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BOO‑ST and CBCEC: two novel 
hybrid machine learning methods 
aim to reduce the mortality 
of heart failure patients
Ananda Sutradhar 1, Mustahsin Al Rafi 1, F M Javed Mehedi Shamrat 2, Pronab Ghosh 3, 
Subrata Das 3, Md Anaytul Islam 3, Kawsar Ahmed 4,5,6, Xujuan Zhou 7, A. K. M. Azad 8, 
Salem A. Alyami 8 & Mohammad Ali Moni 9*

Heart failure (HF) is a leading cause of mortality worldwide. Machine learning (ML) approaches 
have shown potential as an early detection tool for improving patient outcomes. Enhancing the 
effectiveness and clinical applicability of the ML model necessitates training an efficient classifier 
with a diverse set of high-quality datasets. Hence, we proposed two novel hybrid ML methods ((a) 
consisting of Boosting, SMOTE, and Tomek links (BOO-ST); (b) combining the best-performing 
conventional classifier with ensemble classifiers (CBCEC)) to serve as an efficient early warning system 
for HF mortality. The BOO-ST was introduced to tackle the challenge of class imbalance, while CBCEC 
was responsible for training the processed and selected features derived from the Feature Importance 
(FI) and Information Gain (IG) feature selection techniques. We also conducted an explicit and intuitive 
comprehension to explore the impact of potential characteristics correlating with the fatality cases 
of HF. The experimental results demonstrated the proposed classifier CBCEC showcases a significant 
accuracy of 93.67% in terms of providing the early forecasting of HF mortality. Therefore, we can 
reveal that our proposed aspects (BOO-ST and CBCEC) can be able to play a crucial role in preventing 
the death rate of HF and reducing stress in the healthcare sector.

Heart failure (HF) is a complex and multifaceted medical condition that arises from the heart’s inability to meet 
the body’s metabolic demands. Despite considerable advancements in medical science, HF prevalence is still 
high and causes many deaths in industrialized and developing countries1. The most common causes of HF are 
sedentary behavior, excessive alcohol use, smoking, obesity, microbes, influenza, chest radiation, hypertension, 
cardiomyopathies, dyslipidemia, and so on2. Several non-lifestyle risk factors, including age, gender, family 
history, and high fibrinogen levels, could also be considered. Women3 and elderly persons4 are at a higher risk 
than men and younger people. Worldwide in 2018, a projected 64.3 million HF patients were estimated, with a 
total of 379,800 certified deaths5.

Examining the signs of mortality as soon as possible and beginning treatment with counseling and medica-
tions is crucial to reducing the fatality rate. Some conventional exploration like ejection fraction (measuring 
how well the heart pumps blood), B-type natriuretic peptide (a hormone released by the heart in response to 
HF), renal function (poor kidney function), and various clinical factors are examined to identify the risk of HF 
mortality. However, this manual process may not always be sufficient, and very complex, time-consuming, and 

OPEN

1Department of Computer Science and Engineering, Daffodil International University, Daffodil Smart City (DSC), 
Birulia, Savar, Dhaka 1216, Bangladesh. 2Department of Computer System and Technology, University of Malaya, 
50603 Kuala Lumpur, Malaysia. 3Department of Computer Science, Lakehead University, 955 Oliver Rd, Thunder 
Bay, ON P7B 5E1, Canada. 4Department of Electrical and Computer Engineering, University of Saskatchewan, 57 
Campus Drive, Saskatoon, SK  S7N 5A9, Canada. 5Department of Information and Communication Technology, 
Mawlana Bhashani Science and Technology University, Santosh, Tangail  1902, Bangladesh. 6Health Informatics 
Research Lab, Department of Computer Science and Engineering, Daffodil International University, Daffodil Smart 
City, Birulia, Dhaka  1216, Bangladesh. 7School of Business, University of Southern Queensland, Toowoomba, 
Australia. 8Department of Mathematics and Statistics, Faculty of Science, Imam Mohammad Ibn Saud Islamic 
University (IMSIU), 13318 Riyadh, Saudi Arabia. 9Centre for AI & Digital Health Technology, Artificial Intelligence 
& Cyber Future Institute, Charles Stuart University, Bathurst, NSW 2795, Australia. *email: mmoni@csu.edu.au

http://crossmark.crossref.org/dialog/?doi=10.1038/s41598-023-48486-7&domain=pdf


2

Vol:.(1234567890)

Scientific Reports |        (2023) 13:22874  | https://doi.org/10.1038/s41598-023-48486-7

www.nature.com/scientificreports/

expensive. As a result, researchers have concentrated on using machine learning (ML) methods to explore the 
signs of HF mortality.

Numerous studies have endeavored to explore a wide array of ML methods concerning these issues. However, 
these investigations have surfaced substantial challenges, leaving ample room for system enhancement. Likewise, 
the authors6 introduced bias and overfitting in the results section by integrating the imbalanced dataset into 
a predictive framework. Consequently, the studies7–10 have resorted to generating synthetic samples through 
the Synthetic Minority Oversampling Technique (SMOTE) and have thus prepared a balanced dataset prior 
to training. However, it is worth noting that SMOTE carries the risk of generating noisy and non-informative 
samples, which can potentially compromise the model’s efficiency11. To address these challenges, we introduce a 
novel method named BOO-ST that initially employs Boosting to pave the way for generating synthetic samples 
and enhancing the representativeness of the minority class12. Also, the Tomek link was considered to eliminate 
noisy and uninformative synthetic samples13. Through these strategies, we effectively mitigate existing issues 
and enhance the quality of minority instances, thereby reducing false positives and instilling greater confidence 
in critical condition predictions. Next, the authors14,15 have worked on a specific feature of the dataset without 
considering other potential characteristics of HF. Additionally, the studies9,16 utilized a feature selection technique 
and picked the training characteristics based on it. Nevertheless, without conducting a comparative evaluation of 
different feature sets, it is still questionable to incorporate features into a diagnostic model. Therefore, by using 
two robust feature selection techniques, Feature Importance (FI) by RF8,17 and Information Gain (IG)9,10, we 
make a comparative evaluation and aim to rectify the most potential characteristics of HF.

