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Abstract
A fully automated system based on three-dimensional (3D) magnetic resonance imaging (MRI) scans for brain tumor 
segmentation could be a diagnostic aid to clinical specialists, as manual segmentation is challenging, arduous, tedious and 
error prone. Employing 3D convolutions requires large computational cost and memory capacity. This study proposes a fully 
automated approach using 2D U-net architecture on BraTS2020 dataset to extract tumor regions from healthy tissue. All the 
MRI sequences are experimented with the model to determine for which sequence optimal performance is achieved. After 
normalization and rescaling, using optimizer Adam with learning rate 0.001 on T1 MRI sequence, we get an accuracy of 
99.41% and dice similarity coefficient (DSC) of 93%, demonstrating the effectiveness of our approach. The model is further 
trained with different hyper-parameters to assess the robustness and performance consistency.
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Introduction

Brain tumors are masses that arise as a result of irregular 
brain cell proliferation and the loss of the brain's regula-
tory systems. Approximately 700,000 people worldwide are 
suffering from brain tumors, with 86,000 new cases identi-
fied in 2019. Nearly 16,380 people died in 2019 from brain 
tumors [1]. Gliomas are the most prevalent malignant tumors 
[2], representing 80% of all malignant brain tumors. Early 
identification of brain tumors is crucial in the diagnosis of 
cancer as it aids in the selection of the most appropriate 
treatment strategy to preserve a patient’s life.

However, the detection and segmentation of tumors 
based on imaging and human interpretation is challenging, 
as tumors can have a mixture of low-grade and high-grade 
characteristics. In addition, this is often time-consuming 
and does not always yield high accuracy [2]. A non-invasive 

computer-aided (CAD) fully automatic diagnostic method 
might aid clinical specialists in early diagnosis, analysis 
and treatment planning and decrease the mortality rate by 
providing more consistent, faster and more correct tumor 
identification [3]. For this reason, a number of CAD-based 
image segmentation methods are currently being investi-
gated for this application [4]. The advance of CNN has led 
to noteworthy advancements on the field of computer vision 
and different brain tumor segmentation techniques based on 
deep learning [5].

In this study, we concentrate on tumor segmentation 
which is regarded as one of the most difficult challenges 
in multimodal MRI images. The multimodal Brain Tumor 
Segmentation Challenge 2020 dataset (BraTS 2020) has 
been used for this research. Four different MRI modalities 
are included for each patient in the dataset with correspond-
ing manually segmented region of interest (ROI). The main 
contributions of this research can be stated as follows:

• A convolutional network (U-net model) is designed for 
relatively quick and accurate image segmentation. In the 
ISBI challenge, it outperformed the previous best tech-
nique for segmenting neuronal structures. The architec-
ture is configured with skip connections to boost perfor-
mance.

• Instead of employing fixed hyper-parameters, a novel 
approach is presented to develop the model architecture. 
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In this regard, the model is optimized with ablation study 
where a number of experimentations are conducted by 
altering different hyper-parameters.

• Rather than training the model with 3D images, we have 
employed single slice of the 3D MRI as the aim of our 
approach is to minimize the computational cost while 
achieving the best possible performance.

• In the pre-processing step, the middle slice of 3D MRI 
is extracted automatically and a normalization approach 
is carried out which impacts the overall performance.

• The model is trained and validated on each of the four 
sequences separately to determine which sequence results 
in the highest accuracy.

• Across different hyper-parameters, the model is able to 
yield optimal performance which further validates the 
robustness and performance consistency of the architec-
ture.

