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Abstract
The present study evaluates the impact of the COVID-19 lockdown on the water quality of a tropical lake (East Kolkata 
Wetland or EKW, India) along with seasonal change using Landsat 8 and 9 images of the Google Earth Engine (GEE) cloud 
computing platform. The research focuses on detecting, monitoring, and predicting water quality in the EKW region using 
eight parameters—normalized suspended material index (NSMI), suspended particular matter (SPM), total phosphorus 
(TP), electrical conductivity (EC), chlorophyll-α, floating algae index (FAI), turbidity, Secchi disk depth (SDD), and two 
water quality indices such as Carlson tropic state index (CTSI) and entropy-weighted water quality index (EWQI). The 
results demonstrate that SPM, turbidity, EC, TP, and SDD improved while the FAI and chlorophyll-α increased during the 
lockdown period due to the stagnation of water as well as a reduction in industrial and anthropogenic pollution. Moreover, 
the prediction of EWQI using an artificial neural network indicates that the overall water quality will improve more if the 
lockdown period is sustained for another 3 years. The outcomes of the study will help the stakeholders develop effective 
regulations and strategies for the timely restoration of lake water quality.

Keywords COVID-19 lockdown · Google Earth Engine · Suspended particulate matter · Chlorophyll-α · Water quality · 
East Kolkata Wetlands

Introduction

A new strain of coronavirus emerged from Wuhan, China, 
in December 2019. The World Health Organization (WHO) 
named it coronavirus disease 2019 (COVID-19) which rap-
idly spread to the whole world within a few months, caus-
ing devastating effects on both human life and the economy 
(Wang et al. 2020). As a result, WHO declared it a pandemic, 
and with no medications available, many countries started 
restricting the movement of people, transport, and social inter-
actions in the form of lockdowns to avert the spread of the 
infection (Figueiredo et al. 2020). The worldwide COVID-19 
lockdown characterized by the closure of production sectors, 
and minimal anthropogenic activity, caused a great impact 

on environmental quality especially the air (Liu et al. 2021; 
Filonchyk et al. 2021; Mor et al. 2021; Jion et al. 2023) and 
surface water (Kour et al. 2021; Liu et al. 2021; Qiao et al. 
2021; Jawad-Ul-Haque et al. 2023). For example, Tokatli and 
Varol (2021) observed that the water quality of the Ergene 
River (Turkey) was significantly improved in terms of the 
concentration of Ni, Zn, Cu, As, Pb, and Cd. Moreover, they 
observed that the values of carcinogenic risk of As and Cr 
had been reduced by 60% and 94%, respectively, as an effect 
of the lockdown. Braga et al. (2020) identified the improve-
ment in water transparency of Venice Lagoon in Italy. Chen 
et al. (2021) observed the positive impact of the COVID-19 
lockdown on the ecological environment of the Haihe River. 
They estimated a decrease in turbidity of 219.06% during the 
lockdown. As the lockdown was imposed, normal life comes 
to pause resulting in logistic and legal problems in collecting 
data to know about the quality lockdown.

Therefore, water quality monitoring, mapping, and 
predicting depend greatly on the geospatial data sources. 
The majority of the works produced on water quality are 
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thus satellite data-driven and simulated using geospatial 
modeling (Said and Khan 2021; Dandge and Patil 2022). 
Improved water quality as an effect of the COVID-19 lock-
down has been observed for many inland waterbodies in 
India. For example, the improved water quality in terms of 
BOD, COD, and DO concentration was identified for the 
Ganga (Dutta et al. 2020) and Yamuna River (Arif et al.  
2020). Besides, Aman et al. (2020) illustrated a 36% reduc-
tion in suspended particulate matter (SPM) in the Sabarmati 
River in response to reduced anthropogenic activities during 
the lockdown. A similar finding that there is a 15% reduction 
in SMP in the Vembanad Lake was identified by Yunus et al. 
(2020). Chakraborty et al. (2021) observed improved water 
quality in the Damodar River in terms of the modified water 
quality index and improved nutrient status in terms of the 
trophic state index. Moreover, they observed that potential 
ecological risk declined by 63% in the Damodar River dur-
ing the lockdown.

The Ramsar Convention recognizes the East Kolkata 
Wetlands (EKW) as a wetland of international importance 
in 2003. EKW receives a huge amount of untreated, munici-
pal, and industrial wastewater. Therefore, many researchers 
have investigated wetlands from the perspective of ecosys-
tem vulnerability due to fragmentation, pollution (Roy-Basu 
et al. 2020), and conversion (Ghosh and Das 2020). In India, 
to prevent the outbreak of COVID-19, a nationwide lock-
down was announced first 24th March 2020 and imposed 
till 31st May 2020. Afterward, the nation witnessed a series 
of complete lockdowns. During this situation, many inland 
waterbodies have received a significantly lower amount of 
waste which has a corresponding effect on water quality. 
The water quality and ecosystem health of EKW are also 
supposed to be changed in response to a series of complete 
lockdowns. EKW is a highly significant wetland that sustains 
society as well as extensive economic activity and biological 
variety within its catchment region. However, there has been 
no previous systematic assessment of COVID-19 lockdown 
effects on EKW lake water quality, nutrient status, and future 
scenarios of water quality impact on the aquatic environment 
of EKW.