The preceding studies7–9,14,16 used single random sampling to validate the efficiency of their model, which 
can lead to biased results as the distribution of samples across classes did not accurately reflect the underlying 
population. To solve the issue, we have partitioned the training and validation data into multiple distinct subsets 
and evaluated the average results derived from these test splits. This approach provides a more dependable and 
precise assessment of the model’s performance. Subsequently, the studies18–22 have focused on conventional ML 
classifiers for the categorization of survival or death cases. However, conventional algorithms are susceptible to 
issues related to bias, over-fitting, and limited expressiveness23. The studies8,24 recommended a combination of 
multiple ML algorithms in the future to get multiple advantages at the same time and mitigate these drawbacks. 
Hence, the authors25–27 proposed some hybrid classifiers in their studies by using a single ensemble classifier. Nev-
ertheless, still faced issues including limited diversity and overfitting associated with single ensemble classifiers28. 
In response to these concerns, we propose a novel classifier named CBCEC, by fitting our best-performing 
traditional classifier (BP-C) as the estimator of Bagging (BG) and leveraging another ensemble method Voting 
(VT). The BP-C can be eligible to lower the incorrect decisions and BG alleviates the overfitting issues during 
classification29. Moreover, combining two different ensemble methods (e.g., BG and VT) our proposed classifier 
can enhance the diversity in terms of the prediction and capturing of the complex data patterns. The incorpo-
ration of these capabilities into the proposed classifier enhances its predictive performance, adaptability, and 
robustness, thereby enabling it to handle a broader spectrum of ML tasks.

This research makes several contributions, including the introduction of a novel BOO-ST method to effectively 
overcome data imbalance issues and mitigate the issues related to SMOTE. Different feature sets are selected 
by performing two feature selection techniques (FI and IG) and picking the best one by evaluating multiple 
performance metrics. Then we utilized the fine-tuned parameters to control the learning process and conducted 
an ablution study for the proposed classifier CBCEC. A Partial Dependence Plot (PDP) is employed to identify 
the critical values range of HF mortality. Finally, the result section demonstrates the superiority of the proposed 
CBCEC classifier in terms of various predictive performances and statistical significance over the conventional 
and existing models.

Related works
There have been several recent studies conducted on this topic. Most of the studies have focused on utilizing ML 
methods to detect the mortality of HF efficiently. For instance, Lili et al.6 aim to develop an ML-based predic-
tive model for predicting the mortality risk of HF patients. Where the Xtreme Gradient Boost (XGB) classifier 
performed the highest results (82.4% area under the curve (AUC)) compared to others. Asif et al.7 have utilized 
some well-known ML classifiers (e.g., Random Forest (RF), AdaBoost (AB), K Nearest Neighbor (KNN), and 
Support Vector Machine (SVM)) to detect the mortality risk of HF. The result section demonstrates that RF 
performs better (76.25% accuracy) than other classifiers with chi-square-based selected features. ABID et al.8 
attempted to find significant features using feature importance and mitigate the imbalance issue with SMOTE. 
From various classifiers, they identified ET outperforms with an accuracy of 92.62%. Saurav9 and Dafni et al.10 
also attempted to overcome the imbalance issue by utilizing SMOTE. Then, the SVM and Rotation Forest Tree 
(ROT) classifiers performed the highest accuracy of 83.33% and 91.3%, respectively compared to others.

Chicco et al.14 aim to predict the survival of HF patients by employing only two characteristics of patients 
(e.g., serum creatinine and ejection fraction). Their predictive model gained an overall 74% accuracy from the 
RF classifier. After applying the grey wolf optimization feature selection method, Minh et al.16 compared the 
results of seven ML classifiers. From the result section, it is observed that RF generated the highest accuracy of 
85%. Lal Hussain et al.17 employed various ML classifiers, where SVM obtained overall better performance with 
88.79% accuracy with all multimodal features.

Mirza et al.18 utilized six conventional ML classifiers to analyze the UCI HF dataset. The RF classifier surpasses 
other classifiers with 90% accuracy when incorporating SMOTE-ENN and standard scaling. Prakash et al.19 
attempted to predict the left ventricular ejection fraction changes in HF patients. Among the various prebuilt 
classifiers, XGB was identified as the highest-performing model with 88.6% AUC. Another study20 trained six 
supervised ML classifiers to build a model for predicting hospital mortality in HF. The authors claimed that RF 
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gained the highest accuracy of 88% during the test phase. Employing the feature importance-based selected 
features, Sabahi21 and Cida22 obtained 76.4% accuracy and 83.1% AUC, respectively, using the XGB classifier.

A few researchers have presented some hybrid ensemble models in their studies. Such as, by combining the 
RF classifier with a linear model, Mohan et al.24 presented a hybrid model named HRFLM. Which has been found 
to produce a robust accuracy of 88.7%. Sohanur et al.25 proposed another hybrid model using Stacking (ST) with 
the integration of three conventional classifiers. Their proposed model outperformed the single prebuilt classifiers 
and achieved 89.41% accuracy. Pronab et al.26 presented some hybrid ensemble classifiers by the integration of 
single traditional classifiers. They have individually set the baseline classifier (e.g., RF, DT, AB, Gradient Boost 
(GB), and KNN) as a base estimator of Bagging (BG) and Boosting (BS). Another hybrid model was presented 
by Raza27 using an ensemble model named Voting (VT). Their proposed VT-based model outperformed con-
ventional classifiers and demonstrated an effective accuracy of 88.88%.