Literature Review

Various innovative approaches for automated segmentation 
of brain tumor have been presented in recent years. Pereira 
et al. [6], presented an automated segmentation approach 
using a CNN model. Their approach was tested on the 
BraTS 2013 dataset, achieving the place with dice coeffi-
cient (DC) measures of 88, 83 and 77% for the entire, core 
and enhancing areas, respectively. Other authors [7] pre-
sented a computerized system that can distinguish between 
a normal and an irregular brain based on MRI images and 
classify abnormal brain tumors as high-grade glioma (HGG) 
or low-grade glioma (LGG). With accuracy, specificity and 
sensitivity scores of 99%, 98.03% and 100%, respectively, 
their system effectively identified HGGs and LGGs. Noori 
et  al. [8] developed a low-parameter-based network 2D 
U-Net that uses two different approaches. Using the BraTS 
2018 validation data set, they got dice scores of 89.5, 81.3 
and 82.3% for whole tumor (WT), enhancing tumor (ET) 
and tumor core (TC), respectively. Xu et al. [9] enhanced 
the performance of the segmentation of tumors with a 3D 
masked U-net multi-scale which captures features by assem-
bling multi-scale architecture images as input, integrating 
a 3D atrous spatial pyramid pooling layer (ASPP). They 
obtained dice scores of 80.94, 90.34 and 83.19% on the 
BraTS 2018 validation set for ET, WT, and TC, respectively. 
On the BraTS 2018 test data set, this technique achieved 
dice scores of 76.90, 87.11 and 77.92% for ET, WT, and 
TC, respectively. Other authors [10] also used the BraTS 
dataset to evaluate a U-Net model, undertaking two experi-
ments to compare the network's performance. Comparing 
the results of the first and third sets, the accuracy in detect-
ing HGG patients was 66.96% and 62.22%, respectively. For 
LGG, the second and third set’s accuracies were 63.15% and 

62.28%, respectively. Pravitasari et al. [11] proposed a cross 
between a U-Net and a VGG16 model. It was found that the 
model was able to detect the tumor region, with an average 
CCR score of 95.69%. SegNet3, U-Net, SegNet5, Seg-UNet, 
Res-SegNet and U-SegNet have been used on BraTS data-
sets in this study [12]. The average accuracy of Res-SegNet, 
U-SegNet, and Seg-UNet was recorded as 93.3%, 91.6% and 
93.1%, respectively. According to Pei et al. [13], feature-
based fusion methods can predict a better tumor lesion seg-
mentation for the total tumor (DSCWT = 0.31, p = 0.15), 
tumor core (DSCTC = 0.33, p = 0.0002), and the enhanced 
tumor (DSCET = 0.44, p = 0.0002) areas. However, in the 
real segmentation of WT and ET (DSCWT = 0.85 ± 0.055, 
DSCET = 0.837 ± 0.074, the approach provided a statisti-
cally significant improvement. Lin et al. [14] proposed a 3D 
deep learning architecture named context deep-supervised 
U-Net to segment brain tumor from 3D MRI scans. The 
suggested approach acquired a DSC of 0.92, 0.89, and 0.846 
on WT, TC and ET, respectively. Punn et al. [15] proposed 
a 3D U-net model for brain tumor segmentation using 3D 
MRI across WT, TC and ET lesions, respectively. The pro-
posed deep learning model performed best achieving the 
highest DSC of 0.92 on WT, 0.91 on CT and 0.84 on ET. 
In both of these studies, data normalization was conducted 
as a pre-processing step. Ullah et al. [16] proposed a 3D 
U-Net model for the automatic segmentation of brain tumor 
using 3D MRI scans. A number of image pre-processing 
techniques were conducted to remove noise and enhance 
the quality of 3D scans. The suggested method achieved 
mean DSC of 0.91, 0.86, and 0.70 for the WT, TC and ET, 
respectively. Table 1 represents the main methodology and 
limitations of some of these papers.

It is observed from Table 1 that in most of the papers, a 
lack of image processing and model hyper-parameter tuning 
exists. A few studies used 3D CNN model which is computa-
tionally extensive due to 3D convolutional layer. As 3D brain 
MRI comprises multiple modalities, these modalities should 
be explored in experimenting with deep learning models for 
automated segmentation which is another limitation found 
in some papers. In this study, we attempt to address these 
drawbacks in order to develop an optimal U-net model with 
the highest possible performance.