Furthermore, the present study employed a cloud-based 
platform, such as Google Earth Engine (GEE), because of 
its multi-petabyte data catalog that is ready for assessment, 
and high-performance computing capabilities that may be 
used for a wide range of rising social challenges includ-
ing environmental preservation. Therefore, this cloud-
based platform is gaining much popularity among scientific 
researchers. Kwong et al. (2022) and Zlinszky et al. (2017) 
studied the water quality parameters on the GEE platform 
for extensive geospatial assessment and easy accessibility 
to freely available data and robust computing capabilities. 
Again, to analyze the surface water quality, Khan et al. 2021 
have adopted this cloud-computing technique for its several 

benefits and especially for the easy access to atmospherically 
corrected satellite imagery. Most of the researchers have 
investigated various water quality parameters in their study 
mostly because the platform does not necessitate download-
ing large satellite images while reducing the downloading 
time and storage capacity (Kislik et al. 2022; Bioresita et al. 
2021; Amani et al. 2020). Despite performing several types 
of research on water quality metrics, there has been no previ-
ous systematic assessment of COVID-19 lockdown effects 
on EKW lake water quality, and nutrient status. In addition, 
to the best of our knowledge, this is the first research to 
simulate the entropy-weighted water quality index (EWQI) 
to better understand the water quality if the lockdown is 
continued for the next 3 years. Hence, this study focuses to 
attribute this research gap by investigating the water quality 
metrics and associated simulation by implementing labora-
tory-based analysis coupled with geospatial and cloud-com-
puting techniques. Therefore, this research aims to ascertain 
the water quality, nutrient content, and ecological risk of the 
EKW regions using several parameters and indices in the 
pre-lockdown (2019), lockdown period (2020), and post-
lockdown (2021) periods for the pre-monsoon, monsoon, 
and post-monsoon seasons. Additionally, this study will 
simulate the entropy-weighted water quality index (EWQI) 
to monitor the conditional short-term changes.

Materials and methods

Study area

East Kolkata Wetlands (EKW) is an important peri-urban 
ecosystem situated on the eastern fringe of Kolkata meg-
acity, having an area of ~ 125  km2 and extending from 
22°25′00″N to 22°35′00″N latitude and 88°20′00″E to 
88°35′00″E longitude (Sahu and Sikdar 2008). Administra-
tively the wetland covers 37 mouzas (smallest administrative 
units for revenue collection in India) of two districts (North 
and South Twenty-Four Parganas) and the Kolkata munici-
pal corporation (KMC). Out of the entire wetland area, 58.52 
 km2 consists of waterbodies followed by agricultural land 
(47.18  km2), productive farming area (6.02  km2), and urban 
area (13.26  km2). The wetland ecosystem of EKW is very 
complex from the perspectives of geomorphic evolution, 
diversity in living species, dynamics in ecosystem func-
tions, etc. EKW is also known as a sewage-fed wetland that 
receives ~ 600 million liters of sewage per day from KMC 
(Roy-Basu et al. 2020). Besides, the wetland having 364 
sewage-fed ponds is also used for pisciculture, producing 
10,500 MT of fish every year (Vicziany et al. 2017). How-
ever, the ecosystem of EKW has become highly vulnerable 
to fragmentation, loss of wetland area, and water pollution 
due to its proximate location to KMC (Ghosh and Das 2020). 
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Therefore, the ecosystem services, i.e., gas regulation, land 
surface temperature control, nutrients and sediment reten-
tion, flood control, habitats for diversified living species, 
primary production, recreation, and ecotourism, provided 
by EKW are degrading significantly.

Data sources

Geospatial data

The geospatial data used for the current study are Landsat 8 
OLI and Landsat 9 for the years 2019, 2020, and 2021, with 
the three seasons, i.e., pre-monsoon, monsoon, and post-
monsoon, taken into account for each year. All the Landsat 
data are available on the GEE web platform as surface reflec-
tance and top-of-atmosphere (TOA) corrected reflectance. 
Therefore, the present study considers the “Landsat 8 sur-
face reflectance tier 1,” which provides the atmospherically 
corrected surface reflectance from the Landsat 8 OLI/TIRS 
and Landsat 9 sensors. The Landsat image, which covers 
the entire East Kolkata Wetland area, is referenced as 138 
path and 44-row number as per the world reference system 
(WRS) which is used for Landsat products. The details of 
the Landsat 8–9 and acquisition date have been presented 
in Table 1.

Water quality data

For the present investigations, water quality data have 
been collected/extracted from two major sources—(1) 
geospatial data (secondary data) and (2) field data (pri-
mary data). Eight water quality parameters derived from 
the satellite images are (1) chlorophyll-α (Chl-α), (2) tur-
bidity, (3) SPM, (4) EC, (5) TP, (6) NSMI, (7) FAI, and (8) 
SDD. Moreover, a total of 60 water samples (2018–2019) 

have been collected from 5 monitoring stations of EKW 
(Fig. 1). Among the total water quality samples (n = 60), 
each of the 20 samples was collected for pre-monsoon, 
monsoon, and post-monsoon seasons. Field data from 
2018 to 2019 was acquired and suitable tests as per the 
guidelines of the American Public Health Association 
(APHA) Standard as mentioned in Table 2.