Research methodology
The current study uses numerous cutting-edge ML phases, such as preprocessing raw data, rectifying relevant 
features, classifying class levels, and exploring hidden factors. The raw data undergoes two critical preprocessing 
steps, namely data scaling, and balancing, which set the groundwork for downstream analysis. After that, the most 
significant features are handpicked using two widely accepted feature selection techniques, Feature Importance 
(FI) and Information Gain (IG). The training phase involves four conventional and a novel classifier proposed by 
us. To elucidate the complex interactions among the most preferred features, a Partial Dependence Plot (PDP) 
is employed to provide global explanations for each feature. Figure 1 illustrates the schematic diagram outlining 
the comprehensive workflow of our study.

Data description
This study employed the Faisalabad Institute of Cardiology and Allied Hospital’s heart failure clinical records 
dataset, which is now publicly available in the Kaggle data repository30. During the follow-up period from April 
to December 2015, 299 individual patients with heart problems—194 men and 105 women—made up the 
samples. Their age ranged between 40 and 95 years and all 299 patients had left ventricular systolic dysfunc-
tion and previous heart failures that placed them in the New York Heart Association (NYHA) categorization 
of heart failure stages III or IV. The average duration of the follow-up was 130 days, with a minimum of 4 days 
and a maximum of 285 days. Table 1 summarizes the employed dataset, including clinical, physical, and lifestyle 
features. Some features hold binary characteristics like Anaemia, High Blood pressure, Diabetes, Sex, Smoking, 

Figure 1.   A schematic diagram highlighting the key methodologies of our study.
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and DEATH_EVENT. The rest of them contain a mix of integer and float characteristics. Finally, for classifica-
tion purposes, DEATH_EVENT has been selected as the target feature7,8,14, which states that if the patient died 
or survived (1 is for dead and 0 is for survived) before the conclusion of the follow-up period. Where 203 were 
dead and 96 surviving cases were reported.

Data preprocessing
The selected dataset for this study is almost clean and preprocessed; there are no missing values in this dataset. 
However, we consider two concerns that might prevent our model from getting a generalized outcome. For 
instance, there are huge differences between values in the case of creatinine phosphokinase and platelet features. 
It may delay the decision-making, hence overcoming this issue through min–max scaling. Which converts the 
feature values into a range; additionally, it helps quickly learn an algorithm and is essential for improving results.

Overcome the imbalance issue with BOO‑ST
Nowadays, dataset imbalance is a common issue that mostly arises in publicly available datasets. It’s a situation 
when the number of instances in one class is significantly higher or lower than in another class. This can lead the 
model to bias toward the majority class, poor performance on the minority class, and misleading performance 
metrics. As a result, the researchers are quite concerned about this issue and seek to resolve it before training 
the data. The synthetic minority oversampling technique (SMOTE) is one of the famous approaches for balanc-
ing data and researchers mostly use it7–10. However, this strategy tends to produce noisy and irrelevant samples, 
while generating synthetic instances11.

In our study, we have addressed both imbalance and SMOTE-related issues by taking three crucial stages 
named BOO-ST. Typically, minority classes are frequently misclassified due to their underrepresentation and 
lack the sufficient examples to capture complex patterns. Therefore, at the initial step, we applied the boosting 
method on the imbalanced dataset D , over T number of iterations. The dataset D is trained on the equal weights 
(1/n) of samples and calculates the learning rate lr , where n is the total number of samples. Based on the learning 
rates, the weight is increased in the case of minority class samples. Resulting in the minority instances placing 
more emphasis on the next stages. Which is beneficial to improve the representation of the minority class and 
produce a more varied synthetic example12.

Following the weights adjustment of minority instances, we applied the SMOTE in the imbalanced dataset 
{(x1, y1), (x2, y2), . . . , (xn, yn)} , where xi is the feature vector of ith instances and yi is the corresponding class 
level. Initially, it calculates the imbalance ratio by |C|/|n| , where |C| and |n| refer to the number of minority classes 
and the total number of samples respectively. Then calculates the k nearest neighbors k(xi) from the minority 
classes |C| and randomly selects the neighbors xj from k(xi) . The difference between xi and xj for each feature 
dimension d calculated using the formula dif (v) = xi_d−xj_d . After that, adding a fraction ( 0 < r <= 1 ) gen-
erates new synthetic instances xs , where r is the random number between 0 and 1. Finally, newly generated 
synthetic instances xs added to the augmented dataset D′′ . Here, the potential noisy and irrelevant synthetic 
instances could make the model prone to high complexity and difficulty reproducing results. Hence, in the final 
stages, we try to eliminate these drawbacks from our study and apply Tomek links to the augmented dataset 
D′′ . In the Tomek link procedure, we again determine k nearest neighbors from both minority and majority 
samples from D′′ , denoted as k(xk) and k(xkd), respectively. This step entails computing the Euclidean distance 
between xi and all instances of D′′ ’ and selecting the p instances from both classes with the smallest distances. 
Afterwards, locate the desired samples of the majority class data that are closest to the minority class data (i.e., 
the majority class data that makes the minority class data distinct from ambiguous) and then remove it. Follow-
ing these procedures, we can greatly reduce the complexity of D′′ , by removing noisy and irrelevant samples13. 
The proposed BOO-ST method significantly generates 198 of the total samples in the survival class. The whole 
working process of the BOO-ST is illustrated in Algorithm 1.