Dataset

Our system is trained and analyzed with the (BraTS2020 
dataset, collected from Kaggle [17]. A total of 473 subjects 
of 3D images are available in the dataset. For every patient, 
four MRI sequences: fluid attenuated inversion recovery 
(FLAIR), T1-contrast-enhanced (T1ce), T1-weighted (T1), 
T2-weighted (T2) as well as the corresponding ROI (seg) are 
obtained. The provided ground truths were labeled by the 
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experts. Each 3D volumes, includes 155 2D slices/images 
of brain MRIs collected at various locations across the brain. 
Every slice is 240×240 pixels in size in NIfTI format and is 
made up of single-channel grayscale pixels. The dataset is 
summarized in Table 2.

Visualization of 3D MRI Scans

A 2D image consists of single or multi-channel pixels 
whereas 3D images comprise 3D cubes or voxels. While 
reading a NIfTI file, all the information in the file is encoded, 
where each detail is known as an attribute. When visualizing 
a 3D image (Fig. 1), a list is initialized in which, whenever 
a volume is read, it iterates over all the 155 slices of the 3D 
volume to append each slice sequentially in the list. The 
number of voxels in a 3D image is calculated with Eq. (1).

where Vt is the total voxel number of an image, St is the 
number of 2D slices of a 3D image, Hs is the height of each 
slice and Ws is the width of each slice. Figure 1 illustrates 
the visualization of a 3D MRI.

Description of MRI Sequences 
and Corresponding ROI

The FLAIR sequence is generated with a very long time 
to echo (TE) and repetition time (TR) and abnormalities, 
such as edematous tissues are found bright, while the nor-
mal cerebrospinal fluid (CSF) fluid remains comparatively 
dark. In T1-weighted MRI sequences, TR and TE are both 
kept shorter with the result that both tumor regions and CSF 
appear dark. T2-weighted sequences are produced using 
long TE and TR times, which make both tumor and CSF 
bright. In the T1ce sequence, tumor and CSF both appear 

(1)Vt = St × Hs ×Ws,

Table 1  Methodology and limitations of the previous literatures

Paper Dataset Methodology Limitations

Pereira et al. [6] BraTS 2013 CNN model for tumor segmentation (i) Use of a single brain MRI modality
Noori et al. [8] BraTS 2017 Shallow 2D U-Net model for tumor segmentation (i) Absence of hyper-parameter tuning

BraTS 2018 (ii) Absence of data-pre-processing
Xu et al. [9] BraTS 2018 3D U-Net model for tumor segmentation (i) High computational complexity due to 3D model 

architecture
Choi et al. [10] BraTS 2015 U-Net model for tumor segmentation (i) Use of a single brain MRI modality
Pravitasari et al. [11] BraTS UNet-VGG16 hybrid model for tumor segmentation (i) Use of a single brain MRI modality (ii) absence of 

data-pre-processing
Lin et al. [14] BraTS 2020 3D context deep-supervised U-Net model for tumor 

segmentation
(i) High computational complexity due to 3D model 

architecture
(ii) Absence of hyper-parameter tuning

Punn et al. [15] BraTS 2017 3D U-Net model for tumor segmentation (i) High computational complexity due to 3D model 
architecture

BraTS 2018 (ii) Absence of hyper-parameter tuning
Ullah et al. [16] BraTS 2018 3D U-Net model for the automatic segmentation of 

brain tumor
(i) High computational complexity due to 3D model 

architecture
(ii) Absence of hyper-parameter tuning

Table 2  Dataset description

Task Brain tumor segmentation

Dataset BraTS 2020
Dataset source Kaggle
Image type 3D brain MRI
Image format NIfTI
Image size 224 × 224 × 150
Total number of subjects 473
Number of images in each subject 5
Name of the four sequences and cor-

responding ROI of each subject
FLAIR, T1, T1ce, T2 and Seg Fig. 1  Visualization of 3D brain MRI
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dark. All the sequences therefore contain different charac-
teristics, and it is useful that all of these sequences are used 
for training to determine which sequence results in the best 
segmentation performance in terms of accuracy. 2D slices 
of all the sequences are shown in Fig. 2 for a single subject.