Methods

Geospatial data processing and water quality indices

Based on NDWI and mNDWI techniques, the waterbody 
area of EKW was derived from the Landsat 8 images. 
Additionally, the individual parameter and indices related 
to water quality have been derived and assessed for EKW. 
TSS was measured following normalized suspended mate-
rial index (NSMI) as used by Hossain et al. (2010). The 
techniques of Wang et al. (2021) and Lin et al. (2004) were 
used to measure the water’s turbidity, while the algorithm 
of Mushtaq and Nee Lala (2017) was used to measure the 
EC. The estimation of Chl-α, TP, and SDD was done fol-
lowing the techniques of Diédhiou et al. (2019), Su and 
Lo (2021), and Bonansea et al. (2019) respectively for 
developing the CTSI, an important indicator of ecosystem 
health. Besides, FAI for detecting algal blooms in lake 
water and SMI for measuring suspended sediment amounts 
in water were derived following Hu (2009) and Nechad 
et al. (2010), respectively. Finally, entropy-weighted water 
quality index (EWQI) was computed for assessing the 
overall water quality of the EKW. The specification of how 
each individual parameter and water quality indices were 
derived has been mentioned in a separate supplemental 
material (SS1).

Table 1  Landsat 8 OLI and Landsat 9 images (path 138–row 44) of the EKW used in this study

Bands 1 and 7 were not used to derive the parameters and indices. The details of the equations to derive the parameters and indices have been 
mentioned in the supplementary materials (SS1)

Description of bands used Wavelength (μm) Bands used to derive param-
eters/indices

Phases of lockdown Seasons Date of acquisition

Band 2—(blue) surface reflec-
tance

0.452–0.512 NSMI = bands 2, 3, 4
Chl(α) = bands 2, 3, 4, 5
Turbidity = bands 2, 3, 4
SDD = bands 2, 3, 5
NDWI = band 3
mNDWI = bands 3, 6
SPM = band 4
EC = band 4
FAI = bands 4, 6
TP = band 4

Pre-lockdown Pre-monsoon 15 Feb 2019
Monsoon 26 Aug 2019
Post-monsoon 30 Nov 2019Band 3—(green) surface reflec-

tance
0.533–0.590

Lockdown Pre-monsoon 02 Feb 2020
Band 4—(red) surface reflec-

tance
0.636–0.673 Monsoon 27 Jul 2020

Post-monsoon 16 Nov 2020
Post-lockdown Pre-monsoon 04 Feb 2021

Band 5—(near infrared) surface 
reflectance

0.851–0.879 Monsoon 31 Aug 2021
Post-monsoon 02 Nov 2021

Band 6—(shortwave infrared 1) 
surface reflectance

1.566–1.651
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Artificial neural networks

In this research, we have employed before-lockdown, lock-
down, and post-lockdown data as input in the ANN model 
to predict the water quality for the next 3 years (Fig. 2). 
An artificial neural network (ANN) is a computational 
learning system that is made up of single-neuron struc-
tures and linked in a certain way (ASCE 2000) that is 
specified by their architecture, just like their biological 
model. NARX is a time-series analysis tool that combines 
a neural network and a linear ARX model (autoregressive 
model with exogenous input) (Beale et al. 2017). In this 
scenario, the neural network is employed to enable the 
ARX structure to capture nonlinearities (Di Nunno and 

Granata 2020). NARX is superior to conventional recur-
rent networks regarding generalization ability (Desouky 
and Abdelkhalik 2019), which is because NARX can store 
information two to three times longer than ordinary RNN 
(Guzman et al. 2017).

Moreover, when compared to other ANN models such 
as the forward neural network model, the NARX model is 
a time series model that is used to predict stationary time 
series (Fig. 3). Since the EWQI parameters look like time 
series, the NARX model is a good choice for predicting the 
EWQI. In the NARX model, Levenberg–Marquardt (LM) 
has been used as training algorithm which follows a Hessian 
matrix approximation (Bishop 1995), which is expressed 
using Eq. 1.

Fig. 1  Location of the study area

Table 2  Water testing methods 
after APHA

Source: Annual report 2019–2020, East Kolkata Wetlands Management Authority

Parameters Method

Electrical conductivity (µS/cm) APHA Standard Methods 2510B (2012), 22th edition
Turbidity (NTU) APHA Standard Methods 2130B (2012), 22th edition
Total suspended solid (mg/l) APHA Standard Methods 2540D (2012)
Total phosphorus (mg/l) APHA Standard Methods 4500- P B, 3030 K (diges-

tion), and 4500- P D (determination) (2012)
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ω denotes the weights, J represents the Jacobian matrix, JT 
indicates the transpose matrix of J, and JTJ is the Hessian 
matrix. “I” stands for the learning matrix, and λ and e are 
the learning coefficient and vector of network errors, respec-
tively. The parameter λ is automatically updated based on the 
error at each iteration to secure the convergence. Following 
the principle of weight optimization of ANN (e.g., Aliza-
deh et al. 2017), we used a random value of λ to initiate the 
iteration process for optimizing weights with the LM algo-
rithm. Moreover, the performance of the model prediction 
is assessed using two well-known statistical methods—the 
coefficient of determination (R2) and mean squared errors 
(MSE) (Chicco et al. 2021; Khan et al. 2021). R2 is a linear 
regression method for determining the best fit between meas-
ured and model-predicted values, as mentioned in Eq. 2.

y and ̂y denote the measured and predicted values, respectively, 
y stands for the average of measured values, and n equals the 
number of values. The MSE determines the mean squared dif-
ference between measured and predicted values (Eq. 3).