Table 1.   Dataset details with features explanation, measurement, and ranges of data.

Feature name Explanation Measurement Range

Age Patient age Years 40–95

Anaemia Decrease of red blood cells or hemoglobin Boolean 0(no), 1(yes)

High blood pressure (H_b_p) If the patient has blood pressure Boolean 0(no), 1(yes)

Creatinine phosphokinase (Cr_ph) Level of the CPK enzyme in the blood Mgc/L 23–7861

Diabetes If the patient has diabetes Boolean 0(no), 1(yes)

Ejection fraction (Ej_fr) Blood leaving percentage Percentage 14–80

Sex Man or woman Binary 0(woman), 1(man)

Platelets Platelets in the blood Kilo platelets/mL 25.01–850.00

Serum creatinine (Se_cr) Level of creatinine in the blood mg/dL 0.50–9.40

Serum sodium (Se_so) Level of sodium in the blood mg/dL 114–148

Smoking If patients smoke Boolean 0 (no), 1(yes)

Time Follow-up period Days 4–285

DEATH_EVENT (target) If the patient died in the follow-up period Boolean 0(survived), 1(dead)
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Feature selection and learning phase
Feature selection is a pivotal technique that significantly refines machine learning performance by identifying the 
most critical variables and discarding the insignificant ones. To improve the overall efficiency of the process, the 
present study employs two effective feature selection techniques, namely feature importance (FI) and information 
gain (IG). FI assigns a score to each input feature based on its importance in predicting the outcome of interest, 
thereby offering insights into the contribution of each variable towards the model and its prediction accuracy. 
A Random Forest is fitted with the FI method to rank the features. On the other hand, IG is an entropy-based 
feature selection approach that measures the gain of each variable concerning the target variable. It focuses on 
identifying how much information a phrase can be used to categorize. After conducting these feature selection 
methods, the top ten most significant features are selected based on their importance rank, Table 2 states these 
features with ranks. The processed dataset and the reduced feature sets are divided into 70, 80, and 90% for the 
training and, in response, 30, 20, and 10% for testing respectively. Further, averaging the obtained results from 
multiple testing splits to validate the model performance. This can provide a more reliable and robust assessment 
of model performance.

Classifiers description
In our quest to identify HF, utilized four well-established machine learning classifiers: decision tree, gradient 
boost, support vector machine, and extra tree. In addition, to improve classification performance, we have also 
proposed a novel combinational ML classifier, named CBCEC. A detailed description of the performed classifiers 
is provided in the following subsections.

Decision tree
The way a decision tree (DT) operates is by iteratively segmenting the input data into subsets according to the 
value of one of its attributes. Regarding the target variable, the subsets are partitioned in a way that makes them 
as homogeneous as possible. The highest information gain (IG) is chosen as the feature to use for this, which is 
stated in Eq. (1). The result is a tree-like structure where each leaf node represents a class label, and each inside 
node represents a test on a feature.

Algorithm 1.   Illustrates the procedures of a novel data balancing method, BOO-ST, consisting of multiple 
effective machine learning strategies.
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where f  is the feature on the dataset is Dp, I(Dp) is the impurity of dataset Dp, Np is the total number of instances 
in Dp , Nj is the number of instances in subset Dj , and I(Dj) is the impurity of subset Dj .

Gradient boost
Gradient Boost (GB) is an ensemble ML approach that generates predictions using a few decision trees. It func-
tions by adding new decision trees in a sequential manner to fix errors in the preceding trees, hence reducing 
the overall error. The combined forecasts of all the trees are weighted to provide the final prediction, evaluated 
in Eq. (2).

where y(x) is the predicted output, F(x) is the initial model prediction, 
∑

i hi(x) is the sum of the predictions 
of all the decision trees,  hi(x) is the prediction of the ith decision tree, which is trained to correct the errors of 
the (i − 1)th tree.

Support vector machine
Support Vector Machine (SVM) is a potent supervised learning method that may be used for regression and 
classification. To separate the various classes in the dataset, SVM searches for the optimal decision boundary or 
hyperplane31. The basic goal is to choose a hyperplane with the greatest margin—that is, the distance between 
the hyperplane and the closest data point for each class. The working function of SVM is illustrated in Eq. (3).

where x represents the input data, w represents the weight vector, b is the bias term, T denotes the transpose, and 
sign() is a sign function that, depending on the type of input data, returns either +1 or −1.

Extra tree
An Extra Trees Classifier (ET) is an ensemble learning approach that randomly constructs numerous decision 
trees and integrates their outputs to increase the model’s overall accuracy. In ET, a random split point is selected 
rather than looking for the best split point in the feature space as in conventional decision trees. A vast number 
of decision trees are constructed using this method, each of which has a random split point for each feature. The 
mathematical procedures are represented in Eq. (4).

where E(y) refers to the predicted outcome, n refers to the total number of decision trees, wi , and hi are the weight 
and predicted output of ith tree respectively for the input x.

Combining the best‑performing conventional classifier with ensemble classifiers
In the realm of ML, the development of effective predictive models is paramount, yet conventional ML clas-
sifiers often grapple with issues of bias, overfitting, and limited generalization23. Hence, recently numerous 
studies25–27,32,33 have attempted to introduce hybrid ensemble models to solve the difficulties efficiently. Rec-
ognizing the limitations of conventional ML and single ensemble method (limited diversity and overfitting28), 
this study introduces a novel approach named CBCEC by harnessing the power of hybrid ML classifiers, which 
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−
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Table 2.   Rectify the most significant features of heart failure from two feature selection methods: feature 
importance-based selected features, and information gain-based selected features.