Proposed Methodology

In the data pre-processing step, normalization and rescal-
ing are implemented on each of the four MRI sequences. 
Afterwards, every sequence is passed as the training dataset 
into the model. The corresponding manually segmented ROI 
(Seg) is employed as ground truth for each of the sequences 
separately. Adam optimizer with a learning rate of 0.001 is 
used for training the model. For four sequences, four results 
are produced namely res-1, res-2, res-3 and res-4 (Fig. 3). 
Finally, based on the accuracy for each particular sequence, 
the optimal resulting model is obtained.

Data Preprocessing

Brain tumor classification using 3D MRI scans is usually 
difficult and computationally complex, requiring pre-pro-
cessing techniques to improve the model’s performance [18, 
19]. In this research, two pre-processing steps are performed 
for every MRI sequence before training the model: intensity 
normalization and rescaling.

Normalization

As MRI intensities differ based on manufacturers, procure-
ment parameters, and different sequences are taken over dif-
ferent periods, the 3D images need to be normalized before 
feeding them to a model. As scanning of patients is likely 

to be performed in different lighting environments, inten-
sity normalization plays an imperative role in brain tumor 
segmentation.

Data normalization means transforming floating-point 
feature values from their regular range into a new arbi-
trary standard range that is usually between 0 and 1 [21]. 
Min–max normalization is a widely used technique for nor-
malization that is performed in our research on each MRI 
sequence independently. In this process, for each feature, the 
minimum value is converted to 0 and the maximum value is 
converted to 1. The remaining values are transformed into a 
range of values between 0 and 1. Normalization is performed 
using Eq. (2).

where p refers to the pixel values means p = ( p1,…, pn ) and 
zi refers to i th resultant normalized data.

Rescaling

Due to the GPU memory limitation, after normaliza-
tion, the dataset is resampled to 128×128×1 voxels [9]. 
Only the middle single slices are utilized instead of all 
155 slices of the brain where the original dimensions 
of 3D brain MRI image are 240 × 240 × 155 pixels. As 
experimenting with 3D data requires high computational 

(2)zi =
pi − min(p)

max(p) − min(p)
,

Fig. 2  2D representation of all four sequences and segmented ROI of 
a 3D MRI

Fig. 3  Proposed methodology
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resources, we use Intel Core i5-8400 Processor, NVidia 
GeForce GTX 1660 GPU, 8 GB of Memory, and 256 GB 
DDR4 SSD for storage.

Data Split

Each of the preprocessed sequences and corresponding 
ROI images is split into two sets (training and validation) 
maintaining a ratio of training to validation of 70:30. The 
segmented ROI images (seg) are used as training and vali-
dation labels while training and validating the model. The 
diagram in Fig. 4 is shown to provide better insight.

Proposed Architecture

U‑Net Architecture

For the task of segmenting tumor regions from MRI images, 
the U-Net segmentation model is used in this research which 
is a widely accepted architecture [20], developed by Olaf 
Ronneberger et al. [21] for the purpose of segmenting Bio-
medical images. U-Net utilizes a compact encoder–decoder 
structure that concatenates the features from many encoder 
levels with the decoder layers twice [22]. Figure 5 illustrates 
the U-Net architecture.

U-Net consists of a total of 23 convolutional layers and is 
made up of two paths: a contraction path (the encoder) and a 
symmetric expanding path (the decoder) (Fig. 5). The encoder 
or contraction path captures image contexts and it is made of 
repeated stacks of convolution and maxpooling layers alike 
CNN. In the encoder, the dimensions of the image gradually 
decrease. The encoder has a pair of 3 × 3 unpadded convolu-
tional layers, each of them followed by a rectifier linear unit 
(ReLU) and a maxpooling layer of 2 × 2 sized kernel. Max-
pooling layers are used for down sampling the image. The first 
set of convolutional layers has 64 filters and the filter number 
is doubled in each next set of convolutional layers (e.g., sec-
ond set of convolution layers with filters 64 × 2 = 128). The 
decoder of the symmetric expanding path uses transposed con-
volutions (deconvolution layer) that enable precise localization 
of the ROI in images. The size of images increases gradu-
ally while the depth of the image decreases because of the 