Results

Water quality assessment

A total of 8 parameters and 2 indices have been studied 
for three different seasons—pre-monsoon, monsoon, and 

(1)Δ� =
[

JT (�)J(�) + �I
]−1

JT (�)e(�)

(2)R2 =

∑n

i=1
(yi − ŷi)

2

∑n

i=1
(yi − yi)

2

(3)MSE =
1

n

∑n

i=1
(yi − ŷi)

2

Fig. 2  A systematic framework to estimate the impact of the COVID-
19 lockdown on the water quality of East Kolkata Wetland

Fig. 3  The architecture of the 
NARX neural network
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post-monsoon of 2019, 2020, and 2021 in this study. The 
derived results related to the spatio-temporal distribution 
of these indices in the EKW region are quite significant in 
terms of judging the status of water quality and its changes 
that corresponds to the impact of the COVID-19 lockdown 
in the wetland’s catchment area.

Water quality parameters

Regarding NSMI a significant change has been observed 
between the pre-COVID period (2019) and the COVID-19 
lockdown period (2020). In 2019 and 2021, the cleanliness 
of the lake water was found to decrease in the monsoon 
period compared to the respective pre-monsoon periods. 
Contrarily, in 2020, the cleanliness of lake water had 
increased significantly in the monsoon period compared 
to its pre-monsoonal magnitude. From late March 2020 
to late June 2020, a complete lockdown was preceded by 
partial lockdowns and containment areas roughly till the 
end of the year. It possibly had a significant impact on 
reducing the infusion of suspended materials in the lake 
water. NSMI values greater than 0.6 experienced a relative 
increase in its concentrated area being 69.77% in 2020, 
compared to 77.81% and more than 2000% in 2019 and 
2021 of the total wetland area, respectively, between the 
pre-monsoon and monsoon periods. The areal occupancy 
of the higher classes of NSMI in the monsoon period of 
2020 was also lower compared to 2019 and 2021. NSMI 
range of 0.51 to 0.6 was observed occupying 7.737  km2 in 
2020 compared to 20.727  km2 in 2019 and 25.346  km2 in 
2021 while NSMI > 0.6 was found occupying 2.168  km2 
in the monsoon period of 2020 compared to 0.010  km2 
and 5.566  km2 in the very same period of 2019 and 2021 
(Table S2). Moreover, the mean NSMI got reduced from 
0.494 in the monsoon period of 2019 to 0.437 in the mon-
soon period of 2020 and during the monsoon period of 
2021, it was 0.45 which is lower in comparison to 2019. 
Significantly, water bodies in the northern and north-west-
ern parts of the study area, around the boundary shared 
with Rajarhat and Salt Lake townships, respectively, have 
registered a decreasing level of NSMI (Fig. 4).

Considering chlorophyll-α, a significant change was 
observed in the concentration of chlorophyll-α in 2020 
compared to 2019 and 2021. The areal concentration of 
chlorophyll-α under the range of 1.6 to 2.0 was 5.044  km2 
in 2020 compared to 1.158  km2 during the monsoon period 
of 2019. The areal concentration under chlorophyll-α’s 
range of 2.6 to 3 during the monsoon period has decreased 
in 2020 and 2021 to 5.27 and 5.41  km2, respectively, from 
their respective pre-monsoon periods. The mean concen-
tration of Chl-α in the monsoon periods of 2019, 2020, 
and 2021 were 2.164, 2.012, and 2.043, respectively. A 

significant intra-year change was also observed in 2020 
between monsoon and post-monsoon duration, where 
a gradual removal of COVID-19 lockdown restrictions 
might have helped in surging a greater algae concentration 
compared to the same duration in 2019 and 2021. Areal 
concentration under the range of 2.1 to 2.5 had decreased 
by 17% between the monsoon and post-monsoon period in 
2020 compared to 36.23% in 2019. While for the range of 
2.6 to 3.0 between the monsoon and post-monsoon duration 
in 2020, it experienced an areal gain of 103.58% compared 
to a loss of 86.20% in the same duration of 2019. The mean 
concentration of Chl-α in the post-monsoon period of 2019 
and 2020 was 2.086 and 2.129, respectively. Moreover, 
after the onset of the COVID-19 lockdown in early 2020, 
the overall algae density was found getting reduced in the 
study area except in the post-monsoon period of 2020 and 
pre-monsoon period of 2021 (Fig. 4).

In respect of turbidity, a steady and gradual decrease in 
the level of turbidity has been observed in 2020 compared to 
2019. A turbidity level of less than 1 has portrayed an areal 
coverage of 4.549  km2 in the monsoon period of 2020 com-
pared to a clear absence of the same in the monsoon period 
of 2019 and 2021. Turbidity level ranging from 1.1 to 2.0 has 
experienced a decrease of 5.88% of the area in the monsoon 
period of 2020 compared to an increase of 94.62% in 2019 
and a decrease of 16.24% in 2021, respectively. While in the 
case of turbidity range of 2.1 to 3.0, a decrease of 17.79% of 
the area was observed between the pre-monsoon and mon-
soon periods of 2020, compared to a decrease of 28.49% of 
the area in 2019 and an increase of 147.11% in 2021. In the 
case of a turbidity range from 3.1 to 4 and > 4 between pre-
monsoon and monsoon periods of 2020, an increase of 0.855 
 km2 (17.05%) and 0.643  km2 (84.82%) respectively were 
observed in comparison to 1.758  km2 (27.89%) and − 0.723 
 km2 (− 67.31%) in 2019, respectively. The changes in the very 
same ranges were found at − 6.295  km2 (43.37%) and + 1.08 
 km2 (56.66%) respectively in 2021 between the pre-monsoon 
and monsoon periods (Table S2). The mean turbidity level of 
the lake water during the monsoon periods has varied from 
2.237 in 2019 to 1.881 in 2020 and to 2.14 in 2021. Within 
certain pockets in the northern corner of the study area, the 
maximum concentration of lowest turbidity was observed, 
while during the post-monsoon period of 2020, maximum 
degradation in terms of higher turbidity was evident mostly 
in the south-eastern pockets of wetlands (Fig. 4).