Feature importance by RF Information gain

Selected features Importance rank Selected features Importance rank

Time 0.36 Time 0.33

Se_cr 0.26 Ej_fa 0.24

Ej_fa 0.21 Se_cr 0.20

Age 0.17 Age 0.14

Cr_ph 0.15 Anaemia 0.11

Plateletes 0.12 Cr_ph 0.08

Se_so 0.10 Se_so 0.07

Sex 0.10 Plateletes 0.05

Diabetes 0.08 Diabetes 0.05

Smoking 0.07 H_b_p 0.03



7

Vol.:(0123456789)

Scientific Reports |        (2023) 13:22874  | https://doi.org/10.1038/s41598-023-48486-7

www.nature.com/scientificreports/

seamlessly blend the strengths of different algorithms to enhance prediction accuracy, model robustness, and 
adaptability. The novel classifier CBCEC is developed by combining one general and two ensemble classifiers, 
Bagging (BG), and Voting (VT). BG is a kind of ensemble ML method that mixes the results of numerous learners 
to enhance performance. It mainly works on bootstrapping (creating some bootstrap data samples from the data) 
and aggregating (aggregating the individual predictions from each bootstrap sample). The primary job of VT 
is to integrate the predictions of various independent classifiers and forecast the class that will receive the most 
votes or probabilities. It can enhance the model’s overall accuracy and resilience by lowering variance and bias.

Different classifiers have different strengths and weaknesses, which can vary on the datasets. Choosing the 
wrong classifier in the hybrid combinational method can lead to poor performance, incorrect predictions, and 
decisions. Whereas the preferred one can significantly impact the accuracy and reliability of the predictions. 
Hence, we initially trained four traditional classifiers and determined the best-performing classifier ( BP − C ) 
by comparing the performed results. Evaluated in Eq. (5), where Dtest is the test instances for each classifier and 
MaxACC refers to the maximum accuracy from the test phase.

Then set B− PC as a base estimator and parallelly fit for training the generated bootstrap samples of BG, 
let as B− BG . In Eq. (6), Db and DB are the first and last bootstrap samples, respectively. Training all the boot-
strap samples helps to capture the underlying patterns and relationships of the dataset. Finally, aggregate the 
predictions from all bootstrap samples Db to DB and reduce the chances of overfitting29. Additionally, it could 
be superior in reducing variance without making biased results.

Another ensemble classifier VT can perform well when two or more base classifiers fit together34. Hence, we 
finally integrate B− PC and B− BG using the soft voting. This type of voting works with multiple classifiers and 
generates the average probability score for all classes; finally, the highest average prediction is selected to create 
the final prediction, as stated in Eq. (7). Which can enhance the confidence or certainty of the model predictions. 
Furthermore, by combining the prediction of multiple classifiers with different biases and error rates, CBCEC 
can reduce the overall biases and errors in final predictions. Algorithm 2 holds the whole procedure of CBCEC 
the classifier.

(5)B− PC = MaxACC{DT(Dtest),GB(Dtest), SVM(Dtest),ET(Dtest)}

(6)B− BG =
∑B

b=1
{B− PC(Db), . . . . . . .,B− PC(DB)}/B

(7)CBCEC = agrmax{B− PC(Dtrain),B− BG(Dtrain)}

Algorithm 2.   Develop a novel hybrid machine learning classifier by combining best-performing conventional 
classifiers and two robust ensemble methods to detect heart failure mortality efficiently.
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Ablation study of the proposed classifier
Before embarking on the journey of model development, it is essential to lay a solid foundation. This is precisely 
what our ablution study accomplishes. This study serves as the critical groundwork for ensuring the feasibility, 
viability, and ultimate success of our model. Three distinct experiments were undertaken through this study (e.g., 
the base estimator, random state, and voting type), wherein various facets of the proposed CBCEC classifier were 
systematically modified. This rigorous examination of different components aimed to cultivate a more robust 
architecture, ultimately resulting in heightened classification accuracy.

Experiment 1: modification of base estimators
The base estimator refers to the individual ML classifiers that make up the ensemble or hybrid model. Fitting an 
appropriate base estimator is crucial for the hybrid ensemble method, as it directly influences the overall perfor-
mance, robustness, and ability to provide accurate predictions across diverse scenarios. Hence, we individually 
fit each conventional classifier as a base estimator on both ensemble methods (BG and VT) and obtained the 
performances. Table 3 shows the outcomes for each case, where the GB produces 93.67% accuracy for FI features 
set as a base estimator and performs slightly better compared to others.

Experiment 2: modification of random states
The random state is used as a parameter of the ML model that controls the randomness or unpredictability of 
certain operations. Selecting appropriate random states enhances the reliability, reproducibility, and fairness of 
our proposed classifier. It ensures that the results are not influenced by random variations. To identify the ideal 
state of random we conduct a comprehensive evaluation of different numbers of states. As shown in Table 4, when 
specifying the random state as 10 our proposed classifier demonstrated an identical score of 93.67% accuracy, 
which is close to the random state of 15 and 25.

Experiment 3: modification of the voting types
There are three different VT schemes in ML, these have different behaviors and can lead to variations in the 
model performance. The choice of VT type can significantly influence the overall performance as it tailors the 
model’s behavior to the specific requirements of the problem. Table 5 illustrates the performance of our proposed 
classifier using three different VT types (e.g., hard, weighted, soft). The table reveals that the soft VT produces 
the maximum test accuracy compared to hard and weighted. Therefore, we have selected the soft VT for further 
exploration of our proposed classifier.