Fig. 4  Dataset split

Fig. 5  U-Net model architecture
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deconvolutional layers. In the decoder, upsampling of feature 
maps commences. This task is carried out by deconvolution 
layers of 2 × 2 which halve the number of feature channels. 
Subsequently, concatenation with the correspondingly cropped 
feature map of the encoder is done, followed by two 3 × 3 
deconvolution layers and ReLU Basic working formula of 
ReLU is [23]:

The output layer of this architecture consists of a 1 × 1 
deconvolutional layer. This maps all the feature vectors into 
two classes (ROI and background of image) outputting an 
image consisting of segmented ROI (tumor) in one color and 
the rest of the image in another color. A sigmoid activation 
function Eq. (4) is used to improve accuracy. The provided 
pre segmented ROI images are used as validation data [23].

As this architecture does not contain any dense layers, 
it is a fully convolutional network (FCN) capable of taking 
any size of image as input. Moreover, the model uses skip 
connectors to reduce the loss of information. In developing 
a deep learning architecture, skip connections are introduced 
to address different issues. Particularly, skip connections 
allow feature reusability, while alleviating model training 
and convergence. In this study, skip connection is employed 
to improve the overall performance and competence of the 
model. As skip connection has a continual gradient flow 
from the first layer to the last, it addresses the vanishing 
gradient problem of the proposed U-net model effectively.

Training Strategy

The model proposed in this paper is separately trained and 
validated four times with a total of 473 images, containing 
only a single grayscale channel, for four MRI sequences. The 
corresponding manually segmented ROIs are used as true 
labels. While training, the optimizer Adam is used with a 
learning rate of 0.001 [24]. Equation (5) is the mathematical 
formula of the Adam optimizer [25].

where � is the weight of the model, � is the size of 
each step, and �, � are the required hyper-parameters. 
Here mt = �1mt−1 + (1 − �1)gt  and squared gradi-
ent vt = �2vt−1 +

(
1 − �21

)
gt

2 ,  estimation bias cor-
rected of first moments m̂t , and similarly, second 
moments v̂t=vt∕

(
1 − �t1

2
)
. The batch size is set to 32 and 

(3)ReLU(q) =

{
0, if q ≤ 0

q, otherwise.

(4)Sigmoid (q) =
1

1 + exp(−q)
.

(5)�t = �t−1 − �
m̂t

√
v̂t + �

,

binary_crossentropy is employed as loss function. Binary_
crossentropy [22] is defined as:

where n is the number of samples, yi is the true label of a 
specific sample and fi is its predicted label. The model is 
trained for 50 epochs [26]. All the training parameters for 
training the network are described in Table 3.

Results and Discussion

DSC score, sensitivity [27] and specificity [28] are used to 
evaluate the model besides accuracy and validation accuracy 
[29] based on the provided segmented ground truth of the 
tumor part in the MRI.

Evaluation Metrics

DSC performance metric computes the similarity percentage 
between the ground truth and the output of a model. Sup-
pose, P and Q are two sets, the dice similarity of these two 
sets are then calculated with Eq. (7) [23].

Sensitivity is calculated with Eq. (8) where, cardinalities 
of sets P and Q are denoted with |P| and |Q|, respectively, T1 
representing the proportion of tumor regions of ground truth 
images and P1 represents tumor regions that were predicted 
by the model [5].

Specificity is calculated with Eq. (9) where T0 repre-
sents non-tumor tissue regions of the ground truth and P0 

(6)Lc = −
1

n

n∑

i=1

{
yilog

(
fi
)
+
(
1 − yi

)
log

(
1 − fi

)}
,

(7)DSC =
2 × |P ∩ Q|
|P| + |Q|

,

(8)Sensitivity (P, T) =
||P1 ∧ T1

||
||T1||

.

(9)Specif icity (P, T) =
||P0 ∧ T0

||
||T0||

.

Table 3  Training hyper-
parameters

Loss function Binary_
crossen-
tropy

Optimizer Adam
Learning rate 0.001
Batch size 32
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represents the non-tumor tissue regions predicted by the 
model [5].