Regarding SPM, a significant change in the areal con-
centration under different categories was observed between 
the pre-monsoon and monsoon periods of 2020 and 2021 
compared to 2019. After the COVID-19 lockdown was 
imposed in the early half of 2020, the levels of SPM in lake 
water were found to decrease. In the case of SPM ranging 
from 4.1 to 6, an increase of 2.895  km2 (32.90%) compared 
to a decrease of 99.19% in 2019 and a nearly unchanged 
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Fig. 4  Improvement of lake water quality a NSMI, b chlorophyll-α, c turbidity, d SPM
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scenario in 2021. On the contrary to that, the SPM range of 
6.1–8 has registered a decrease of 2.862  km2 (15.60%) in 
comparison to a decrease of 14.199  km2 (70.59%) in 2019 
and an increase of 9.196  km2 (122.23%) in 2021. In the case 
of classes bearing comparatively larger ranges of SPM were 
also seen depicting signals that the lake water SPM level 
had overall decreased. In the case of SPM ranges of 8.1–10 
and > 10, a decrease of 0.748  km2 (5.96%) and an increase 
of 0.717  km2 (11.02%) respectively were found between the 
pre-monsoon and monsoon periods of 2020, while for the 
same duration in 2019, those concerned ranges of SPM had 
experienced an increase of 23.557  km2 (282.42%) and 5.553 
 km2 (198.96%), respectively. The concentration of SPM was 
found to have mostly decreased along the transport arter-
ies, mainly in the monsoon period of 2020 due to a lack of 
vehicle mobility amid the COVID-19 lockdown and partial 
containment period in 2020 (Fig. 4).

Regarding the total phosphate, a significant inter-season 
change has been observed in 2020, between pre-monsoon 
and monsoon seasons compared to the same in 2019. Classes 
bearing comparatively lower values of total phosphate con-
centration (≤ 0.5 and 0.6–1.0) have changed their areal occu-
pancy by + 1.179  km2 (6.04%) and − 0.259  km2 (12.60%) 
respectively between the pre-monsoon and monsoon period 
in 2020, while the same class ranges have registered a 
change of − 0.847  km2 (3.56%) and − 12.582  km2 (63.21%) 
respectively between the pre-monsoon and monsoon peri-
ods in 2019. The mean concentration of total phosphates in 
the monsoon period of 2020 was measured lower compared 
to that in 2019 (0.602 and 0.678, respectively). Interest-
ingly, the highest measured range of TP (> 2) was seen to 
increase between the pre-monsoon and monsoon period of 
2020 by 146% (0.11  km2) compared to a decrease of 62.60% 
(0.072  km2) between pre-monsoon and monsoon period of 
2019. It was possibly due to certain source point effects as 
found in Fig. 5 where the emergence of certain waterbod-
ies in the central-northern part of the EKW region during 
the monsoon period of 2020 had registered a spike in TP 
value compared to that of 2019. An almost similar pattern 
of lake water improvement was observed in 2021 between 
pre-monsoon and monsoon seasons where the classes bear-
ing lower ranges of TP have increased their areal occupancy 
and the classes bearing higher ranges of TP have decreased.

Regarding electrical conductivity, it is observed 
that amid the COVID-19 lockdown in 2020, interest-
ingly, an improvement in the EC of EKW water bodies 
was observed compared to 2019 and 2021. For the EC 
of ≤ 300 and 301–600, between the pre-monsoon and mon-
soon 2020, a change of − 15.411  km2 (74.25%) and 9.773 
 km2 (56.81%) was measured respectively with a mean 
of 360.667 and a maximum concentration of 1322.898. 
While the same duration in 2019 has recorded a change 
of − 11.611  km2 (− 60.14%) and 32.78  km2 (581%) 

respectively with a mean of 275.89 and a maximum con-
centration was 827.967. On the other hand, for the same 
duration in 2021, it was − 6.822  km2 (26.65%) and 2.416 
 km2 (13.50%) respectively with a mean of 440.27 and 
a maximum concentration was 1098.15. Classes with 
greater ranges of EC (601–900, 901–1200, and > 1200) 
were found to register a negative change in terms of their 
corresponding areal occupancy between pre-monsoon and 
monsoon in 2019 and 2021, while the same classes regis-
tered positive growth in areal occupancy during the same 
time interval in 2020.

In respect of the Secchi disk depth, Table S2 elaborates 
on the multi-temporal nature of the areal occupancy of dif-
ferent classes of SDD. It clearly indicates a scenario with a 
lower degree of changes in the lake water visibility amid the 
COVID-19 lockdown in 2020. Classes with comparatively 
lower ranges of SDD (3.6–4.5 and 4.6–5.5) were found to 
register a relatively lower degree of changes between the pre-
monsoon and monsoon seasons compared to observations 
found during the very same period in 2019. The changes 
were 0.105  km2 (81.39%) and 2.207  km2 (39.48%) respec-
tively in 2020, while in 2019, the changes were − 0.019 
(61.29%) and − 23.68  km2 (59.79%), respectively. Similarly, 
in the case of a higher range of SDD (5.6–6.5), the change in 
areal occupancy was drastic in 2019 between pre-monsoon 
and monsoon. It was nearly 362% compared to − 5.73% in 
2020 which indicates decreasing the visibility of lake water 
possibly due to greater algae growth during a less dynamic 
period of land use practices.

