785 23.64
VII 569.4 310.1 0.862 0.863 20.83 638.8 428.6 0.652 0.790 23.07

ELM-SAMOA I 1100.5 768.7 0.486 0.486 53.27 843.2 610.2 0.394 0.493 51.46
II 724.3 354.1 0.777 0.777 26.49 554.5 365.5 0.738 0.835 20.87
III 711.2 306.4 0.785 0.785 26.07 585.4 346.1 0.708 0.811 23.62
IV 534.3 299.3 0.879 0.879 17.08 535.7 307.4 0.756 0.844 19.07
V 640.4 343.1 0.826 0.827 22.49 576.8 346.8 0.717 0.805 23.34
VI 589.5 306.4 0.853 0.853 19.07 598.3 360.1 0.695 0.802 23.08
VII 479.9 286.0 0.902 0.902 16.45 736.6 415.8 0.538 0.799 23.24
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Fig. 11  Time variation graphs of the observed and predicted streamflows by different ELM-based models in the test period of Gorai station (d/s) 
using Padma station data (u/s)
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Fig. 12  Scatterplots of the observed and predicted streamflows by different ANFIS-based models in the test period of Gorai Station (d/s) using 
Padma station (u/s) data
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in the second application, streamflows of one station were 
estimated using other station data. The following conclu-
sions were reached from the benchmark outcomes.

• Based on the RMSE, MAE, NSE, R2 and MAPE crite-
ria and graphical methods (e.g., time variation, scatter, 
Taylor and violin diagrams), the two-phase optimized 
ELM–SAMOA offered the best accuracy in prediction 
of monthly streamflows using local data; improvement 
in RMSE of ELM, ELM–PSO, ELM–MOA and ELM–
PSOGWO is by 31%, 27%, 19% and 14% for one station 
and 29%, 27%, 19% and 14% for other station, in the 
testing stage, respectively.

• In the second application, the two-phase optimized 
ELM–PSOGWO acted as the best model in streamflow 
estimation with external data; improvement in RMSE of 
ELM, ELM–PSO, ELM–MOA and ELM–SAMOA is by 
20%, 5.1%, 6.2% and 4.6% in the testing stage, respec-
tively.

• The outcomes suggested the use of two-phase optimiza-
tion compared to single-phase one while the standalone 
ELM model provided the worst efficiency.
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