Performance Computation of all Trained Models

In Table 4, validation loss is referred as ‘V_Loss’, validation 
accuracy as ‘V_Acc’, specificity as ‘Spe’, sensitivity as ‘Sen’ 
and lastly dice similarity coefficient score as ‘DSC’.

Among all the model configurations trained with different 
MRI sequences, U-Net trained with the T1 MRI sequence 
results in the best validation accuracy of 99.41% with a 
validation loss of 0.037. The T2 MRI sequence results in 
the lowest validation score of 98.25% with a validation loss 
of 0.08. The validation accuracies of the FLAIR and T1ce 
sequences are 98.95% and 98.68%, respectively. In terms 
of specificity and sensitivity, U-Net trained on T1 MRI 
sequence has the best performance with scores of 99.68% 
and 98.97% for specificity and sensitivity, respectively. 
The T2 MRI sequence has the lowest scores in this regard 
with a specificity of 98.37% and a sensitivity of 98.49%. 
The most important measure regarding the performance of 
a segmentation model is the DSC for this metric the best 
scores (93.86%) are also achieved with the T1 MRI sequence 
trained on the U-Net segmentation model. The FLAIR MRI 
sequence results in a DSC of 91.23% which is slightly less 
than the DSC for the T1 MRI sequence. The lowest DSC of 
79.32% is recorded with the T2 MRI sequence.

Moreover, further examination is conducted to assess the 
impact of model hyper-parameters on performance [30]. As 
for T1 modality, the highest performance is achieved, and 
the experiments concerning hyper-parameters are conducted 
using the dataset of T1. In this regard, different batch sizes, 
number of epochs, loss functions, optimizers, learning rate 
and dropout factors are investigated. Table 5 shows the 
results regarding changing these hyper-parameters.

It is observed from Table 5 that across different hyper-
parameters, the model is able to provide optimal outcomes. 
For batch size 32 the highest DSC of 93.86% is obtained 
whereas near highest performance is achieved for batch 
size of 16 and 64. However, while using batch size 128, 
the performance drops slightly. Across all three configura-
tions regarding epoch number (50, 100 and 150), the highest 

DSC of 93.86% is acquired. However, to minimize the train-
ing time, epoch number 50 is kept. For both loss functions 
binary cross-entropy and categorical cross-entropy, the 
highest DSC of 93.86% is acquired is recorded. Regarding 
optimizer, for Adam, Nadam and Adamax, DSC > 93% is 
achieved where for Adam the highest DSC is found. The 
SGD optimizer records a slightly lower DSC of 92.43%. 
Across all the learning rates except 0.01 DSC > 93% is 
achieved. A learning rate of 0.001 is selected since for this 
configuration the highest DSC is acquired and lower training 
time is required comparatively. Three dropout factors of 0.2, 
0.5 and 0.8 are experimented with where for 0.2 and 0.5 the 
highest DSC of 93.86% is obtained. However, for dropout 
factor of 0.8 performance falls to 91.38%. From the results 
of these experiments, it can be concluded that the model 
is stable and robust enough to yield optimal performance 
across different hyper-parameters. No sign of overfitting is 
perceived while training the model altering hyper-parame-
ters. Furthermore, over different dropout factors, the model 
can maintain its performance consistency with no occur-
rence of overfitting.

Comparison with Some Existing Literatures

The proposed segmentation approach of brain MRI is com-
pared with some recent studies conducted on similar datasets 
on the basis of DC scores on Table 6.