Moreover, a clearly distinct and almost opposite trend in 
SDD was found in 2021 between the pre-monsoon and mon-
soon periods as compared to 2020. Here, a relative decrease 
in areal occupancy under comparatively lower ranges of 
SDD was found to be accompanied by a positive change in 
the higher SDD range (5.6–6.5), which was mammoth, 645% 
between the pre-monsoon and monsoon periods. The mean 
concentration of SDD was measured at 5.35, 5.45, and 5.56 
in the monsoon period of 2019, 2020, and 2021 respectively 
whereas the maximum SDD during the monsoon period was 
found at 6.051, 6.52, and 6.30 in the respective years. Thus, 
certain source point influences have controlled the SDD at 
certain locations amid the lockdown period but the overall 
changes point towards decreasing the visibility of lake water 
in the monsoon period of 2020 compared to the same dura-
tion in 2019 and 2021 (Fig. 5).

Furthermore, a significant improvement of the FAI in 
the monsoon period of 2020 compared to that of 2019 
has been observed in this study. Since the higher ranges 
of the FAI denote a greater concentration of algae, larger 
areal occupancy under lower ranges implies a significant 
improvement in algae concentration in the lake water. In 
2019, between the pre-monsoon and monsoon periods, 
the change in areal occupancy under FAI  ≤ 0.05 was 
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Fig. 5  Improvement of lake water quality a total phosphorous, b EC, c SSD, d FAI
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323.15% of the area compared to a change of 359.30% 
in the same duration of 2020. As for other parameters 
measured between the monsoon and post-monsoon peri-
ods, waiving lockdown restrictions in 2020 has played a 
significant role in the sudden bulging of floating algae in 
the lake water as the areal occupancy under FAI ≤ 0.05 was 
found to decrease by 73.3% in comparison to a positive 
increase in 2019 of 42.25%. The maximum value of FAI 
measured in 2020 was 0.82 with a mean of 0.0575, 0.894 
with a mean of 0.095, and 0.626 with a mean of 0.043 in 
the pre-monsoon, monsoon, and post-monsoon periods, 
respectively. It certainly guides towards any potential point 
sources of an anomaly in the algae concentration due to 
certain local factors (Fig. 5).

Water quality indices

Lake eutrophication, which results in algae blooms and poor 
water quality, can be triggered by an excess of nutrients. The 
TSI represents in situ biological functions in addition to the 
amount of lake water nutrients. In this study, there was a sig-
nificant rise in the mean CTSI of the lake water between the 
pre-monsoon and monsoon periods, from 25.03 to 26.87 in 
2019 indicating oligotrophic condition as well as good water 

quality (Fig. 6). Interestingly, the mean CTSI decreased from 
25.38 to 25.31 in 2020 but the highest CTSI score increased 
from 33.35 to 34.63 between the pre-monsoon and monsoon 
seasons of 2020 and also indicated oligotrophic condition. 
Among all the triggering factors (SDD, TP, and Chl-α), a 
high correlation with TSI was observed for TP indicating 
that the increased productivity and higher trophic state index 
of the lake are anticipated to be significantly influenced by 
TP. The difference between pre-monsoon and monsoon in 
2020 for the class range of 0–20 was 206.88%; however, in 
the monsoon season of 2019 and 2021, no pixel was discov-
ered within this range. Also, from the pre-monsoon to the 
monsoon period in 2021, the mean CTSI was seen to decline 
from 26.85 to 26.08, while the rise in areal occupancy by the 
CTSI range of 31–40 was 81.50% as opposed to a decline of 
26.38% between the same periods in 2020.

Finally, the entropy-weighted water quality index inte-
grates the lake water quality parameters: NSMI, Chl-α, Tur-
bidity, SPM, TP, and EC providing a compound status of 
lake water quality in the EKW region. The maximum com-
pound value of water quality was measured as 92, 82, and 
24 in the pre-monsoon, monsoon, and post-monsoon peri-
ods of 2019, respectively. Similarly, the maximum EWQI in 
the pre-monsoon, monsoon, and post-monsoon periods of 

Fig. 6  Improvement of lake water quality a CTSI, b EWQI
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2020 was measured as 83, 69, and 65, respectively. In 2021, 
these figures were 80, 82, and 87 during the pre-monsoon, 
monsoon, and post-monsoon periods, respectively. During 
the monsoon period of 2019 and 2020, the maximum con-
centration of the lake water was found within the EWQI 
range of 50–100. Here, the lowest EWQI was measured as 
69, 55, and 10 during the pre-monsoon, monsoon, and post-
monsoon periods of 2019, respectively. While in 2020, the 
lowest EWQI was 52, 51, and 57 during the pre-monsoon, 
monsoon, and post-monsoon periods, respectively. The low-
est value of EWQI suggests the improvement of lake water 
quality status (Mahammad et al. 2022). Although the water 
bodies were all found concentrating in the range of 50–100 
during all the concerned periods of all the years except in the 
post-monsoon period of 2019, the lowest measured EWQI 
suggests a relative improvement of lake water quality due to 
the COVID-19 lockdown condition in 2020 (Fig. 6).