Experiments and results
This section comprehensively evaluates the experimental results obtained from our proposed methodology. To 
ensure a thorough analysis, we have measured various classification metrics of both traditional and proposed 
classifiers for all three scenarios (e.g., All features, FI-based features, and IG-based features). Then explore the 
global behaviors from the most potential features selected from this comparison.

Table 3.   Modification of the base estimators to conduct an ablation study, where the sign (✓) and (✘) refer to 
the identical and dropped accuracy, respectively.

Case study Base estimator ALL features FI features IG features Acceptability

1

DT 88.75 92.5 92.5 ✘

GB 89.74 93.67 92.40 ✓

SVM 87.5 90 88.75 ✘

ET 90 92.5 91.25 ✘

Table 4.   Modification of the random state to conduct an ablation study, where the sign (✓) and (✘) refer to 
the identical and dropped accuracy, respectively.

Case study Random state ALL features FI features IG features Acceptability

2

5 88.9 92.5 90.12 ✘

10 89.74 93.67 92.40 ✓

15 88.75 92.59 88.75 ✘

20 88.9 91.25 90 ✘

25 88.75 92.5 91.25 ✘

30 90 91.25 92.59 ✘

35 88.75 91.25 90 ✘

40 89.74 90 89.74 ✘
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Experimental setup
The efficiency of the proposed and baseline classifiers was evaluated through modeling experiments using com-
puter equipment with an Intel Core i3 processor of 10th GEN clocked at 3.3 GHz and 4 GB of RAM. The 
cloud-based Jupyter Notebook environment (Colab NoteBook) was used for constructing and prototyping the 
performed methods. Since it has several freely available suitable libraries for ML models (e.g., Scikit-learn, 
Mathplotlib, Keras, and so on).

Evaluation metrics
Several evaluation metrics, namely accuracy, precision, recall, f1-score, an area under the curve (AUC), and 
computational cost measured to show the robustness of our research in terms of classification35. Accuracy 
quantifies the percentage of accurate classifications the model makes. Recall measures the model’s ability to 
recognize positive instances accurately and precision measures the model’s capacity to produce accurate posi-
tive predictions. A balanced indicator of the model’s overall performance, the F1-score combines precision and 
recall. The strategy of accuracy, precision, recall, and f1-score are stated in Eqs. (8–11). Where TP , FP , FN , and 
TN refer to the number of true positives, the number of false positives, the number of false negatives, and the 
number of true negatives, respectively36.

The AUC is an essential evaluation statistic that gauges the level of separability between the two classes. 
Additionally, compilation complexity gains insight into the computational performance of the employed classi-
fiers. Furthermore, to evaluate the statistical significance of the proposed classifier over various feature sets, we 
conducted a statistical hypothesis test named the Wilcoxon signed rank test.

Analysis of the performed result
On three different feature sets, we thoroughly compared the proposed CBCEC classifier to four conventional 
classifiers, DT, GB, SVM, and ET. The entire comparison enabled us to identify the most essential features 
for predicting HF mortality and assess the effectiveness of the proposed CBCEC classifier in comparison to the 
traditional classifiers. A thorough summary of the comparison’s results is provided in the ensuing subsections.

Evaluation of the accuracy, precision, recall, and F1‑score
Figure 2a illustrates the accuracy of all classifiers for three distinct feature sets. Notably, the proposed classifier 
CBCEC emerges as the top performer with a remarkable accuracy rate of 93.67% with the FI-based features set. 
While the SVM classifier achieved a mortality detection rate of 77.21%, which was relatively consistent across 
other feature sets. As opposed to the baseline classifiers, the GB classifier excels by reaching an accuracy rate of 
91.92% for the identical feature set. Then the precision score of Fig. 2b, also reveals that the CBCEC achieved 
the highest precision scores of 92.57% and 94.02% when trained with the IG and FI-based reduced features sets, 
respectively. It is worth mentioning that SVM performed the lowest precision scores, ranging from 77 to 78%, 
for all different feature sets.

According to Fig. 2c, once again CBCEC achieved a strong result as a recall score of 93.51%, whereas SVM 
obtained the lowest recall score of 77.18% with the FI features. Finally, the results of f1-scores from the classi-
fiers are displayed in Fig. 2d. Interestingly, the DT, GB, ET, and CBCEC yielded f1-scores within the 80% to 94% 
range for all different feature sets. It is worth noting that the CBCEC using the FI-based feature set obtained 
the highest f1-score of 93.63%. Overall, we can demonstrate that the CBCEC consistently performs well across 
various evaluation metrics.

Performance analysis based on the area under the ROC curve
Figure 3 illustrates the area under the curve (AUC) of all classifiers implemented on three different feature sets, 
i.e., ALL Features (a), FI Features (b), and IG Features (c). Where, the x and y-axis represent the false positive 
and true positive rates, respectively, and the AUC scores of each classifier are depicted on the label. It can be 

(8)Accuracy = TP + TN/(TP + FP + TN + FN)

(9)Precision = TP/(TP + FP)

(10)Recall = TP/(TP + FN)

(11)F1− score = (2 ∗ Precision ∗ Recall)/(Precision+ Recall)

Table 5.   Modification of the voting type to conduct an ablation study, where the sign (✓) and (✘) refer to the 
identical and dropped accuracy, respectively.

Case study Voting type ALL features FI features IG features Acceptability

3

Hard 89.74 92.5 92.40 ✘

Weighted 90 92.59 91.25 ✘

Soft 89.74 93.67 92.40 ✓
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observed that the CBCEC has produced the highest AUC score of 98% with the FI-based selected features. This 
result indicates that the proposed classifier is proficient in distinguishing between the two classes, making it a 
reliable model for predicting HF.