With our proposed approach, it was made possible to 
achieve a dice score of 93%. Wei et al. [5] experimented 
with BraTS 2018 dataset and proposed a 3D segmentation 
model (S3D-UNet) which is a U-Net-based segmentation 
model. Using this model, they achieved a DSC of 83%. A 
similar approach was taken by Yanwu et al. [9] who pro-
posed a 3D segmentation model (3D U-Net) based on an 
existing U-Net segmentation model, achieving a DSC of 
89% with the BraTS dataset. A similar approach to our study 
was taken by [31] where a U-Net segmentation model was 
utilized for segmenting MRI images from the BraTS 2018 
dataset, achieving a DSC of 82% (Table 6). A better result 
was obtained by [23] who proposed a BU-Net segmentation 
model using the BraTS 2017 dataset for training and valida-
tion. The BraTS 2018 dataset was also used to test their pro-
posed model resulting in a 90% DSC score. Ghosh et al. [20] 
experimented with two models named baseline U-Net and 
U-Net with ResNeXt50 for brain tumor segmentation. LGG 
segmentation dataset (TCGA-LGG) was used in this study. 
Results suggest that U-Net with ResNeXt50 outperformed 
baseline U-Net with DSC of 93.2%. The approach proposed 
in this paper outperforms all studies shown in Table 6 with a 
DSC of 93.9%. Moreover, as stated 3D data processing and 
developing a deep learning model accordingly requires high 
computational power, most of these prior studies employed 

Table 4  Validation accuracy (V_Acc), validation loss (V_Loss), 
specificity (Spe), sensitivity (Sen) and dice similarity coefficient 
(DSC) scores of the approach

 T1 MRI Sequence Performed Best

MRI sequence V_Loss V_Acc Spe Sen DSC

FLAIR 0.061 98.95 99.14 98.53 91.23
T1 0.037 99.41 99.68 98.97 93.86
T1ce 0.072 98.68 98.52 98.72 85.67
T2 0.08 98.25 98.37 98.49 79.32
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efficient hardware configuration including processor, mem-
ory and GPU.

Conclusion

In this paper, a CNN-based 2D U-net segmentation model 
is proposed for segmenting brain tumor from MRI images. 
This method receives each of the MRI sequences individu-
ally as training data and extracts ROIs (tumor regions in 
Brain MRI). To decrease computational cost and increase 

efficiency, the input images are normalized and rescaled 
into single 128 x 128 images. We incorporate 2D layers, 
to better integrate the information. This model is trained 
with the brain MRI dataset BraTS 2020 for each of the 
four MRI sequences (FLAIR, T1, T1ce, T2) to find which 
sequence gives the best segmentation performance based 
on the ground truth of the MRI images. The highest DSC 
score (93.9%) is recorded with the T1 MRI sequence train-
ing on U-Net model. Results are compared with previous 
research demonstrating that this is a promising approach 
while decreasing computational complexity.

Table 5  Performance of the model across different hyper-parameter

Experimentations with various batch sizes

No. Batch size DSC (%) Findings

1 16 93.17 Near highest performance
2 32 93.86 Highest performance
3 64 93.62 Near highest performance
4 128 92.84 Performance fallen

Experimentations with various number of epochs

No. Epochs DSC (%) Findings

1 50 93.86 Highest performance
2 100 93.86 Highest performance
3 150 93.86 Highest performance

Experimentations with various loss functions

No. Loss Function DSC (%) Findings

1 Categorical Cross-entropy 93.86 Highest performance
2 Binary Cross-entropy 93.86 Highest performance

Experimentations with various optimizers

No. Optimizer DSC (%) Findings

1 Adam 93.86 Highest performance
2 Nadam 93.72 Near highest performance
3 Adamax 93.36 Near highest performance
4 SGD 92.43 Performance fallen

Experimentations with various learning rates

No. Learning rate DSC (%) Findings

1 0.001 93.86 Highest performance
2 0.01 92.84 Performance fallen
3 0.0001 93.61 Near highest performance
4 0.007 93.77 Near highest performance
5 0.0007 93.44 Near highest performance

Experimentations with various dropouts

No. Dropout DSC (%) Findings

1 0.2 93.86 Highest performance
2 0.5 93.86 Highest performance
3 0.8 91.38 Performance fallen
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Limitation and Future Work

The paper presents a novel approach for the automated seg-
mentation of brain tumor from 3D MRI scans using opti-
mized U-net model. In future study, the research can be 
extended by increasing the number of images. In this regard, 
some other 3D datasets of brain MRI can be explored. The 
deep learning architecture can be further optimized with 
hybrid CNN or attention mechanism-based approach. More-
over, we aim to present a classification of different types of 
brain tumors after segmenting the tumor region from 3D 
MRI scans.
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