Simulation of EQWI

The prediction of the lake water quality has been done 
based on a temporal change observed in the target year, 
the EQWI of the monsoon period of 2020. The simula-
tion was performed considering if the lockdown of the 
same nature as that administrated in 2020 continued for 
another 3 years, this prediction of EWQI would be relevant 
in understanding the water quality status in the monsoon 
period of 2023. A considerable degree of improvement in 
the lake’s water quality has been predicted in the monsoon 
period of 2023. The mean EWQI gets reduced from 41.55 

to 36.75 and the maximum concentration of the value gets 
reduced from 89.98 to 47.74 in 2023. Even the minimum 
value also gets reduced to 25.74 in the predicted raster 
from 32.10 in the target raster. The gradual betterment 
has also been seen through the relative areal occupancy 
under different ranges of EWQI (Table S4 & Table S5). 
In the case of the target raster (monsoon period of 2020), 
88% of the lake surface area is found to be concentrated 
under the EWQI range of 51–100 and the rest is found 
lying within the range of 101–150. While in the predicted 
raster, 84.04% of the total lake surface area is observed to 
lie within the EWQI range of 26–50 and the rest comes 
within the range of 51–100 (Fig. 7). The LM algorithm 
tries to minimize the deviation within the predicted space 
and helps in getting a minimum spatial error on a non-
linear data space.

Validation of the ANN model

The efficiency of the ANN model has been validated using 
the correlation between the output of the network and cor-
responding targets. The statistical results demonstrate the 
effectiveness of ANN and the high (95%) correlations of 
all relationships (Fig. 8). Higher values of R2 demonstrate 
a strong fit between the ANN projected values and the 
actual measured data. Image-derived water quality met-
rics were employed in this study to develop EWQI for 
different phases of lockdown in different seasons and to 
anticipate the future trend, while field data was used to 
validate the findings based on the image-based findings. 

Fig. 7  a Prediction of the EWQI 
using ANN, b the prediction is 
done for 2023 (3-year progres-
sion from the lockdown year 
2020)
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Figure 9 exhibits the relationship between geospatial data 
and on-site field measurements. The results showed that 
all the values of correlation coefficient (R) are statistically 
significant at 0.005 level except for TP (post-monsoon) 
which is significant at 0.05 level.

Relative association between parameters 
and indices

The relative association of the parameters among each 
other along with the concerned indices during the consid-
ered periods of 2019, 2020, and 2021 has been analyzed 
(Fig S1 a-i). The correlation between EC and SDD is 1 
throughout all other seasons, except for the post-monsoon 
period of 2019. A significant positive connection between 
SPM and turbidity was seen across all periods while the 
relationship between turbidity and TP was also found to be 
strongly positive, suggesting that turbid water had greater 

levels of phosphate and SPM concentrations. Contrast-
ingly, turbidity was found negatively correlated with SDD 
because increasing turbidity reduces the cleanliness of lake 
water. NSMI was positively correlated with green pigment 
concentration and turbidity of the lake water. Apart from 
the association among the different parameters, the asso-
ciation between parameters and indices was also found to 
be highly significant. All instances showed a close to + 1 
correlation between FAI and SPM. Besides, FAI was found 
to be negatively correlated with SDD (Fig. S1 a-i). It sug-
gests that more than any suspended solids the contribution 
of algae growth in the lake water was the largest in reducing 
the lake water’s cleanliness and quality. Since algae growth 
decreases the visibility of lake water, SDD also decreases. 
Thus, in each of the instances, the FAI was negatively cor-
related with SDD. Because higher turbidity and suspended 
particle concentrations reduce lake visibility, these param-
eters were observed positively correlated with CTSI.

Fig. 8  Performance evaluation 
of the ANN model
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Discussion

The nationwide lockdown implemented in India to combat 
the spread of COVID-19 may have improved the water 
quality of the EKW region but might not be possible to 
improve all quality parameters due to having effects on 
domestic as well as agricultural waste and increased use 
of medical alcohol and disinfection drugs. The present 
investigation on EKW confirms that all major parameters 
of water quality were improved during lockdown periods 
except for chlorophyll-α and NSMI. Results also indicate 
that the highest concentration of SPM was recorded dur-
ing the monsoon of 2019 and the pre-monsoon period of 
2021. However, the lake area impacted by high SPM was 
greater in 2019 than in 2021. In addition, the area under 
the influence of turbidity was found to be higher in 2019, 
indicating a higher turbid value. This study also observes 
that the turbidity index for water followed a definite range 
for the entire year 2020. Our findings are in line with the 
study of Yunus et al. (2020). Even though pollution from 
sources other than industries (like sewage from homes, 
medicals drugs, and alcohol) continued during the lock-
down, our results showed that pollution from industries 
and medical sectors had a big effect on the quality of the 
water in the EKW. The maximum EC was found in the 
2019 post-monsoon, while the lowest EC was found in the 
2020 pre-monsoon. During the lockdown seasons of 2020 
and 2021, the conductivity of the lakes was lower than in 
2019. Previous studies (Hermans et al. 2014; Sudarshan 
et al. 2019; Zhu et al. 2016) revealed that temperature 
and rainfall both have a significant effect on EC. These 
studies claim that while a rise in rainfall decreases the 
value of EC, a rise in temperature increases the conduc-
tivity of electrolytic conductors, which results in higher 
levels of EC. Again, from the findings of Sengupta et al. 
(2021), a drop in temperature and a rise in rainfall of the 
local climate were seen in many parts of the study zones. 
Therefore, it is likely that these two meteorological fac-
tors had a substantial impact on EC over time, especially 
during the lockdown. The range of SDD was seen to be 
the minimum prior to the lockdown period. The monsoons 
were seen to have the same SDD throughout the entire 
study period, with the areal extent maximum in 2021 and 
then in 2020. The SDD value is largely affected by turbid-
ity and SPM, according to earlier studies (Bai et al. 2020; 
Zeng et al. 2020). Therefore, it can be said that the exemp-
tion of various industries and commercial establishments 
might be the reason why the EKW water quality was seen 
to be improved. The NSMI results revealed that the high-
est concentration of suspended material was observed 
in the post-monsoon period of 2020, whereas the lowest 
concentration was found in the pre-monsoon 2020. The 