Computational complexity
Measuring computational complexity is a fundamental aspect of developing an ML model. It guides the optimiza-
tion of the proposed classifier and ensures practical feasibility for the given task within the available resources. 
To gain insight into the computational performance, we carefully reported the respective execution time in mil-
liseconds (MS) and required space in bytes (BT) for all performing classifiers, displayed in Table 6. Interestingly, 
the proposed CBCEC showed a comparatively higher runtime, approximately 1351, 957, and 754 MS for all, FI, 
and IG-based features, respectively. As it needs to undertake multiple steps during the execution. Additionally, 
this classifier demands high network spaces, for example, 2,476,100, 2,471,340, and 2,475,788 BT for ALL, FI, 
and IG features, respectively. At the same time, DT was found to have the lowest time (15.3, 12.2, and 11.8 MS) 
and space (7145, 7097, and 7113 BT) compared to others. These findings significantly emphasize the need for 
future research to create classifiers that can provide high performance while keeping computational costs low.

Wilcoxon’s signed rank test
The Wilcoxon signed rank test (WSRT)37 is a statistical hypothesis test that is used to compare several samples 
and classifiers. Using WSRT, it can determine whether there is a substantial difference between the paired clas-
sifiers with samples. Here we measure the test statistics (TS) and P-values using WSRT for the possible pairs 
of all classifiers based on the accuracy. To calculate the test statistic (TS), the differences between the matched 
measurements are ranked summarily. Besides that, the P-value is calculated by comparing the TS to a critical 
value or approximation based on the normal distribution. It is possible to reject the null hypothesis in favor of 
the alternative hypothesis, which is that there is a difference between the paired measurements if the p-value 
is smaller than the selected significance level (0.05). Table 7 shows that our proposed classifier CBCEC gener-
ates the TS value 2.0 up to 70.0 by pairing other classifiers for all different feature sets. It means that the sum 
of the ranks of the positive differences or the negative differences is equal to 2.0–70. This value represents how 
much the two samples under comparison in the test differ from one another. In the case of P-value, we see that 
most of the paired groups of classifiers (e.g., DT vs. GB, DT vs. SVM, DT vs. CBCEC, GB vs. CBCEC, SVM vs. 
CBCEC) have lower scores for three different feature sets, like less than the threshold or significant level of 0.05. 

Figure 2.   A comparative analysis between the traditional and our proposed classifier over three different 
features set based on some performance matrices of (a) accuracy, (b) precision, (c) recall, and (d) F1-score.
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This indicates that the differences between the paired classifiers, particularly the proposed CBCEC classifier is 
statistically significant for all different feature sets.

Global behaviors of the most impactful features
Enhancing the interpretability and transparency of ML models explainable AI (EAI) enables stakeholders to 
understand the hidden process. This is the most practical way to increase patient care and safety by offering hid-
den explanations, especially in the medical field. Hence, we have utilized an EAI method named Partial Depend-
ence Plot (PDP) to generate global behaviors for the most potential features (FI features) of HF. The function 
of a PDP is to visualize the relationship between a selected feature and the outcome predicted by a ML model 
while keeping other features constant. It computes the average expected outcome for the chosen feature over a 
range of values and then graphs these average forecasts against the feature values. Which enables us to determine 
whether there are any nonlinear or interactional effects and how the feature affects the model’s anticipated result. 
Figure 4 illustrates the PDP plot for the FI-based features, where the y-axis represents the partial dependence of 
the feature, and the x-axis holds the feature’s value. The minor ticks on the x-axis depict the various values of the 
features and the color line (lime) is the PDP line. When this line is relatively high for the specific feature values, 
it indicates this value range is susceptible to HF mortality.

The generated PDP plots help us interpret and identify the riskiest value ranges or classes of each feature, 
raising awareness among stakeholders and patients. To provide more clarity, we summarize the riskiest value 

Figure 3.   Analysis of the AUC scores of the performing algorithms on the three different feature sets, (a) all 
features, (b) FI features, and (c) IG features.

Table 6.   Computes the time and space complexity in MS and BT, respectively for each classifier based on the 
different feature sets.

Features set

Time complexity Space complexity

DT GB SVM ET CBCEC DT GB SVM ET CBCEC

ALL 15.3 106 82.8 53.2 1351 7145 172,333 38,555 1,807,929 2,476,100

FI 12.2 105 77.1 26.3 957 7097 172,301 33,499 1,720,345 2,471,340

IG 11.8 82.2 53.6 24.5 754 7113 170,140 33,515 1,740,521 2,475,788
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ranges or classes for each feature in Table 8. Additionally, gather the existing explanations for all characteristics, 
which can validate the effectiveness of our findings. From this table, the stakeholders and patients will discover 
what possible value ranges or classes could result in HF-related death.

Discussion
The rising demand for high-quality healthcare services has made machine learning methods essential for the 
medical industry. Through the automation and improvement of numerous healthcare procedures, including 
detection, diagnosis, treatment, and monitoring, these techniques have the potential to reduce the stress of health-
care personnel significantly. Hence, we develop an effective system for detecting HF mortality by two novel ML 
methods named BOO-ST and CBCEC.

Initially, instead of employing the conventional methods, we have presented a novel technique called BOO-
ST to address the imbalanced problem of the dataset. This strategy enhances the quality of synthetic minority 
instances by emphasizing their weights through several iterations. After successfully completing each iteration, 
it eliminates noisy and irrelevant synthetic instances to help the model focus on the informative patterns. The 
proposed BOO-ST is a powerful technique for addressing the imbalance issue and improving the fairness of ML 
models, especially in situations where minority class detection is of utmost importance. Following the robust 
feature selection techniques FI and IG, the detection phase involved the implementation of four traditional and 
one proposed classifier CBCEC. To reduce the misclassification rate, it was developed by combining the best-
performing conventional classifier. According to the earlier section, GB was identified as the top-performing 
classifier since it outperformed the four baseline classifiers, and we incorporated it with other ensemble classifiers. 
Notably, we found that FI-based selected features yielded superior results compared to ALL and IG features. 
Thus, we can confidently state that FI-selected features have a more significant impact on the overall accuracy 
of our proposed classifier. However, the model’s generalizability could be affected by unusual data conditions, 
which may cause overfitting and underfitting during classification.

To mitigate these issues, the training data was cleaned and preprocessed by BOO-ST. By generating diverse 
synthetic samples, this proposed strategy helps to reduce overfitting and underfitting12. Additionally, the CBCEC 
classifier was developed by combining multiple ensemble classifiers, which would be grateful to reduce these 
issues28. Then we control our learning process utilizing hyperparameter tuning and ablation study, which poten-
tially reduce the model complexity and overfitting issues. Therefore, we can hypothesize that our proposed 
system is less prone to these issues and produces a highly generalized model. Moreover, a comparison summary 
based on the outcomes of our proposed aspects and state-of-the-art has been presented in Table 9. Which could 
be beneficial for further investigations and provide a fresh perspective on the topic. The table shows that our 
proposed aspects (BOO-ST and CBCEC) are more generalized and accurate than previous studies producing 
an accuracy of 93.67%.

Conclusions
Despite significant medical improvements, clinicians find it more difficult to reduce the prevalence of heart 
failure mortality. Hence, this study aimed to develop an ML-based early warning system to detect mortality 
due to heart failure. To achieve this goal, initially, we overcome the difficulties of imbalanced data with a novel 
combined method named BOO-ST and rectify the potential features followed by two robust feature selection 
methods. Experimental results demonstrated that the proposed CBCEC classifier has a significant ability to detect 
mortality with Feature Importance (FI)-based selected features. Moreover, exploration of the susceptible value 
ranges of HF mortality could help patients understand their conditions and take appropriate actions. We believe 
that our proposed approach has the potential to advance the medical field and benefit HF patients by providing 
early warnings and reducing the mortality rate. The proposed classifier CBCEC significantly outperformed the 
baseline and state-of-the-art models. However, it needs to undertake multiple steps during the execution, as it 

Table 7.   Displays the test statistic (TS) and P-value for all possible pairs of different classifiers on three feature 
sets (ALL, FI, and IG-based features) based on the accuracy of each classifier, where the significant level (SL) is 
set as 0.05.

All possible pairs of employed classifiers

ALL features 
(SL = 0.05)

FI features 
(SL = 0.05)

IG features 
(SL = 0.05)

TS P-value TS P-value TS P-value

DT versus GB 4.5 0.03389 6.0 0.06572 5.0 0.04523

DT versus SVM 25.5 0.01241 88.0 0.27523 66.5 0.34577

DT versus ET 28.0 0.16551 22.0 0.52708 10.5 0.69745

DT versus CBCEC 4.5 0.02389 10.5 0.06734 2.0 0.56370

GB versus SVM 37.5 0.28504 51.0 0.31731 84.0 0.37109

GB versus ET 20.0 0.73888 8.0 0.25683 18.0 0.45674

GB versus CBCEC 3.0 0.03256 1.0 0.04131 2.0 0.04131

SVM versus ET 28.0 0.16551 45.0 0.08955 51.0 0.31731

SVM versus CBCEC 37.5 0.02504 40.0 0.01967 70.0 0.02134

ET versus CBCEC 20.0 0.07388 7.0 0.41421 12.0 0.07045
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Figure 4.   Presented the partial dependence plot (PDP) for the most impactful features (e.g., (a) time, (b) serum 
creatinine, (c) ejection fraction, (d) age, (e) creatinine phosphokinase, (f) platelets, (g) serum sodium, (h) sex, 
(i) diabetes, (j) smoking) of our findings.

Table 8.   The riskiest heart failure value ranges are determined using the interpretable partial dependence plot 
(PDP) for the most significant characteristics of our findings.

Feature Susceptible value range or classes Existing justification

Time Within 4–40 follow-up days Recommended follow-up within 14 days38

Se_cr Within 1.5–3.5 mg/dl A higher Se_cr value can increase mortality39

Ej_fa Within 14–20 percent Below 30% is severely abnormal Ej_fa40

Age Within 70–95 years HF mostly occurs in older people41

Cr_ph Within 200–2500 mcg/L 10–120 mcg/L is normal, otherwise abnormal42

Platelets  < 100,000 and > 350,000 per uL Moderate to severe platelets < 100,000 per uL43

Se_so Within 114–130 mEq/L < 135 mEq/L is the prevalence value of Se_so in HF44

Sex Women Women are more prone than men to suffer from HF45

Diabetics Having diabetics People with diabetes are more susceptible to HF46

Smoking If smoke Smoking can cause HF47
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demands significant computational resources compared to baseline classifiers. In the future, we aim to reduce 
the computational cost by integrating distributed learning mechanisms into our framework. Along with this, we 
would like to gather a sizable dataset to further improve our model’s generalization.

Data availability
All data generated or analyzed during this study are included in this published article. It also available in- https://​
www.​kaggle.​com/​datas​ets/​andre​wmvd/​heart-​failu​re-​clini​cal-​data.
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