concentration was increased during the lockdown period 
than in the pre- and post-lockdown period. The studies 
of Tokatlı and Varol (2021) found that due to the lock-
down, the domestic wastewater or gray water pressure 
increased and the suspended materials rose throughout 
the lockdown time. Similarly, due to the presence of a 
nearby huge urban population and agricultural operations 
(Fig. 1), our study observed no substantial improvement 
in suspended material in the EKW region throughout the 
lockdown period. Phosphorus is widely regarded as the 
primary limiting factor for lake phytoplankton growth, 
chlorophyll concentration, and FAI (Jin et al. 2020). Their 
inter-relationship in this study is utilized to determine the 
lake trophic state. From the results, a direct relationship 
between TP and FAI was observed. However, there was 
an exception in the case of chlorophyll-α concentration 
measurement in the study region. The elevated concentra-
tion of chlorophyll-α during the lockdown phase indicates 
that the flushing of nutrients from the surrounding agri-
cultural fields and built-up areas to the EKW area which 
is a pool of stagnant water greatly increased because, dur-
ing the lockdown period (2020), there was a higher rain-
fall which accelerated the run-off containing the nutrients 
(Sengupta et al. 2021).

In terms of overall water quality, we computed two 
water quality indices, i.e., EWQI and CTSI. The EWQI 
shows the water quality based on combined essential 
parameters, while CTSI is computed based on biologi-
cal and physical parameters. The seasonal EWQI demon-
strated that except for the post-monsoon season of 2019, 
approximately 80% of the wetland was diagnosed as hav-
ing medium water quality (Kumar and Augustine 2021) in 
2020, 2021, and 2019. The post-monsoon season of 2019 
was found to have excellent water quality, which accounted 
for nearly 85% of the wetlands. On the contrary, Carlson’s 
trophic state index (CTSI) is a well-tested, robust statis-
tical technique that incorporates biological and physical 
elements into consideration. The CTSI result of this study 
manifests a significant change in water quality, especially 
in the lockdown period of 2020. A spatial occupancy of 
CTSI within the range of 0–20 was observed in the pre-
lockdown period which increased by 13% in the lockdown 
period. In this regard, studies by El-Serehy et al. (2018) 
state that a CTSI value less than 40 suggests that the water 
body is oligotrophic (low productivity), whereas a value 
between 40 and 50 denotes mesotrophic (moderate pro-
ductivity); values greater than 50 signify eutrophic (high 
productivity) (high productivity). On the contrary, stag-
nant water and high productivity are anticipated over the 
lockdown duration. Therefore, with a minimum possibil-
ity of anthropogenic factors, climatic variables can be the 
only plausible cause of this issue.
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Conclusions

The lake water quality of the EKW region was examined in 
this study to understand the anthropogenic and industrial influ-
ence during the COVID-19 lockdown (2020) in comparison to 
2019 and 2021. According to a metadata study of lake water 
quality parameters and various indexing methods, most of the 
parameters decreased throughout the lockdown period as com-
pared to 2019 and 2021. The entire cessation of industrial and 
anthropogenic activities greatly aided in improving water qual-
ity by preventing the mixing of waste effluents immediately 
dumped into the lake water. Thus, the major findings of the 
present investigations are mentioned below.

• The COVID-19 lockdown period had a substantial influ-
ence on the EKW surface water quality, with considerable 
reductions in SPM, TP, EC, and turbidity concentrations.

• In terms of overall quality, CTSI and EWQI demon-
strated a considerable improvement in water quality at 
all sites over the lockdown period.

• The short-term simulations using the ANN model also 
suggest that a significant improvement is anticipated with 
higher accuracy (~ 95%) if COVID-19 prevails for the next 
3 years. Moreover, the prediction of water quality indi-
cated a great chance to analyze the influence of industrial 
effluents on surface water quality, and our findings may be 
utilized to develop water management policies.

• Landsat 8 and 9 data proved effective in measuring differ-
ent water quality parameters like chlorophyll-α (Chl-α), 
suspended particulate matter (TSS), and turbidity. High-
resolution satellite technologies can play an essential role 
in the monitoring of the physicochemical qualities of the 
water of different water bodies.

• It also showed that we can keep natural water resources 
safe and use them for a long time and that if we manage 
pollution sources well, we can stop surface water from 
getting contaminated quickly. In this case, a proper man-
agement framework and scientific remediation should be 
highly useful in restoring lake water quality while allow-
ing human growth to continue in this new normal era. 
Regular lake health monitoring will significantly mini-
mize anthropogenic stress while also restoring lake resil-
ience, water quality, structure, and biological functions.
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